объединенный институт ядерных исследований дубна

Ya.Z.Darbaidze*, V.A.Rostovtsev

THE VOLTERRA MODEL AND QUARK HADRONIZATION INTO MULTICOMPONENT HADRON SYSTEM

Submitted to "Nuovo Cimento A"

[^0]The Problem of the parton (quark and gluon) hadronization is not still finally solved in the framework of the Quantum Chromodynamics (QCD) (see, for instance, (${ }^{1,2}$)). Especially multicomponent product (resonances) emission needs explanation.

In the previous article (${ }^{3}$) we have proposed one more model, and as a result, the problem of the famous "mystery" for negative binomial distribution involving the kNO-scaling Violation (see (${ }^{4}$)) was explained.

The KNO relation is well described by gamma(Γ)-distribution in hadron-hadron scattering processes

$$
\begin{equation*}
\left\langle n_{c}\right\rangle \cdot \sigma_{n_{c}} / \sigma \equiv \psi\left(z_{c}\right)=\frac{a^{a}}{\Gamma(a)} z_{c}^{a-1} \exp \left(-a z_{c}\right), \tag{1}
\end{equation*}
$$

where the parameter a must be fixed ($a=4$) and defined by the Wroblewski rule (${ }^{5}$)

$$
\begin{equation*}
D_{c}^{2}=\frac{1}{a}\left(\left\langle n_{c}\right\rangle-\varepsilon_{c}\right)^{2} . \tag{1a}
\end{equation*}
$$

However, this parameter is "mysteriously" changed (${ }^{5}$) with changing experimental conditions, particularly, in limited intervals of pseudorapidity distribution ini< η_{c}.

Solution of this problem consists in the generalization of the Γ-distribution (1) for generating a few (ν) components (resonances) to the following expression:

$$
\begin{equation*}
\prod_{1=1}^{v}\left\langle n_{1}\right\rangle \cdot \sigma\left(n_{1}, \ldots, n_{v}\right) / \sigma=f\left(z_{1}, \ldots, z_{v}\right) \Rightarrow t^{a-v} \exp [-(a / v) t] \tag{2}
\end{equation*}
$$

Where $t=\sum_{i=1}^{\nu} z_{i}, z_{i}=n_{1} /\left\langle n_{1}\right\rangle, \sigma\left(n_{1}, \ldots, n_{V}\right)$ and σ are exclusive and inclusive cross-sections, respectively, for the reaction with $n_{1}, n_{2}, \ldots, n_{v}$ hadron multiplicities of the v-type.

Generally speaking, the shape of the Γ-distribution (2) is strongly modified by averaging over the ($v-1$)-multiplicities $n_{2}, \ldots, n_{v}\left({ }^{6}\right)$. We must get rid of this modification assuming that under certain experimental conditions (for in stance, in different intervals of pseudorapidity η) a few (ν_{1})
components are generated so that they are distributed as the Kronecker $\delta\left(z_{1}-\alpha_{1}\right)$ function. Here α_{1} are resonance decay parameters with $1=2, \ldots, \nu_{1}$. Then, the KNO-function (1) for charged particles is modified as follows:
(3) $\Psi\left(z_{c}\right) \Rightarrow\left(z_{c}+\alpha\right)^{\nu 1_{1}\left(a_{e}-1\right)} \exp \left[-a_{e}\left(z_{c}+\alpha\right)\right]$
where $\quad \alpha \cong \sum_{i=1}^{v} a_{1}$.
The comparison of formula (3) with the experimental data (${ }^{4}$) conflims our hypothesis about a few number of correlated components at hadronization of quarks (see the Table).

Below (sect. 2) we shall give the meaning to this hypothesis in the framework of the model of competing species for the same food. Now we should like to stress that if we use only the volterra and other nonlinear models of interacting species in blological population $\left({ }^{7,8}\right)$, then discovery of the dependence of function (3) and other characteristics on the number v of interacting components is a new phenomenon and though these models are long ago known it has not been learned until present time. The present status of the problem of confinement and colour forces does not contra dict, for instance, an uncertainty between the number v of components and the effective correlation intensity a_{e} measured by formula (3) that their production will be constant:

$$
v_{1} \cdot a_{e}=a \Rightarrow 4
$$

We are glad to note that now we can explain analogous enigma for other relations (${ }^{9}$). As an example, we discuss the relation between an average number $\left\langle n_{1}\left(n_{1}\right)\right\rangle$ of particles of the 1 -th type and the number $n_{c}=n_{1}$ of charged particles associated with them

$$
\begin{equation*}
\left\langle n_{1}\left(n_{1}\right)\right\rangle=\sum_{n_{2} \ldots n_{v}} n_{1} \sigma_{n_{1} \ldots n_{\nu}} / \sum_{n_{2} \cdot n_{\nu}} \sigma_{n_{1} \ldots n_{v}} \tag{4}
\end{equation*}
$$

It is difficult to enumerate all 15 year attempts to explain the fact that the relevant experimental data (see, for instance, $\left({ }^{10}\right)$) can be fitted by the linear function (5)

$$
\left\langle n_{i}\left(n_{c}\right)\right\rangle=A_{1} n_{c}+B_{1}
$$

and that the parameters A_{+}and $B_{ \pm}$depend on the total energy s ${ }^{1 / 2}$ of colliding particles.

