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1 . - Introduction ----------------- 
I 

The Problem oL the parton (quark and gluon) hadroniza- 
tion is not still finally solved in the framework of the 
Quantum Chromodynamics (QCD) ( see, for instance. (' ' ) ) . 
Especially multicomponent product (resonances) emission 
needs explanation. 

In the previous article (3) we have proposed one more 
model, and as a result. the pmblem of the famous *mysteryw 
for negative binomial distribution involving the KNO-scaling 
violation (see ( ) was explained. 

The KNO relation is well described by gamma(r)-distribu- 
tion in hadron-hadron scattering pmceases 

aa a-1 
(1 < nc>.on /o = $(z ) = ----- z exp(-a zc), 

c l'(a ) 

where the parameter a must be fixed (a=4) and defined by the 
Wroblewski rule (") 

(1 a) 2 D: = (<nc>-~c) . 
However, this parameter is "mysteriously" changed (" ) with 

changing experimental conditions, particularly, In limited 
intervals of pseudorapidity distribution :7I < 7,. 

Solution of this problem consists in the generalization 
of the r-distribution (1) for generatlng a few (v) components 
(resonances) to the following expression: 

(2) m,>-o(n, ,..., nv)/o=J(zl ,.... zv) - ta-" exp-(B/v)tl, 
I= 1 

wheFe t = 2 z,, s, = n,l<n,>, o(nl . . . . ,n,,)and o are exclusive 
I= 1 

i and inclusive cmss-sections, respectively, for the reaction 
with nl, I$,.... nv hadmn multiplicities of the v-type. 

Generally speaking, the shape of the r-distribution (2 )  
is strongly modified by averaging over the (v-1)-multiplici- 
ties I$.. . . .nv ( 6 ) .  We must get rid of this modification as- 
suming that under certain .experimental conditions (for in - 
stance, in different ifftarvels of pseudorapidity 7) a few (v,) 

j 4 ' 1 ' . ; , L : .  :~ ; ' ,  7; 
' , 

....,, l $ , ~  ;.,..,.,, 8 ', -2; * .?. , , 

'1 "' . 1 , ' . ' .  



components are generated so that they are distributed as 
the Kr'onecker G(zia,) function. Here at are resonance de- 
cay parameters with 1=2,. . . ,vl. Then, the KNO-function 
(1) for charged particles is modified as follows: 

where a - 2 a,. 
i = 1  

The c&$arlson of formula (3) wlth the experimental da- 
ta ( 4 )  confirms our hypothesis about a few number of correla- 
ted components at hadronization of quarks (see the Table). 

Below (sect. 2) we shall give the meaning to this hypothe- 
sis in the framework of the model of competing species for 
the same food. Now we should like to stress that if we use 
only the Volterra and other nonlinear models of interacting 
species in biological population (7 '8 ) ,  then discovery of the 
dependence of functicn (3)  and other characteristics on the 
number v of interacting components is a new phenomenon 
and though these models are long ago known it has not been 
learned until present the. The present status of the 
problem of confinement and colour forces does not contra - 
dict, for instance, an uncertalnty between the number v of 
components and the effective borrelation intensity ae measu- 
red by formula ( 3 )  that their production will be constant: 

vl.ae = a = 4 . 
We are glad to note that now we can explain analogous 

e n m a  for other relations ('). As an example, we discuss 
the relation between an average number tni(nl )> of particles 
of the 1-th type and the number nc= n, of char&d particles 
associated with them 

It is difficult to enumerate all 15 year attempts to 
explain the fact that the relevant experimental data (see. 
for instance, (I0) ) can be fitted by the linear function 
(5 1 tni(nc)> = Ainc + Bi 

and that the parameters A, and B, depend on the total ener- 
gy s1I2 of colliding particles. 

