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1. — Introduction

The Problem of the parton (quark and gluon)-hadroniza-

tion 1s not still finally solved in the framework of the
Quantum Chromodynamics (QCD) ( see, for instance, (''2)).
Especially multlicomponent product (resonances) emission
needs explanation.

In the previous article (%) we have proposed one more
model, and as a result, the problem of the famous "mystery”
for negative binomial distribution involving the KNO-scaling

violation (see (*)) was explained.
The KNO relation 1s well described by gamma(I')-distribu-
tlon in hadron-hadron scattering processes

&a

a a -1
(1) < nc>-onc/o = 0(z,) = 5?5_5 z, exp(-az},
where the parameter a must be fixed (a=4) and defined by the
Wroblewskl rule (%)

(1a) 2 =1 (n>e)?.
c a [+] a3

However, thils parameter 1s "mysteriously"™ changed (3) with
changing experimental conditions, particularly, in 1limited
Intervals of pseudorapldity distribution imi < 7. i

Solution of this problem consists In the generalization
of the I'-distribution (1) for generating a few (v) components
(resonances) to the following expression:

(2) I <n >+0(Ny,....0 )/0=f(2,,...,2,) = 187 expl-(a/v)tl,
i=1

[Ty

where t =

M

Zys 2y = n1/<ni>, o(n1,...,nv)ando are excluslve

i=1

and inclusive cross-sectlons, respectively, for the reaction
with n,, n,,..., n, hadron muitiplicities of the v-type.

Generally speaking, the shape of the I'-distribution (2)
i1s strongly modified by averaging over the (v-1)-multiplici-
ties n,,...,n, (°). We must get rid of this modification as-
suming that under certain -experimental conditions (for in -
stance, 1n different imntervals of pseudorgp;dity n) a few (v,)
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components are generated so that they are distributed as
the Kronecker 6(ziﬂ11) function. Here a, are resonance de-
cay parameters with 1=2,...,v1. Then, the KNO-function
(1) for charged particles 1s modified as follows:

v1(ae—1)
(3) ¥z ) = (z,+ a) exXpl-a_(z_ + Q)1

v
where a = }: a,.
The céﬁéarison of formula (3) with the experimental da-
ta (*) confirms our hypothesis about a few number of correla-
ted components at hadronizatlon of quarks (see the Table).
Below (sect. 2) we shall give the meaning to this hypothe—
$18 in the framework of the model of competing specles for
the same food. Now we should like to stress that 1f we use
only the Volterra and other nonlinear models of interacting
species 1in biological population (7'8), then discovery of the
dependence of functlen (3) and other characteristics on the
number v of interacting components is a new phenomenon
and though these models are long ago known 1t has not been
learned until present time. The present status of the
problem of confinement and colour forces does not contra -
dict, for Instance, an uncertainty between the mumber » of
components and the effective correlation intensity a, measu-
red by formula (3) that thelr production will be constant:
v,-a, =a=4.

We are glad to note that now we can explain analogous
enigna for other relations (9). As an example, we discuss
the relation between an average number <n, (n,)> of partlcles
of the 1-th type and the number n_= n, of charged particles

assoclated with them

(4) <y (ng)> = }: n10n1...nv / E: on1...nv .
n2..nv r12 nv

It 1s difficult to enumerate all 15 year attempts to
explain the fact that the relevant experimental data (see,
for instance, ('®) ) can be fitted by the linear fumction
(5) @, )> = An_ + By
and that the parameters A, and B, depend on the total ener-
gy s'/2 of colliding particles.

I

This natural change of the parameters was explained by us-
ing the multi-dimensional KNO-funttion (2) in rormulaé(g);1which
led to an increased number of correlated components (°'7° ).