This natural change of the parameters was explained by using the multi-dimensional KNO-function (2) in formula (4), which led to an increased number of correlated components (6.9 .11).

It is surprising that the parameter a has a tendency to decrease as energy increases. This may be caused by the above-mentioned generation of a few (ν_{1}) components with local or instantaneous (Kronecker delta) contribution to averaging when a large number ($\nu_{2} \gg I$) of components with multiplicity lags (nonlocal contribution) is also present. Thus, $\nu=\nu_{1}+\nu_{2}$ components are generated but only ν_{2} take place in multiplicity averaging. Then, relation (4) is
(6)
$\frac{\left\langle n_{1}\left(n_{1}\right)\right\rangle}{\left\langle n_{1}\right\rangle}=z_{1} \frac{\Psi\left(v_{2}, a-v_{1}+1, \overline{v_{1}+v_{2}} z_{1}\right)}{\Psi\left(\nu_{2}-1, a-v_{1}, \overline{v_{1}+v_{2}} z_{1}\right)}$
The saturation takes place in the high energy limit when $v_{2} \gg I$, 1.e. the right-hand side of (6)

$$
\left\{-\frac{z a}{a}\right\}^{1 / 2 K_{a-v_{1}}\left(2 \sqrt{a z_{1}}\right)}{\frac{K_{a-v_{1}-1}}{}\left(2 \sqrt{a z_{1}}\right)}_{(-2)}^{(2)}
$$

depends only on the effective constant $\bar{a}_{e}=a-v_{1}$, which is the explanation of its changing as a result of uncertainty principle: $\bar{a}_{e}+v_{1}=a \Rightarrow 4$. Here Φ and K are confluent hypergeometric and modified Bessel functions, respectively.

It is interesting to note that the dependence on \bar{a}_{e} and v appears also in other relations. Exactly, it was discussed in (${ }^{9}$) that the behaviour of the normalized semi-inclusive spectrum density $\frac{1}{\sigma_{n}}-\frac{d \sigma}{d \eta}$ can be explained at $s^{1 / 2}=540 \mathrm{GeV}$. The necessary condition for this is $\bar{a}_{e}=a-v<1$ allowing the description of the dip-effect observed at small multiplicity values.

Earlier (${ }^{12}$), intensification of the famous "sea-gull" effect was also observed as the number v of correlated com ponents was growing.

The main purpose of this article is the investigation of an analogous phenomenon in the framework of the set of different1al (D) equations (${ }^{3}$)

$$
\begin{equation*}
\frac{d}{d \tau}\left\langle n_{1}\right\rangle=-\sum_{k=1}^{v} N_{k} D_{1 k}, \quad 1=1,2, \ldots, v, \tag{7}
\end{equation*}
$$

where N_{1} is the quark number in 1 -th type hadron, $D_{i k}$ $=\left\langle n_{1} n_{k}\right\rangle-\left\langle n_{i}\right\rangle\left\langle n_{k}\right\rangle$ form the matrix of correlation between multiplicities of hadrons of the same and different type. The parameter τ depends either on a given momentum p of an inclusively separated hadron in the case of associated mul tiplicit1es $\left(\tau=\ln \left(\mathrm{pp}_{\mathrm{o}} / \mathrm{p}_{\mathrm{O}}^{2}\right)\right)$ or on the total energy in the case of mean multiplicities ($\tau=\ln s / 2 m_{p}^{2}$).

It should be noted, that the mean (associated) multip licities have already been described by the volterra-type integral equation obtained from the Altarelli-Parisi forma$11 \mathrm{sm}\left({ }^{13}\right.$) (see ($\left.{ }^{1,2}\right)$).

W1thout a detailed analysis we can say that the set of eqs. (7) may turm out to be more admissible and convenient in the next sense: firstly, it has no relation to such nonperturbative objects as a parton distribution (fragmentation) functions and has no links with such statements as the theorem about factorization of hard and soft parts of the considered processes (${ }^{14}$) and so on. Secondly, as under hadronization we understand mainly the division of the total number of avallable quarks ($n \gg 1$) between a few species of hadrons

$$
\begin{equation*}
n=\sum_{1=1}^{\nu} N_{1} n_{1} \tag{8}
\end{equation*}
$$

we do not load our model with preconfinement (${ }^{15}$) or colourless string (${ }^{16}$) and others.