This natural change of the parameters was explained by us- 
ing the multi-dhenslonal KNO-function (2) in formula (4). which 
led to an Increased number of correlated components (6'9'1 ) - 

It is surprising that the parameter a has a tendency to 

decrease as energy increases. This may be caused by the 
above-mentioned generation of a few (v,) components wlth local 
or instantaneous (Kronecker delta) contribution to averaging 
when a large number (v2j>I) of components with multiplicity 
lags (nonlocal contribution) is also present. Thus, v=vl+v2 com- 
ponents are generated but only v2 take place In multiplicity 

averaging. Then, relation (4) Is 

W(V ,a-vl+i ,G;$G; zl 1 tn, (nl > 2 
( 6 )  -------- = &-I ------------------- a 

cn,? @(v2-1 .a-v, .j-iS; zl ) 
1 

The saturation takes place in the high energy lhit when 
v2>>I, 1.e. the right-hand side of (6) 

a-vl -1 

depends only on the effective constant 8,=a-v,, which :ls the 
explanation of its changing as a result of uncertalnty prln- 
ciple: Se+v, = a - 4. Here W and K are confluent hvergeo- 
metric and modified Bessel functions, respectively. 

It is interesting to note that the dependence on Fig and v 
appears also in other relations. Exactly, it was discussed 
in (') that the behaviour of the normalized semi-inclusive 

spectrum density --- d? can be explained at s1/'=540 GeV. 
I1 

The necessary condition for this is Be=a-v t 1 allowing the 
description of the dip-effect observed at small multiplicity 
values. 

Earlier (I2), intensification of the famous "sea-gull" 
effect was also observed as the number v of correlated com - 
ponents was grow%. 

The mair, purpose of this article is the investigation of an 
analogous phenomenon In the framework of the set of differen- 
t i31 ( D )  equations (33 



where Nl is the quark number in I-th type hadron. D,, 
= <nl%> - a,><%> form the~matrlx of correlation between 

multiplicities of hadrons of the same and different type. 
The parameter 7 depends either on a given momentum p of an 
inclusively separated hadron in the case of associated mu1 - 
tlpllcltles (7 = ~n(p~,/~; ) )  or on the total energy in the 

case of mean multiplicities (2 = In s/2m: ) .  

It should be noted, that the mean (associated) multip - 
licitles have already been described by the Volterra-type 
integral equation obtained from the Altarelli-Paris1 forma- 
lism ( I 3 )  (see (It2)). 

Without a detailed analysis we can say that the set of 
eqs. (7) may turn out to be more admissible and convenient 
in the next sense: firstly, It has no relation to such non- 
perturbative objects as a parton distribution (frwentation) 
functions and has no links wlth such statements as the theo- 
rem about factorization of hard and soft parts of the con- 
sidered processes (I4) and so on. Secondly, as under hadronl- 
zation we understand rnalnly the divlslon of the total number 
of available quarks (mil) between a few species of hadrons 

we do not load our model with preconfinement 5 ,  or colour- 
less string (I6) and others. 

In sect. 2 we discuss an analom between the system of 
eqs. (7) and the Volterra and other nonllnear models (') 

under some special parametrization of the correlation matrix 
D2=(~,,). Further, in sect.3 the simple algorithm is given for 
analytical calculation of a hlgh ( v )  order D-eq. as 
a resultant of the system (7). In sect. 4, the methods for 
solving the obtained equations describing associated multip- 
licities are discussed. 

2 .  - Quark-wdronlzat ionnassthe-Vo1terrarram~de1-o_IIII~omq_e44% 
species 

The present artlcle is stimulated by surprlslng analogy 
between D-equation (7) and the Volterra and other nonlinear 
models of Interacting species for biological population(718). 

In order to make this analogy deeper we take some con- 
cepts from this model. Thus. If we are speaking about "quark 
food" divided among the competing hadmn components by for - 
mula (E) ,  then "quark- (Instead of blo-) mass" would be 

H = f N,<n,>. 
I= 1 

It is not difficult also to recognize the equatlons. 
The cross section an for seml-inclusive generation of n -- 

partons at large n >>I obeys the well-known Malthus law (''1 
dPa = 

(9) dT n -7.n.an , 

wliere 7 Is the loss (growth) rate constant and it Is equal 
either to anomalous dlmenslon of the field (I8) or to the 
constant number (3 ) . 