It 1s surprising that the parameter a has a tendency to

decrease ag energy increases. This may be caused by the
above-mentioned generatlon of a few (v,) components with local
or instantaneous (Kronecker delta) contribution to averaging
when a large number (v,>>I) of components with multiplicity
lags (nonlocal contributlon) 1s also present. Thus, V=, +v, com-
ponents are generated but only v, take place 1n multiplicity
averaging. Then, relation (4) 1s

a
W(ve,a—v1+1,5;1i; 21)

= 2y a
<, > @(v2—1,a~v 'i;iﬁ’ z1)

The saturation takes place In the high energy limit when
v,>>1, l.e. the right-hand side of (6)

. (2Vaz, )

_Zn N B -

{ a } K (2va 2,)
a—v1—1

depends only on the effective constant 8g=2"7,, which 1s the
explanation of 1ts changing as a result of unceriainty prin-
clple: a_+v, = a = 4. Here © and K are confluent hypergeo-
metric aﬁd modified Bessel functions, respectively. .
It 1s interesting to note that the dependence on & and v
appears also in other relations. Fxactly, 1t was discussed
1n (%) that the behaviour of the normalized seml-inclusive

do 1/2_
spectrum density %— 339 can be explained at s'’“=540 GevV.

The necessary cond?tion for this 1is éeza—v < 1 allowing the
description of the dip-effect observed at small multipliclty
values. . .

Earlier intensification of the famous "sea-gull
effect was also observed as the number v of correlated com -
ponents was growing.

The main purpose of this article 1s the investigation of an
analogous phenomenon in the framework of the set of differen-

2

tial(D) equations (7)
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(1) dn,» = - E: ND, o 1=1,2,...,7,

where N, 1s the quark number in i-ih type hadron, Dy
= <> - <Ny form the-matrix of correlation between

multiplicities of hadrons of the same and different type.
The parameter T depends either on a given momentum p of an
inclusively separated hadron in the case of associated mul -
tiplicities (T = ln(ppo/pg )) or on the total energy in the

case of mean multiplicities (T = ln s/2m§ ).

It should be noted, that the mean (assoclated) multip -
licities have already been described by the Volterra-type
integral equation obtalned from the Altarelli-Parisi forma-
1ism ('3) (see (1'2)).

Without a detalled analysis we can say that the set of

eq8. (7) may turn out to be more admisslble and convenlent

in the next sense: firstly, 1t has no relation to such non-
perturbatlve objects as a parton distribution (fragmentation)
functions and has no links with such statements as the theo-
rem about factorlzaticn of hard and soft parts of the con-
sldered processes (‘4) and so on. Secondly, as under hadroni-
zation we understand mainly the division of the total number
of avallable quarks (n»>»1) between a few specles of hadrons

v
® n=y Nn,
1=1

we do not load our model with preconfinement ('®) or colour—
less string (16) and others.

In sect. 2 we discuss an analogy between the system of
£qs. (7) and the Volterra and other nonlinear models (7)
under some speclal parametrization of the correlation matrix
D2=(Dik). Further, in sect.3 the simple algorithm 1s given for
analytical calculation of a high (v) order D-eq. as
a resultant of the system (7). In sect. 4, the methods for
solving the obtalned equations describing assoclated multip-
licities are discussed.

2. - Quark hadronization as the Volterra model of competing

The present article 1s stimulated by surprising analogy
between D-equation (7) and the Volterra and other nonlinear
models of interacting species for blological population(7'8).

In order to make this analogy deeper we take some con-
cepts from this model. Thus, if we are speaking about "quark
food" divided among the competing hadron components by for -
mula (8), then "quark- (instead of blo-) mass" would be

v
M- }: N <n,>.

1=1

It 1s not difficult also to recognize the equations.
The cross section g, for semi-inclusive generation of n -
partons at large n >>1 obeys the well-known Malthus law 7
(9) a;on = -7-n.0, ,

where 7 18 the loss (growth) rate constant and it 1s equal
elther to anomalous dimension of the field ('®) or to the
constant number(3*?).
Following (?) the Malthus equation 1s also fulfilled for
the cross section of generation of v-component hadron set D
v

d _
(10 - om,.n) = - v S Nnpo (n,....m, )

v i
1=1
Averaging OVeT N,,...,N0, leads to the following equation
for the cross section of semi-inclusive production of n, =n
charged particles

v
(9a) ai On1= —7N1n10n1— 72: N, }: oM, s..0s0)

c

)In fact, we consider these equations as characteristic
ones corresponding to the first order partial differentlal
equation. Thus, we can go into the physical sense of time
parameter and set the multil-dimensional KNO-function (2) as
an initial condition (3).



where the second term represents the operator of the Volterra
type for multiplicity (but not time) lags

(9b) E: 0,000, ,...,0,) = f;1g(t—z1)fv(t) dt .
n2. .nv

Here fv is the function (2) and
g(t-2,) = (t-2,)"7

1s the retardation function.