In sect. 2 we discuss an analogy between the system of eqs. (7) and the Volterra and other nonlinear models (${ }^{7}$) under some special parametrization of the correlation matrix $D^{2}=\left\{D_{1 k}\right\}$. Further, in sect. 3 the simple algorithm is given for analytical calculation of a high (v) order D-eq, as a resultant of the system (7). In sect. 4, the methods for solving the obtained equations describing associated multiplicities are discussed.

2. - Quark hadronization as_the Volterra model of competing

 spectesThe present article is stimulated by surprising analogy between D-equation (7) and the Volterra and other nonlinear models of interacting species for biological population(${ }^{7,8}$).

In order to make this analogy deeper we take some concepts from this model. Thus, if we are speaking about "quark food" divided among the competing hadron components by for mula (8), then "quark- (instead of bio-) mass" would be

$$
M=\sum_{i=1}^{\nu} N_{1}\left\langle n_{i}\right\rangle
$$

It is not difficult also to recognize the equations. The cross section σ_{n} for semi-inclusive generation of $n-$ partons at large $n \gg 1$ obeys the well-known Malthus law (${ }^{17}$) (9)

$$
\frac{d_{-}}{d \tau} \sigma_{n}=-\gamma \cdot n \cdot \sigma_{n},
$$

where γ is the loss (growth) rate constant and it is equal either to anomalous dimension of the field (${ }^{18}$) or to the constant number (${ }^{319}$).

Following (${ }^{3}$) the Malthus equation is also fulfilled for the cross section of generation of v-component hadron set I) (10) $\quad-\frac{d}{d \tau} \sigma\left(n_{1}, \ldots, n_{v}\right)=-\gamma\left(\sum_{i=1}^{v} N_{1} n_{i}\right) \sigma\left(n_{1}, \ldots, n_{v}\right)$.

Averaging over n_{2}, \ldots, n_{v} leads to the following equation for the cross section of semi-inclusive production of $n_{1}=n_{c}$ charged particles
(9a)

$$
-\frac{\dot{U}}{d \tau} \sigma_{n_{1}}=-\gamma N_{1} n_{1} \sigma_{n_{1}}-\gamma \sum_{1=2}^{\nu} N_{1} \sum_{n_{2} \cdots n_{\nu}} n_{1} \sigma\left(n_{1}, \ldots, n_{v}\right)
$$

[^1]where the second term represents the operator of the Volterra type for multiplicity (but not time) lags
(9b) $\quad \sum_{n_{2} \cdots n_{v}} n_{1} \sigma\left(n_{1}, \ldots, n_{\nu}\right) \Rightarrow \int_{Z_{1}}^{\infty} g\left(t-z_{1}\right) f_{v}(t) d t$.
Here f_{v} is the function (2) and
$$
g\left(t-z_{1}\right)=\left(t-z_{1}\right)^{v-2}
$$
is the retardation function.
By using formula (4) the loss rate constant for (9a) takes the following form
(9c)
$$
K=-\gamma\left\{N_{1} n_{1}+\sum_{i=2}^{\nu} N_{1}\left\langle n_{1}\left(n_{1}\right)\right\rangle\right\}
$$

It is interesting to note that after averaging over the next n_{1} multiplicity averaging lags disappear but the manycomponent effect remains in the corresponding relation for the cross-section of the inclusive processes
(10a) $\quad \frac{d}{d} \bar{\tau} \sigma=-\gamma\left(\sum_{i=1}^{v} N_{1}\left\langle n_{1}\right\rangle\right) \sigma$,
This analogy can be continued if we take into account a certain hypothesis about the correlation matrix $D^{2}=\left\{D_{1 k}\right\}$ parametrization.

Thus, the single component case with the Wroblewski law (1a), when ε_{c}^{2} is neglected, leads to the Verhulst equation (${ }^{20}$) (so called logistical equation $\left(^{8}\right.$))
(7a)
$\left.\left.\frac{d}{d} \tau<n_{c}\right\rangle=K<n_{c}\right\rangle\left(s-\left\langle n_{c}\right\rangle\right) / s$,
where $s=2 \gamma \varepsilon_{c}$ is the saturation level (1.e. $\left\langle n_{c}\right\rangle \Rightarrow s$
when $\tau \Rightarrow \infty), K=2 \gamma \varepsilon_{c} N_{c} / a$.
Let diagonal elements also have the form (1a) in the many component case and others are represented according to the Vollterra "encounter" method

Then, from (7) we get

$$
\begin{equation*}
\frac{d\left\langle n_{1}\right\rangle}{d \tau}=\left\langle n_{1}\right\rangle\left(\bar{\varepsilon}_{1}-\sum_{k=1}^{v} \bar{a}_{i k}\left\langle n_{k}\right\rangle\right) \tag{12}
\end{equation*}
$$

Here $\bar{\varepsilon}_{1}=2 \gamma \varepsilon_{1} a_{i 1}$ represents the natural growth rate of the 1 -th component and $\bar{a}_{1 k}=\gamma N_{k} a_{1 k}$ is proportional to rapidity of the growth (loss) < $\left.n_{1}\right\rangle$ at the binary encounter with $\left\langle n_{f}\right\rangle$.