Following ( 3 )  the Malthus equatlon Is also fulfilled for 
the cross section of generation of v-component hadron set I )  

v 

Averaging over n2, ..., nu leads to the following equatlon 
for the cross sectlon of seml-inclusive production of n, =nc 
charged particles V 

I, 
In fact, we conslder these equations as characteristic 

ones corresponding to the first order partial dlfferentlal 

equatlon. Thus, we can go into the physical sense of the 

parameter and set the mUt1-dimensional KNO-function (2) as 

an initial condition (3). 



Here E,=2y~,a,, represents the natural growth rate of the 

where the second term represents the operator of the Volterra 
type for multiplicity (but not time) 1- 

(9b) nlo(nl.....r+,) - ~;,g(t-z,)t~(t) dt . 
n2' '"v 

Here fv is the function (2) and 

is the retardation function. 
By using fom-ula (4) the loss rate constant for (9a) takes 
the following form 

(9c) K = -7{ N, n, +f Nl<nl (n, ) >} - 
1=2 

It is Interesting to note that after averaging over the 
next n, multiplicity averaging lags disappear but the many- 
component effect remains in the corresponding relation for the 
cross-section of the inclusive processes 

v 

This analogy can be continued if we take into account a 
certain hypothesis about the correlation matrix D~=CD,~I pa- 
rametrization. 

Thus, the single component case with the Wroblewski law 
(la), when E: IS neglected, leads to the Verhulst equation (20) 
(so called logistical equation(8) ) 

(7a) iT<nc> = K<nc> (s-<nc>)/s, 

where s = 2 7 ~ ~  is the saturation level (1.e. <no> - s 
when T - m).  K= 2 y ~ ~ N ~ / a .  

Let diagonal elements also have the form (la) in the 
many component case and others are represented according 
to the Vollterra "encounter" method 

a,, (<n, >-E, )2.. . ..a, ,,<n, ><r+,> 
(11) .= [ .............*................ 

a,,, <r+,><n, > . . . . ,avv (<r+,>-~~)~ 
Then, from (7) we get 

I-th component and alk=yNkaik is proportional to rapidity 

of the growth (loss) <ni, at the binary encounter with <nj>. 
This is the usual Volterra model of a few interacting 

species for dynamical description of biological population. 
r:onsideration of this model as quark hadronization into a mul- 
ticomponent set of hadrons allows one to make further simpli- 
catlons. 

In the case of saturation with the same elements . 
(lla) a,,= ak,= l/a, 

the relation of "prEly and predator" Is excluded and we are led 
to the model for v species which are competing for the same 
resnu-ce (quark food) : 

d<ni,> , 
(13) -- - =(E, - F(<n,> ,.... <nv?))<ni>. 

d~ 
Here 

i=1 
It is easy to show that it is also dlsslpative. Multi- 

ply ( 7 )  by N and summing we have the quark-mass equation 
(15) ---- diQ - - - , D? (,), 

dz 
where 

v I' 2' 

We consider that one of the terns is nonequal to zero 
and all D,, 2 0 , thus D~(M) > 0 . This means by the Vol- 
terra classlficatlon that we have a dlssipative set of compo- 
nents. Thus, the model is more realizable in nature than the 
conservative at D2 (M) =O. 

Note that eq.(15) allows one to overcome a difficult 
problem of solving system (7). For instance, in order to 
obtain the r-diutrlbutlon (2) we must close the set of 
equations (10),(10a) and ( 1 5 )  by the condition 

( I r?)  D? (M) = :<m2. 
However. the solution of (7), as we think, is an attrac- 

the task aimed at getting important infomation about assoc- 



iated multiplicities. As Montroll et al. (') admit, the ana- 
lytical study of any generalized Volterra model is difficut 
and the numerical study is expensive. However, we hope to ad- 
vance in analytical calculation by the method of computer 
algebra and programing system REDUCE-3 (21 ). 