By using formula (4) the loss rate constant for (9a) takes
the following form

v
(9¢) K= —7{ N1n1+§: Ni<ni(n1)>}‘
i=2
It 1s interesting to note that after averaging over the

next n, multiplicity averaging lags disappear but the many-
component effect remains 1n the corresponding relation for the
cross-section of the 1nclusive processes

(10a) d_ g = - ¢ }: N,<n,>)

This analogy can be continued 1f we take into account a
certain hypothesis about the correlation matrix D? ={D,,} pa-
rametrization.
Thus, the single component case with the Wroblewski law
(1a), when €7 1s neglected, leads to the Verhulst equation (*°)
(s0 called logistical equation(®))

(Ta) d5<n_> = K> (s—<n_>)/s,
where s=27€_ 1s the saturation level (l.e. <n > = s
when T = »), K= 218CNc/a.

Let dlagonal elements also have the form (1a) in the
many component case and others are represented according
to the Vollterra "encounter™ method

a 1(<n‘>—e1)2,....a1v<n1><n_v>
(1) DP=q eeiiiiniiaaiane N SN
8, <M><N> .., (<N>-g)P
Then, from (7) we get
d<n,> _ L
(12) A @@ - }: B,,<m>),

Here §1:2751811 represents the natural growth rate of the
1-th component and 51k=7Nkaik 1s proportional to rapldity

of the growth (loss) <n,> at the blnary encounter with <n>.
This 1s the usual Volterra model of a few iInteracting
species for dynamlcal descriptlon of blologlcal population.
Conslderation of thils model as quark hadronlzation into a mul-
ticomponent set of hadrons allows one to make further simpli-
cations.
In the case of saturation with the same elements .

(11a) a,,% &, 1/a,

the relaticn of "pray and predator" is excluded and we are led
to the model for v specles which are competing for the same

resource (quark food):
d<n,>

(13) ——1 =(e

- g =Y Flanp>, e, ) )eng .

Here
v
(14) F(...) =M= E: Ny<n,>, 7y, = 7/a, €, = 27 €,/8.

1=1
Tt is easy to show that 1t 1s also dissipative. Multi-
ply (7) by N,, and sumning we have the quark-mass equation

i,
(15) My P,
where
v v (1)
E oy . 2 . N
Pan -0 Ny 7Y WDy 2 ) NND,
i=1 1=1 1>73=1

We conslder that one of the terms 1s nonequal to zero
and all Dik > 0, thus DE(M) > 0 . This means by the Vol-
terra classification that we have a dissipative set of compo-
nents. Thus, the model 1s more reallzable in nature than the
conservative at DZ(M) =0.

Note that eq.(15) allows one to overcome a difficult
problem of solving system (7). For 1nstance, in order to
obtain the DI-distribution (2) we must close the set of
equations (10),(10a) and (15) by the condition

(7) DZ(M) = LaM>®.
However, the solution of (7), as we think, 1s an attirac-
tive task aimed at getting important information about assoc-



lated multiplicities. As Montroll et al.(®) admit, the ana-
lytical study of any generallzed Volterra model 1s difficult
and the numerical study 1s expensive. However, we hope to ad-
vance in analytical calculation by the method of computer
algebra and programming system REDUCE-3 (Z').

3. - The differential equation for the associated

In experiment,multiplicity of a single component 1s us-
ually measured instead of all the consldered ones. In order
to describe 1ts averaged values, 1t 1s necessary to obtaln
D-equation of the wv-th degree from set (7) as a differen-
tial resultant. This 1s a hard task in high orders and 1t may
quickly be solved by the programming system REDUCE, for 1nstance,
on the PC IBM-AT. For 1llustration, the sultable program
is glven for the case v = 3 and g, = 0. Then, according to
(12) we have

n, = - a1nf - a;nmn, - agnn,,
(18) né = - bl n,- beng - byn,n,,
1’1;3 = - C1n1n3—‘ Canana— Csng .
Here
n, =<n,>, a, = 1a,,N, b, = yaaiNi, cy = Tas,N,, 1=1,2,3.