This is the usual \vec{V}_{0} terra model of a few interacting species for dynamical description of biological population. Consideration of this model as quark hadronization into a multicomponent set of hadrons allows one to make further simplications.

In the case of saturation with the same elements.
(11a) $a_{i k}=a_{k i}=1 / a$,
the relation of "pray and predator" is excluded and we are led to the model. for v species which are competing for the same resource (quark food):

Here
(14)

$$
\begin{equation*}
\frac{d\left\langle n_{1}\right\rangle}{d \tau}=\left(\hat{\varepsilon}_{1}-\gamma_{1} F\left(\left\langle n_{1}\right\rangle, \ldots,\left\langle n_{v}\right\rangle\right)\right)\left\langle n_{1}\right\rangle \tag{13}
\end{equation*}
$$

$$
F(\ldots)=M \equiv \sum_{i=1}^{\nu} N_{1}\left\langle n_{1}\right\rangle, \gamma_{1}=\gamma / a, \hat{\varepsilon}_{1}=2 \gamma \varepsilon_{1} / a
$$

It is easy to show that it is also dissipative. Multiply (' 7) by N_{1}, and summing we have the quark-mass equation (15) $\quad \frac{d^{1} M}{d \tau}=-\gamma D^{2}(K)$,
where
($\left.\therefore \quad j^{2}(M)-i \sum_{i=1}^{\nu} N_{1} n_{1} M\right)^{2} .=\sum_{i=1}^{\nu} N_{1}^{2} \nu_{11}+2 \sum_{i>j=1}^{\nu} N_{1} N_{j} D_{1 j}$
We consider that one of the terms is nonequal to zero and all $\mathrm{D}_{1 k} \geqslant 0$, thus $\mathrm{D}^{2}(\mathrm{M})>0$. This means by the Volterra classification that we have a dissipative set of components. Thus, the model is more realizable in nature than the conservative at $D^{2}(M)=0$.

Note that eq.(15) allows one to overcome a difficult problem of solving system ('7). For instance, in order to obtain the Γ-distribution (2) we must close the set of equations (10),(10a) and (15) by the condition

$$
\text { (17) } \quad D^{2}(M)=\frac{1}{a}\langle M\rangle^{2} .
$$

However, the solution of (7), as we think, is an attractive task aimed at getting important information about assoc-

Lated multiplicities. As Montroll et al. $\left(^{8}\right)$ admit, the analytical study of any generalized Volterra model is difficult and the numerical study is expensive. However, we hope to advance in analytical calculation by the method of computer algebra and programming system REDUCE-3 (${ }^{21}$).
3. - The differential equation Por the associated multiplicity. Algorithms

In experiment,multiplicity of a single component is usually measured instead of all the considered ones. In order to describe its averaged values, it is necessary to obtain D-equation of the v-th degree from set (7) as a differential resultant. This is a hard task in high orders and it may quickly be solved by the programming system REDUCE, for instance, on the PC IBM-AT. For illustration, the suitable program is given for the case $v=3$ and $\varepsilon_{1}=0$. Then, according to (12) we have

$$
\begin{equation*}
n_{1}^{\prime}=-a_{1} n_{1}^{2}-a_{2} n_{1} n_{2}-a_{3} n_{1} n_{3} \tag{18}
\end{equation*}
$$

Here

$$
n_{1}=\left\langle n_{1}\right\rangle, a_{1}=\gamma a_{11} N_{1}, b_{1}=\gamma a_{21} N_{1}, c_{1}=\gamma a_{31} N_{1}, 1=1,2,3 .
$$

The set (18) has the following programming form
Operator $\mathrm{n}, \mathrm{a}, \mathrm{b}, \mathrm{c}$; Array $\mathrm{a}(3), \mathrm{b}(3), \mathrm{c}(3)$;
For $1:=1: 3$ do <<depend $n(1), t m \gg$;
$D f(n(1), t m):=-a(1) * n(1) * * 2-a(2) * n(1) * n(2)-a(3) * n(1) * n(3) \$$ $\operatorname{Df}(\mathrm{n}(2), \mathrm{tm}):=-\mathrm{b}(1) * \mathrm{n}(1) * \mathrm{n}(2)-\mathrm{b}(2) * \mathrm{n}(2) * * 2-\mathrm{b}(3) * \mathrm{n}(2) * \mathrm{n}(3) *$ $\operatorname{Df}(\mathrm{n}(3), \mathrm{tm}):=-\mathrm{c}(1) * \mathrm{n}(1) * \mathrm{n}(3)-\mathrm{c}(2) * \mathrm{n}(2) * \mathrm{n}(3)-\mathrm{c}(3) * \mathrm{n}(3) * * 2$