In experiment,multiplicity of a slngle component is us- 
ually measured instead of all the considered ones. In order 
to describe its averaged values, it is necessary to obtain 
D-equation of the v-th degree from set ( 7 )  as a differen- 
tial resultant. This is a hard task in high orders and it may 
quickly be solved by the programming system REDUCE, for instance, 
on the PC IBM-AT. For illustration, the suitable program 
is given for the case v = 3 and E ,  = 0. Then, according to 
( 1 2 )  we have 

n; = - aln: - a n  n 2 1 2 - a3n1n3* 

(18) n; = - b 1 1 2  n n - b 2 2  n2 - b3n2n3, 

n 3 = - c n n - c n n - c n  2 1 1 3  2 2 3  3 3 '  
Here 

n, = cn,i, a, = ya, ,N,. b, = ya,,N,, c, = 7a,,N,. 1=1.2.3. 

The set (18) has the following programming form 
Operator n.a.b,c; Array a(3),b(3).c(3); 
For 1:=1:3 do <<depend n(i).tm>>; 

Df (n(1 ),tm):=-a(l )*n(l )**2-a(2)*n(l )*n(2)-a(3)*n(l )*n(3)$ 
D f  (n(2).tm):=-b(l )*n(l )*n(2)-b(2)*n(2)**2-b(3)*n(2)*n(3)$ 
Df (n(3), tm):=-c(1 )*n(l )*11(3)-~(2)*n(2)*11(3)-~(3)*n(3)**2$ 

Instead of the method of elimination we shell use the next 
prescription. Let dl (i=1.. . . ,15) be arbitrary (uncertainty) 
constants. Make the following substitutions: . . . 
x1 = n;. x2 = nl, x3 = n:, X, = n;, X, = n:, x6 = n:, . . '2 x7= nln;, x8 = nlnl . x, = n, , xlo = n:n; , xll = n:n;, 

, , '2 ... . . .  
x12 =n:nl . x13 = n l n l  . x,, =n,nl ., x,, = n l n l  . 

Then, the desired equation as a resultant of set (18) 
will be 

L 

I i= 1 
and this problem is reduced to finding a coefficient d,. - 

In the programing language we have 
Operator d.x; Array d(15). ~(15); 

x(l ):=df (n(1 ).tm)$ x(2):=df(n(l ),2.tm)$ x(3):=n(l )**2$. . . .$ 

x(15):=x(1 )*x(2)$ s15:= for 1:=1:15 sum d(l)*x(i)$ Clear X; 
The substitutions for xi with (18) reproduce the left- 

hand side of equality (19) into the sum of independent monomials 

npgn; . The arising coefficients must be equal to zero 
in order to fulfil eq.(19). 

We multiply this expression s15 by function sn(0.0.0) 
and make LET substitution for degrees a.P.7. Thus we can 
use COEFF statement (22) : 

Order a.b,c.d,n(l ).n(2),n(3).sn; On nero.div; off nat; 
s15:=s15*(n(l )*n(2)*n(3) )**3*sn(0.0.0)$ 
for all b3 let n(3)**b3*sn(O,O,O)=sn(O,O,M); 
for all b2.W let n(2)**b2*sn(O,O.b3)=sn(O,b2.b3); 
for all bl ,b2.b3 let n(l )**bl*sn(O.W.b3)=sn(bl .b2.M); 
s15:=s15$ array cc(l ) ;  

For bl:=3:8 do for b2:=3:8 do for B3:=3:8 do write 
cl (bl .b2.b3):= if coeff (sl5,sn(bl ,b2.b3).ccl) neq 0 
then cc(1 ) else 0; 
It is interesting to note that such an algorithm allows 

one to work on PC IBM-AT with limited memory (600 KB) at v M .  
If necessary, one should vary only the first cycle index. 