The set (18) has the following programming form

Cperator n,a,b,c; Array a(3),b(3),c(3);

For 1:=1:3 do <<depend n(1),tm>>;
Df(n(1),tm)z=—a(1)xn(1)*x2-a(2)*n(1)*xn(2)-a(3)*n(1)*n(3)$
Df(n(2),tm):=-b(1)*xn(1)*n(2)-b(2)*n(2)«*x2-b(3)*n(2)*n(3)$
DI(n(3),tm):=-c(1)*n(1)*xn(3)-c(2)*n(2)*n(3)-c(3)*n(3)**28$

Instead of the method of elimination we shall use the next
prescription. Let d1 (i=1,...,15) be arbitrary (uncertainty)
constants. Make the following substitutions:

- ’ .- -2 - n4 -5
X, =Ny, Xy =Ny, Xy =05, X 0= Ny X o= Ny, Xgo = 0,
_ . _ vy —va _2- _3'
%,=nn, X, =nn , x, =n°, x,,=nm, , X, =wn,
R B - ~ ver NN
Kig =00y o+ Xyp = 05, X0 = W0, L Kyg = 00, -

Then, the desired equation as a resultant of set (I8)

will be
1

(19) 2: 4z, = 0

1=1
and this problem 1s reduced to finding a coefficilent da,.

In the programming language we have

Operator d,x; Array d(15), x(15);
x(1):=df(n(1),tm)$ x(2):=df(n(1),2,tm)$ X(3):=n(1)*x2¢....8
X(15):=x(1)*x(2)8$ s15:= for 1:=1:15 sum d(1)*x(1)$ Clear X;

The substitutions for x, with (18) reproduce the left-
hand side of equality (19) into the sum of independent monomlals

n?ngng . The arising coefficients must be equal to zero
in order to fulfil eq.(19).

We multiply this expression s15 by function sn(0,0,0)
and make LET substitution for degrees a,f,7. Thus we can
use COEFF statement (22) :

grder a,b,c,d,n(1),n(2),n(3),sn; On nero,div; Off nat;

$15:=815%(n(1)*n(2)*n(3) )»*3x3n(0,0,0)$

for all b3 let n(3)+*xb3xsn(0,0,0)=sn(0,0,b3);

for all b2,b3 let n(2)**b2xsn(0,0,b3)=sn(0,b2,b3);

for all b?,b2,b3 let n(1)**bixsn(0,b2,b3)=sn(bt,b2,b3);

515:=515¢% array cc(1);

For bt1:=3:8 do for b2:=3:8 do for B3:=3:8 do wrlte

¢1(b1,b2,b3):= 1f coeff(s15,sn(bi,b2,b3),cct) neq O

then cc(1) else O;

It is interesting to note that such an algorithm allows
one to work on PC IBM-AT with l1imited memory (600 KB) at v>4.
If necessary, one should vary only the first cycle index.

Finélly, we must take C1 equal to zero and define di.
By a simple example of saturated correlatlon (14), when

a;, = b, = ¢;, this procedure looks 1like

For 1:=1:3 do <<b(1l):=c(1):=a(1)>>;

For b1:=3:8 do for b2:=3:8 do for b3:=3:8 do write

C1(bt,b2,b3):=c1 (b1,b2,b3);

and the system's answer has the form

c1(4,3,4):=—a(3)xd(1)$

c1(4,3,5):=2%a(3)*x2xd(2)8$

¢1(5,3,3):=-a(1)»d(1)+d(3)$



c1(5,3,4):=-a(3)x(-4xa(1)»d(2)+4(7))%
cl1(5,4,4):=2+a(3)*a(2)*(d(9)+2*d(8))$ and so on.
The corresponding values of di are:

d1=0 for 1=1,2,3,4,5,6,7,10,11 and

d8 = - d9/2, d12 = - d13/2, d14 = —d15/3.