Instead of the method of elimination we shall use the next prescription. Let $d_{1}(i=1, \ldots, 15)$ be arbitrary (uncertainty) constants. Make the following substitutions:
$x_{1}=n_{1}^{\prime}, x_{2}=n_{1}^{\prime \prime}, x_{3}=n_{1}^{2}, x_{4}=n_{1}^{3}, x_{5}=n_{1}^{4}, x_{6}=n_{1}^{5}$,
$x_{7}=n_{1} n_{1}^{\prime}, x_{8}=n_{1} n_{1}^{\prime \prime}, x_{9}=n_{1}^{\prime 2}, x_{10}=n_{1}^{2} n_{1}^{\prime}, x_{11}=n_{1}^{3} n_{1}^{\prime}$, $x_{12}=n_{1}^{2} n_{1}^{\prime \prime}, x_{13}=n_{1} n_{1}^{\prime 2}, x_{14}=n_{1} n_{1}^{\prime \prime}, x_{15}=n_{1}^{\prime} n_{1}^{\prime \prime}$.

Then, the desired equation as a resultant of set (I8) will be
(19)

$$
\sum_{\substack{1=1 \\ \text { problem is red }}}^{15} d_{1} x_{1}=0
$$

and this problem is reduced to finding a coefficient d_{1}. In the programing language we have
Operator d, x; Array d(15), x(15);
$x(1):=\mathrm{df}(\mathrm{n}(1), \mathrm{tm}) \mathrm{x}(2):=\mathrm{df}(\mathrm{n}(1), 2, \mathrm{tm}) \$ \mathrm{x}(3):=\mathrm{n}(1) * * 2 \$ \ldots$ $x(15):=x(1) * x(2)$ s15:= for $1:=1: 15$ sum $d(1) * x(1)$ Clear $X ;$

The substitutions for x_{1} with (18) reproduce the left-
hand side of equality (19) into the sum of independent monomials $\mathrm{n}_{1}^{\alpha} \mathrm{n}_{2}^{\beta} \mathrm{n}_{3}^{\gamma}$. The arising coefficients must be equal to zero in order to fulfil eq.(19).

We multiply this expression s15 by function $\operatorname{sn}(0,0,0)$ and make LET substitution for degrees α, β, γ. Thus we can use COEFF statement (22) :

Order $a, b, c, d, n(1), n(2), n(3), s n$; On nero, div; off nat;
s15:=s15*(n(1)*n(2)*n(3))**3*sn(0,0,0)\$
for all b3 let $n(3) * * b 3 * \operatorname{sn}(0,0,0)=\operatorname{sn}(0,0, b 3)$;
for all b2,b3 let $\mathrm{n}(2) * * \mathrm{~b} 2 * \operatorname{sn}(0,0, \mathrm{~b} 3)=\operatorname{sn}(0, \mathrm{~b} 2, \mathrm{~b} 3)$;
for all $\mathrm{b} 1, \mathrm{~b} 2, \mathrm{~b} 3$ let $\mathrm{n}(1) * * \mathrm{~b} 1 * \operatorname{sn}(0, \mathrm{~b} 2, \mathrm{~b} 3)=\mathrm{sn}(\mathrm{b} 1, \mathrm{~b} 2, \mathrm{~b} 3)$;
s15:=s15\$ array cc(1);
For b1:=3:8 do for b2: $=3: 8$ do for $\mathrm{B3}:=3: 8$ do write
$\mathrm{c} 1(\mathrm{~b} 1, \mathrm{~b} 2, \mathrm{~b} 3):=1 f$ coeff(s15,sn(b1,b2,b3),cc1) neq 0 then cc(1) else 0;
It is interesting to note that such an algorithm allows one to work on PC IBM-AT with limited memory (600 kB) at $\nu \geqslant 4$. If necessary, one should vary only the first cycle index.