Finally, we must take C1 equal to zero and define d,. 
By a simple example of saturated correlation (14), when 
a, = b, = c,, this procedure looks like 

For 1:=1:3 do <<b(i):=c(i):=a(i)>>; 
For bl:=3:8 do for W:=3:8 do for b3:=3:8 do write 
Cl (bl ,b2.b3):=cl (bl ,b2,b3); 
and the system's answer has the form 
cl (4,3,4):=-a(3)*d(l ) $  

CI (4,3,5):=2*a(3)**2*d(2)$ 
c1 (5,3,3):=-a(l )*d(l )+d(3)$ 



cl (5,3,4):=-a(3)*(-4*a(1 )*d(2)+d(7) ) $  

c1 (5,4,4):=2*a(3)*a(2)*(d(g)+Z*d(8))$ and so on. 
The corresponding values of dl are: 

d =O for 1=1.2,3,4,5.6,7.10,11 and I 
$ = - d9/2, dl, = - d,,/2, dl, = -d,5/3. 

As a result. (19) becomes 
1 2 "  1 . , . 

d 9 ( -  n,n;'+ ni2) + dl,(- n,n, + n,ni2) + dl5(- n,n, . .  . + n, n,) = 0. 
Due to arbitrariness dl we get two eqs.. but only the first 

is independent . . 
(20) nlnl - 2ni2 =O 

and its derivative leads to the second one. 
As is easily seen, for arbitrary coefficient a, # bi from (18) 

we get a nonlinear autonomic equation . . ." - 9 

(21 ) a, n,nl - (a,+ b2)nlC- (2a1b2- ala2 - a2bl )n:nl + 

a, (a2bl - a, b, )nf = 0. 

It is not difficult also to introduce either the rate 
constant or other complication into consideration. 

Unfortunately, we are not informed of any experiment 
for expounding the component structure in multipart lcle 
pl'ocesses, and we can understand only from mathematical po- 
int of view why the obtained formulae show just the value of v 
in comparing with the available experimental data. For example. 
as It is seen fromthe Table,Charge particle emission is sl- 
milar to the single-component case for full pseudorapidity inter- 
vals . This is in agreement wlth the uncertainly principle for 
v=l and as = a 4. Let us prove that "disappearance" of the 
component structure is equivalent to the change of multipli- 
city lags by the time ones in eqs. (9a.b). 

In our model, a number of quarks n transforms into the 
rate constants (8) or (9b), if we . measure many- or one- 
variable cross-sections, respectively. 

As has been mentioned in Intmduction, the quantity (4) 
in (9c) contains multiplicity n, lags (9b) and depends On V. 

Table. Results of fitting the KNO-function (3) compared to 
the charged particle multiplici.ty distribution in 
limited (and full) intervals of pseudorapidlty dis- 

tribut ion I q J  <qC ( *  ) at &--= 200 and 900 GeV centre 
of mass energies ( 4 )  . The values of the correlated 
component number v, the parameter a and the norma- 
lization constant A are given at a=4. 

I 1 
200 GeV ! - - - - - - - - - - - - - - - - - - .- - T------------ T-------_----- T------------ 

I i 
I T c  i j A I ! X2 / NDF ! 
I -T , -  ---- --__ --- ,  , _ -- - - - - - - - - - , 
; lJ.5 , -,- A 

- . i ;  J. lS i0.86 ' 0.07 12.60 ! 0.28 1 5/11 I 

- - - - - - - - , --- _-- _ - - ;-_--__-____-l__--_--------;II---II-----l 
1.5 11.72 ' 0.06 10.45 ' 0.03 16.23 * 0.58 1 6/30 1 