As a result, (19) becomes

1 L) !2 ‘ * 2 * vy
dg(- z nyn, + %) +d (- 31 n +nn ) + d, (- 3 n,n,

+ n1 n1) = 0.
Due to arbitrariness d, we get two egs., but only the first
1s 1ndependent

o o
(20) nn, - 2n1 =0

and its derivative leads to the second one.
As 1s easily seen, for arbitrary coefficlent a, # bi from (18)
we get a nonlinear autonomic equation

2
1l'l-i'

(21) a, nn, - (ay+ ba)n1 - (Za1b2~ a,a, - a2b1)n
4
a1(a2b1 - a1b2)r11 = 0.
It is not difficult also to introduce elther the rate
constant or other complication into consideration.

4. - Solution of the equation for the assoclated multiplicity

Unfortunately, we are not informed of any experiment
for expounding the component structure in multiparticle
processes, and we can understand only from mathematical po-
int of view why the obtalned formulae show Just the value of v
in comparing with the avallable experimental data. For example,
as 1t 1s seen fromthe Table,charge particle emission 1s si-
milar to the single-component case for full pseudorapidity inter-
vals . This 1s in agreement with the uncertainly principle for
v=1 and a_ = a = 4. let us prove that "disappearance" of the
component structure 1s equivalent to the change of multipli-
city lags by the time ones 1n egs. (9a,b).

In our model, a number of quarks n transforms into the
rate constants (8) or (9b), if we _ Measure many- or one-

variable cross-sectlons, respectively.
As has been mentioned in Introduction, the quantity (4)

in {9c¢) contalns multiplicity n, lags (9b) and depends on v.

10

Table. Results of fitting the KNO-function (3) compared to
the charged particle multiplicity distribution in
limited (and full) intervals of pseudorapldity dis-

—_—

tribution |n|<n (%) at v[s = 200 and 900 GeV centre
of mass energies (4) . The values of the correlated
component number v, the parameter a and the norma-
lization constant A are given at a=4.

200 Gev E

_________ e , e , o
Mo i v i a E A E xa / NDF ;
N N R R e R R N T R
15 1172 0.06 10.45 £ 0.00 16.23 F 0.68 | 630 |
S o 0w o et | v
5.0 1.1 *0.02 10.07 ¥ 0.02 i27.91 ¥ 2. 38} 5/55 i
:E::::::%i:@%_i 0.02 {0.03 ¥ 0 6§_§?£f§§"5_éf§?_§ﬁ_é?§é —————— ;
: { 900 GeV ! ! E

} 0.5 é%:63 *70.13 ;o 82 * 0.06 §2 72 * 0_5?_—;~_é;§6 ______ :
P 1.5 11.87 £ 0.06 10.59 £ 0.04 i5.34 ¥ 0.41 | 24749 :
1 3.0 11.51 £ 0.03 {0.35 ¥ 0.02 {9.50 * 0.68 Ty
1 5.0 i1.22 ¥ 0.02 10.15 £ 0.01 519.34 e | i
i §1 TR 0.05—EB-BB_E_BTBT_'55'25_3_5_52_3'_56?57 ————— ;

When 1t 1s linearised as relation (5), then coefficient (9c)
becomes
K = An1 + B,

where the parameters
v v
A= N, }: AN, B o=y }: B,
1=2 i=2
conceal multi-component structure of v and depend on the total
energy (time <).

As this 1s a rough method for cutting coupled equations,
the average multiplicity for charged particles obeys Ric—
catl's equation

2

< =
nc> a,<n >+ ay<n > + o, 22)

11



In other words, 1t contains both the Verhulst self-inter-
raction and the time lags in the sense of dependence of the a,
coefficients on T. We shall not examine it any more but from
methodical point of view we should note that it was establl -
shed and analysed (18) in the framework of the renormalization
group (®3), and the algorithms (®%) of computer algebra can
also be used for this purpose.

Consequently, 1n our model (7) of competing components
we can get equation for assoclated multiplicity. Its solution

depends elther on momentum p of an Inclusive particle or
on transfer momentum Q through the time variable T (1t is
possible - on v). In the model of saturating correlation
(11a), (14) when the natural growth rate 1is zero, &, = 0,

1
we have
<ni> =~71M<ni>,
where 7,=7/a and M 1s quark-mass .
The anzats (17) leads to the solution
> = <ny>y /(0 + 7 MoT).
Here <n>, and M, are quantlties at 1=0. If we want to see v

dependence, we must recall that MO = vNi<ni>o (3).