Finally, we must take $C 1$ equal to zero and define d_{1}. By a simple example of saturated correlation (14), when
$a_{1}=b_{1}=c_{1}$, this procedure looks like
For $1:=1: 3$ do $\langle<b(1):=c(1):=a(1) \gg$;
For $\mathrm{b1}:=3: 8$ do for $\mathrm{b} 2:=3: 8$ do for $\mathrm{b3}:=3: 8$ do write $\mathrm{C} 1(\mathrm{~b} 1, \mathrm{~b} 2, \mathrm{~b} 3):=\mathrm{c} 1(\mathrm{~b} 1, \mathrm{~b} 2, \mathrm{~b} 3)$;
and the system's answer has the form
c1 $(4,3,4):=-a(3) * d(1) \$$
c1 $(4,3,5):=2 * a(3) * * 2 * d(2) *$
c1 $(5,3,3):=-a(1) * d(1)+d(3)$
c1 $(5,3,4):=-a(3) *(-4 * a(1) * d(2)+d(7))$
c1 $(5,4,4):=2 * a(3) * a(2) *(d(9)+2 * d(8)) *$ and so on
The corresponding values of d_{1} are:
$d_{1}=0$ for $1=1,2,3,4,5,6,7,10,11$ and
$d_{8}=-d_{9} / 2, \quad d_{12}=-d_{13} / 2, d_{14}=-d_{15} / 3$.
As a result, (19) becomes
$d_{9}\left(-\frac{1}{2} n_{1} n_{1}^{\prime \prime}+n_{1}^{\prime 2}\right)+d_{13}\left(-\frac{1}{2} n_{1}^{2} n_{1}^{\prime \prime}+n_{1} n_{1}{ }^{2}\right)+d_{15}\left(-\frac{1}{3} n_{1} n_{1}{ }^{\prime \prime}\right.$
$\left.+n_{1}^{\prime} n_{1}^{\prime}\right)=0$.
Due to arbitrariness d_{i} we get two eqs., but only the first is independent
(20)

$$
n_{1} n_{1}^{\prime \prime}-2 n_{1}^{\cdot 2}=0
$$

and its derivative leads to the second one.
As is easily seen, for arbitrary coefficient $a_{1} \neq b_{1}$ from (18) we get a nonlinear autonomic equation

$$
\begin{align*}
& a_{2} n_{1} n_{1}^{\prime \prime}-\left(a_{2}+b_{2}\right) n_{1}^{\cdot 2}-\left(2 a_{1} b_{2}-a_{1} a_{2}-a_{2} b_{1}\right) n_{1}^{2} n_{1}^{\prime}+ \tag{21}\\
& a_{1}\left(a_{2} b_{1}-a_{1} b_{2}\right) n_{1}^{4}=0 .
\end{align*}
$$

It is not difficult also to introduce either the rate constant or other complication into consideration.

4. - Solution of the equation for the associated multiplicity

Unfortunately, we are not informed of any experiment for expounding the component structure in multiparticle processes, and we can understand only from mathematical point of view why the obtained formulae show Just the value of v in comparing with the available experimental data. For example, as it is seen fromthe Table, charge particle emission is s1milar to the single-component case for full pseudorapidity intervals. This is in agreement with the uncertainly principle for $\nu=1$ and $a_{e}=a \Rightarrow 4$. Let us prove that "disappearance" of the component structure is equivalent to the change of multiplicity lags by the time ones in eqs. (9a,b).

In our model, a number of quarks n transforms into the rate constants (8) or (9b), if we measure many- or onevariable cross-sections, respectively.

As has been mentioned in Introduction, the quantity (4) in (9c) contains muitipicicity n, lags (9b) and depends on v.

Pable. Results of fitting the KNO-function (3) compared to the charged particle multiplicity distribution in limited (and full) intervals of pseudorapidity distribution $|\eta|<\eta_{c}(*)$ at $\sqrt{---7}=200$ and 900 GeV centre of mass energies (${ }^{4}$). The values of the correlated component number v, the parameter α and the normalization constant A are given at $a=4$.

When it is linearised as relation (5), then coefficient (9c) becomes

$$
K=A n_{1}+B,
$$

where the parameters

$$
A=\gamma\left(N_{1}+\sum_{i=2}^{\nu} A_{i} N_{i}\right), H=\gamma \sum_{i=2}^{v} B_{i}
$$

conceal multi-component structure of v and depend on the total energy (time τ).

As this is a rough method for cutting coupled equations, the average multiplicity for charged particles obeys Riccat1.'s equation

$$
\begin{equation*}
\left\langle n_{c}\right\rangle^{\prime}=a_{1}\left\langle n_{c}\right\rangle^{2}+a_{2}\left\langle n_{c}\right\rangle+a_{3} \tag{22}
\end{equation*}
$$

In other words, it contains both the Verhulst self-1nterraction and the time lags in the sense of dependence of the α_{1} coefficients on τ. We shall not examine it any more but from methodical point of view we should note that it was establi shed and analysed (${ }^{18}$) in the framework of the renormalization group (${ }^{23}$), and the algorithms (${ }^{24}$) of computer algebra can also be used for this purpose.