- - .- - - - - - ,--_----_----,------------ , 
3.0 11.30 0.03 10.20 2 0.02 115.45 ' 1.39 1 9/50 I 

- - - - .. - - - ( - - - - - _ - - - - - - I - - - -  __-  ---- -,--- ----- 8 

5.0 11.11 * 0.02 10.07 ' 0.02 j27.91 ' 2. 381 5/55 - - - - - - - - ~---_---__--_;_____-------III-I-I.I-IIII-l 

t 11 .04 + 0.02 10.03 2 0.02 i72.55 ' 6.31 1 5/28 t 

---- ---- 1 ,-_--__---__-_ ,------------1 
I 1 900GeV 1 

I - - - - - - - - :------------I ,------------: 
1 0.5 12.63 ' 0.13 10.82 + 0.06 i2.72 + 0.21 1 6/20 4 
1_--____-1______--____) I _ _ _ - - _ - - _ - - - ( - _ - - _ - - - - - - - -  ,----__-_-_--, 
1 1.5 j1.87 ' 0.06 10.59' 0.04 15.34 2 0.41 1 24/49 I 

;_--_-_--____1___-_--------1 ,----__-__---, , 
1 3.0 11.51 t 0.03 10.35 ' 0.02 :9.50 0.68 j 46/80 I I ,_____---,_----_-_____ 1_-____-_-_-_1_____-------- , - - - _ - - - - _ - - - , 
1 5.0 11.22 2 0.02 10.15 2 0.01 119.34 ' 1.29 1 49/98 I 
;--------;------------ ,__-___---___\-__-_--------~ ,_--_--______, I 

1 * 11 - 1 1  + 0.02 iO.08 % 0.01 155.42 % 3.94 1 36/51 I I 

!__-_-___!__--_--__---,------------!-------------!------------l 

When It is linearised as relation (5). then coefficient (9c) 
becomes 

K = Anl + B, 
where the parameters 

A - r i N ,  t 

122 1=2 

conceal multi-component structure of v and depend on the total 
energy (time z ) .  

As this is a rough method for cutting coupled equations, 
the average multiplicity for charged particles obeys Ric- 
catj's equation 



In other words. It contains both the Verhulst self-Inter- 
ractlon and the time lags in the sense of dependence of the ui 
coefflclents on T. We shall not examine it any more but from 
methodical point of view we should note that it was establi - 
shed and analysed ( l a )  in the framework of the renomallzation 
group (23), and the algorithms (24) of computer algebra can 
also be used for this purpose. 

Consequently. in our model (7) of competing components 
we can get equation for assoclated multiplicity. Its solution 
depends either on momentum p of an inclusive particle or 
on transfer momentum Q through the time variable T (it is 
possible - on v). In the model of saturating correlation 
( I  la), (1 4) when the natural growth rate is zero, .si = 0, 
we have 

tni> =-7, Mtn,>. 

where ?,=-(/a and M is quark-mass . 
The anzats (1 7) leads to the solution 

tn > = tn.> / (1 + ~,M,T). i 1 0  

Here <n>, and Mo are quantities at ~==0. If we want to see v 
dependence, we must recall that Mo == vNi<ni>O (3). 

Finally, we will briefly discus!; the model with the par- 
tial saturation (1  8) with v=2. The nonlinear eq. (21 ) c m  be 
solved, for example, by the Berkovic (25) method. We rewrite 
it as follows: 

(23) n"+ f (n) n" + p,cp(n) n n'+ A(n) = 0. 
where 
n=<n>, f (n)=-(a2+b2 )/(a2n), cp(n)=n. p,=-(2al b2-ala2-a2bl 1, 

A(n) = a, (a2bl -al b2 )n3/a2. 

Then (25) eq. (23) reduces to the linear one with fixed 
;:clef f iclent 

If the next condition is fulfilled 

(24a) ~(n)=cp(n)exp(-Jf (n)dn) [pJcp(n)exp(Jf (n)dn)dn + a] 
It takes place when 

u=U H p = a, (a2bl- a, b2)[2 - (a2+b2)/a21/a2. 
and. in general. 
2 X(n)=Jcp(n)exp(Jf (n)dn)dn . dt=cp(n)dT. 