Finally, we will briefly discuss the model with the par-
tial saturation (18) with v=2. The nonlinear eq.(21) can be
solved, for example, by the Berkovic (25) method. We rewrlite
1t as follows:

(23) n'+ f(m) n'® + pom) nn'+ An) =0,
where
n=n>, f(n)=-(a,+b,)/(a,n), ¢(n)=n, B1=7(2a1b2—a1ae—azb1),
Am) = a (a,b,-ab,)n%a,.
Then (?°) eq.(23) reduces to the linear one with fixed
coefficlent
(24) Xt + 61Xt + ﬁOXt+ a=20
1f the next condition 1s fulfilled
(?4a)  Am)=@(n)exp(-[f(n)dn) (P fe(n)exp([f(n)dn)dn + al -
It takes place when
a=0 u B = a,(a,b,- a,b,)(2 - (ae+b2)/82]/52.
and, 1n general,
(28) X(n)=[p(n)exp(ff(n)dn)dn , dt=@(n)dr.

12

Note also that 1In the 1limit of saturation a;= b1

X(m)=lnn, dt=ndt , X, =0 and n .-} .

Thus, decrease 1In assoclated multiplicity 1s caused
by the limited resource.

The authors acknowledge L.M.Berkxovic, N.N.Vasillev,
V.P.Gerdt, A.A.Khelashvili, I.P.Pavlotskl and L.A.Slep-
chenko for fruitful discusslons. We thank LCTA JINR for the
help In PC calculation.
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Hap6aunse f1.3., PocroBuen B.A.
Mogenpy BonbTeppa M agpoHMSAauMa KBapKOB
B MHOT'OKOMIOHEHTHYK CHCTEMY a4pOHOB

E2-89-622

PaccMoTpeHbl NpHMepnl 3aBHCHMOCTH XapaKTEPHCTHK MHOXECT—
BEHHOI'O MpollecCa OT YMCIIA HEeCKONBKHX KODDEJHDOBAHHRIX KOM—
NOHEeHT ajporoB. 06cyxmaeTcA BO3IMOXKHOCTH NPHBEXCHHA CHCTEeMu
oupbepeHUHanbHbLX YDaBHEHHH , NONy4YeHHON paHee Npu anpoHH3a-
LUHM N~KBAPKOBOI'0 Mpouecca B MHOT'OKOMIIOHEHTHYIO cudTeMy, K
OUCCHNATHBHOH MopenM BonbTreppa AONA KOHKYDHMPYKIHHMX 33 OHHY
nuuy BUOOB 6GHoNoruueckod nonymauuu. [JaH anropuT™M Ona aHa-
JHMTHYECKOI'0 pacueTa guddepeHUHANbHOTO YpAaBHEHHA BHICOKOTO
nopagka KakK pesynbTaHTa BOSHUKAaWilell cHcTeMsl. [lpuBeseHn npH—|
Meph! JIHHEeapH3au¥y¥ M peleHHs 3THX YPaBHEeHHNH, ONUCHBaOIHX
accouHaTHBHblE MHOXKECTBEHHOCTH 3apPfXeHHbIX 4acTHL.

Pabora BbmonHeHa B JlaGopaTOPHM BLIYHCHMTENbHON TEXHMKH
M aBToMaTusauuu OHAH.

NpenpuiitT O6veaumesHoro MHCTHTYTa AXEpPHLIX Necnenosanwit. Jy6ua 1989

DarbaidzeYa.Z., Rostovtsev V.A.
The Volterra Model and Quark Hadronization
into Multicomponent Hadron System

E2-89-622

The examples of the multiparticle process characteristid
dependence on the number of a low correlated components
are considered. The possibility for reducing the differen-
tial equation system, which was obtained earlier, to a dis-
sipative type Volterra model of competing biological spe-
cies for the same food is discussed. An algorithm for the
analytical computation of the high order differential equa-
tion as a resultant of the arising system is given. The
examples of linearization and solution of these equations

describing the associated multiplicities of charged particH
les are represented.

The investigation has been performed at the Laboratory
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