Consequently, in our model (7) of competing components we can get equation for associated multiplicity. Its solution depends either on momentum p of an inclusive particle or on transfer momentum Q through the time variable τ (it is possible - on v). In the model of saturating correlation (11a), (14) when the natural growth rate is zero, $\varepsilon_{1}=0$, we have

$$
\left\langle\mathrm{n}_{1}\right\rangle^{\prime}=-\gamma_{1} M\left\langle\mathrm{n}_{1}\right\rangle,
$$

where $\gamma_{1}=\gamma / a$ and M is quark-mass .
The anzats (17) leads to the solution

$$
\left\langle n_{1}\right\rangle=\left\langle n_{i}\right\rangle_{0} /\left(1+\gamma_{1} M_{0} \tau\right)
$$

Here $\langle n\rangle_{0}$ and M_{0} are quantities at $\tau=0$. If we want to see v dependence, we must recall that $M_{O}=\nu N_{1}\left\langle n_{i}\right\rangle_{O}\left({ }^{3}\right)$.

Finally, we will briefly discuss the model with the partial saturation (18) with $\nu=2$. The nonlinear eq. (21) can be solved, for example, by the Berkovic (${ }^{25}$) method. We rewrite it as follows:
(23) $\quad n^{\prime}+f(n) n^{\prime 2}+\beta, \varphi(n) n n^{\prime}+\Lambda(n)=0$,
where
$n=\langle n\rangle, f(n)=-\left(a_{2}+b_{2}\right) /\left(a_{2} n\right), \varphi(n)=n, \beta_{1}=-\left(2 a_{1} b_{2}-a_{1} a_{2}-a_{2} b_{1}\right)$,
$\Lambda(n)=a_{1}\left(a_{2} b_{1}-a_{1} b_{2}\right) n^{3} / a_{2}$.
Then (${ }^{25}$) eq. (23) reduces to the linear one with fixed coefficient
(24) $\quad X_{t}^{\prime \prime}+\beta_{1} X_{t}^{\prime}+\beta_{o} X_{t}+\alpha=0$
$1 f$ the next condition is fulfilled
(24a) $\quad \Lambda(n)=\varphi(n) \exp \left(-\int f(n) d n\right)\left[\beta_{o} \int \varphi(n) \exp \left(\int f(n) d n\right) d n+\alpha\right]$.
It takes place when
$a=0$ и $\beta=a_{1}\left(a_{2} b_{1}-a_{1} b_{2}\right)\left[2-\left(a_{2}+b_{2}\right) / a_{2}\right] / a_{2}$.
and, in general,
(25) $\quad X(n)=\int \varphi(n) \exp \left(\int f(n) d n\right) d n, \quad d t=\varphi(n) d \tau$.

Note also that in the limit of saturation $a_{1} \Rightarrow b_{1}$ $X(n)=\ln n, d t=n d \tau, X_{t}^{\prime \prime}=0$ and $n \sim-\frac{1}{\tau}$.

Thus, decrease in associated multiplicity is caused by the limited resource.

The authors acknowledge L.M.Berwovic, N.N.Vasillev, V.P.Gerdt, A.A.Khelashvil1, I.P.Pavlotski and L.A.Slepchenko for iruitiul discussions. We thank LCTA JINR for the help in PG calculation.

References

(1) L. Van Hove: Proc. Shandong Workshop, Jinan, Chfna (1987); A. Bassetto , M. Ciafalon1 and G. Marchesini: Phys. Rep., 100, 201 (1983).
(²) A. V. Kisilev and V. A. Petrov: Particles and Nucle1, I9, 5 I (I988);
V. G. Grishin: Ysp. Fiz. Nayk, I48, $22 I$ (I986).
${ }^{3}$) Ya. Z. Darbaidze and V. A. Rostovtsev: Analysis of the $D-$ Equations for the Exclusive Processes and Explanation for the "Mystery" of the Gamma-Distribution, preprint JINR E2-89-286, Dubna (I989); Nuovo Cimento (in press).
(${ }^{4}$) G. J. Alner e.a.: Phys.Rep., 154, 247 (1987); R. E. Ansorge e.a. (UA5 Collab.): Charged Particle Nultiplicity Distributions at 200 and 900 GeV C.M. Energy, CERN-EP/88-172 (1988).
(5) A. Wroblewski: Acta Phys. Polon., 4_B, 857 (1973);
R. Szwed e.a.: Mystery of the Negative Binomial Distribution, Warsaw Univ. preprint IFD/3/87 (1987).
(6) Ya. Z. Darbaidze, A. N. Sissakian, L. A. Slepchenko: preprint JINR P2-80-615, Dubna (1980); Proceedings Internat. Seminar HEP and QFT, Protvino , VQl=_1, 304 (1980);
Ya. Z. Darbaldze and N. V. Makhaldiani: preprint JINR P2-80-160, Dubna (1980).
${ }^{7}$) V. Volterra: Lecon sur la theorie mathematique de la lutte pour la vie (Gauthier-Villars, Paris) 1931.
(${ }^{8}$) N. S. Goel, S. C. Maitra and E. W. Montroll: Rev. Mod. Phys., 43, 231 (1971);