Note also that in the limit of saturation a,* b, 
I I 

X(n)=ln n, dt=n d~ , X, =O and n -: . 
Thus. decrease In associated multiplicity is caused 

by the limited resource. 
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A a p b - s e  I I . 3 . .  P o c ~ o s q e ~  B . A .  E2-89-622 
M o ~ e n b  B o n b T e p p a  H W p O H H S a q H R  K B a p K O B  
B MHOI'OKOMlTOHeHTHYM CHCTeMy a A p O H O B  

P ~ C C M O T ~ ~ H ~ I  npHMepbl 3al3HCUMOCTld X a p a K T e p H C T H K  MHOXeCT- 

BeHHOI'O n p O q e C C a  OT rllaCna H e C K O n b K H X  KOppeJlHpOBaHHhlX KOM- 

n O H e H T  aApOHOB.  06cyia;qae~cfl B03MOXEiOCTb I IpHBeAeHWR CHCTeMbl 

~ ~ M e p e ~ q ~ a n b ~ b r x  y p a e ~ e m z i ,  n o n y r l e ~ ~ o i i  paiiee npu ,a,qpo~u3a- 
I@iH n-KBapKOBOI'O l lpOl&eCCa B MHOI'OKOMnOHeHTHyW CHCTeMY, K 

A H C C H ~ ~ T H B H O ~ ~  MOAeJlH B O n b T e p p a  Anfl KOHKYpHpyWIQUX 3a OAHy 
nHqy BHROB ~ H O ~ O ~ H ~ ~ ~ C K O ~  IXOnynRUHH. aaii aJII'0pHTM p,Jlfl aiia- 
JIUTHrleCKOI'O PaCrleTa A U @ @ e p e ~ q H a J l b ~ o r o  Y p a B H e H U f l  BblCOKOrO 

n O p f l A K a  K a K  p e 3 y l l b T a H T a  B 0 3 ~ H ~ a l ~ e f i  CHCTeMbl. ~ P H B ~ A ~ H W  npH 
Mepbl n u ~ e a p n 3 a q n ~  n p e m e m f l  ~ T H X  y p a ~ H e ~ ~ z i ,  O ~ H C ~ I B ~ K W I U X  

a C C 0 4 H a T U B H b l e  MHOXeCTBeHHOCTH 3aPRXeHHbIX r l a C T H q .  

D a r b a i d z e Y a - Z . ,  R o s t o v t s e v  V.A. E2-89-622 
T h e  V o l t e r r a  M o d e l  and Q u a r k  H a d r o n i z a t i o n  
i n t o  ~ u l t i c o m p o n e n t  H a d r o n  S y s t e m  

T h e  e x a m p l e s  of t h e  m u l t i p a r t i c l e  process cha r ac t e r i s t i c  
dependence on t h e  n u m b e r  of a l o w  correlated c o m p o n e n t s  
are considered. T h e  p o s s i b i l i t y  f o r  reducing  t h e  d i f fe ren-  
t i a l  equa t i on  s y s t e m ,  w h i c h  w a s  ob t a ined  ea r l i e r ,  t o  a d i s -  
s i p a t i v e  t y p e  V o l t e r r a  m o d e l  of c o m p e t i n g  b i o l o g i c a l  spe- 
c ies  f o r  t h e  s a m e  food i s  d i scus sed .  An a l g o r i t h m  f o r  t h e  
a n a l y t i c a l  c o m p u t a t i o n  of t h e  h i g h  o rde r  d i f f e r e n t i a l  equa- 
t i o n  as  a r e s u l t a n t  of t h e  a r i s i n g  s y s t e m  i s  given.  T h e  
e x a m p l e s  of l i n e a r i z a t i o n  and s o l u t i o n  of these equa t ions  
desc r ib ing  t h e  associated m u l t i p l i c i t i e s  of charged par t i c -  
les are r e p r e s e n t e d .  

T h e  i nves t iga t ion  h a s  been p e r f o r m e d  a t  t h e  L a b o r a t o r y  
of C o m p u t i n g  T e c h n i q u e  and A u t o m a t i o n ,  JPNR. 
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