Yu. M. Svirezher: Nonlinear Waves, Dissipative structures and Catastrophes in Ecology. M., Nayka (1987).
(${ }^{9}$) Ya. 2. Darbaidze, A. N. Sissakian, L. A. Slepchenko and G. T. Torosian: Fortsch. Phys., 33, 5, 299 (1985).
(10) D. Brick e. a.: Phys. Rev., D20, 2123 (1979).
 (1982);

Ya. 2. Darbaidze e.a.: Bull. Acad. Sc1. GSSR, 111, 497 (1983); 113, 289 (1984).
(12) Ya. Z. Darbaidze e. a.: Bull. Acad. Sc1. GSSR, 114, 285 (1984).
(${ }^{13}$) G. Altarell and G. Parisi:, Nucl. Phys., B126, 298 (1977).
(${ }^{14}$) A. V. Radyushkin: Phys. Lett., 69B, 245 (1977);
R. K. Ellis e.a.: Nucl. Phys., B152, 285 (1979).
(${ }^{15}$) D. Amati and G. Veneziano: Phys. Lett., 83B, 87 (1979).
(${ }^{16}$) B. Andersson e.a.: Phys. Rep., 97, 31 (1983).
(17) T.R.Malthus: An Essay on the Principle of Fopulation, Johnson, London (1798).
(18) W. Emst and I. Schmitt: Nuovo Cimento, 31A, 109 (1976); 33_A, 493 (1976).
(${ }^{19)}$ A. Glovannint: Nucl.Phys., B_161, 429 (1979); M. Anselmino e.a.: Nuovo Cimento, 62 A, 253 (1981); V. M. Maltser, N. K. Irashutin and S. I. Sinegorsky: Yad. Fiz., 22, 590 (1975).
(20) P. F. Verhulst: Nuov. Mem. Acad. Roy. Bruxelles, 18, 1 (1845).
(${ }^{21}$) A. C. Hearn: REDUCE User's Manual, Version 3.2, Rand Publ. CP78 (7/85) (1985).
(${ }^{22}$) Ya. Z. Darbaidze, Z. V. Merebashvill and V. A. Rostortsev: preprint JINR P2-88-769, Dubna (I988); Fortsch. Phys. (in press).
(23) N. N. Bogolubov and D. V. Shirkov: Introduction to the Theory of Quantized Fields, M., Nauka (1984). D.V. Shirkov: Nucl.Phys., B 62, 194 (1973).
(24) J. J. Kovacic: J. Symb. Comp., 2, 3 (1986); A.Yu. Zharkov: Preprint JINR, E11-87-455, Dubna (1987).
(25) L. M. Berkovic: Prikl. Mat. Mekh., 43, 629 (1979).

Дарбаидзе Я.З., Ростовцев В.А.

Мдль вольтерра и адронияация кварков
в многокомпонентную систему адронов
Рассмотрены примеры зависимости характеристик множественного процесса от числа нескольких коррелированных компонент адронов. Обсуждается возможность прнведення системы дифференциальньх уравнений, полученной ранее при адронизации п-кваркового процесса в многокомпонентную систему, к диссипативной модели Вольтерра для конкурируюдих за одну пищу видов биологической популяции. Дан алгоритм для аналитического расчета дифференциального уравнения высокого порядка как результанта возникающей системы. Приведены примеры линеаризации и решения этих уравнений, описывающих ассоциативные множественности заряженных частиц.

Работа выполнена в Лаборатории вычислительной техники и автоматизации ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1989

DarbaidzeYa.Z., Rostovtsev V.A.
 E2-89-622
 The Volterra Model and Quark Hadronization

into Multicomponent Hadron System
The examples of the multiparticle process characteristic dependence on the number of a low correlated components are considered. The possibility for reducing the differential equation system, which was obtained earlier, to a dis sipative type Volterra model of competing biological species for the same food is discussed. An algorithm for the analytical computation of the high order differential equa tion as a resultant of the arising system is given. The examples of linearization and solution of these equations describing the associated multiplicities of charged partic les are represented.

The investigation has been performed at the Laboratory of Computing Technique and Automation, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1989

[^0]: *High Energy Physics Institute of the Tbilisi State University, GSSR

[^1]: I) In fact, we consider these equations as characteristic ones corresponding to the first order partial differential equation. Thus, we can go into the physical sense of time parameter and set the multi-dimensional. KNO-function (2) as an initial condition (${ }^{3}$).

