


1. GENERAL REMARKS

We study the parametrization of a representative set of
well-known central nonrelativistic, spin-averaged potential
models for heavy quarkonia which flavour—invariantly reprodu-—
ce excitation energies and decay widths of charmonium and
bottonium states with surprising accuracy/1-8/

Especially, we are interested in the role of the consti-
tuent quark masses. In each model they are introduced as free
parameters to be fitted to the data together with the remaining
parameters which directly appear in the potential. This leads
to values of my and mg (i - model index) distributed in the
intervals !.2< m,. <1.9 GeV and 4.6< my; <5.3 GeV. Presently
a number of successful potentials exist and, from a more gene-
ral point of view, one should look for an alternative approach
with equal constituent masses for all models. Indeed, if non-
relativistic quantum mechanics is taken seriously as a tool of
successful phenomenological description of heavy quarkonia,
the constituent quark mass should be a quantity of the physical
bound state to be described approximatelv by different poten-
tial ansatzes and therefore should not vary as functional of
the potentials V,(r), whatever its meaning may be in a deeper
0CD-like theory. Of course, if the different potential models
acquire common masses m (Q = ¢,b), the freedom of the choice
of parameters is restrlcted and one should study the consequen-
ces for data reproduction.

Te proceed in this direction, we start with the Schroedin-
ger equations for the QQ levels in different models
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and study the simultaneous transformations

rd L 1
Vi(l‘)=Vi(l‘)—V0i , My, =M + 2V . (2)

As Ls known from fit experience #4867/ application of egs.(2)
compensates the major effect of a change Mg mQ by a cons-
tant shifc V Oi of the potential. But with increasing V the



G T T T T, Fig.1. The underlying poten—
' tials in the region 0.1 <r <
[ < 1.0 fm.
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energy level deviations become
larger and must be investigated.
It is a known fact that in the
relevant region 0.1 <r <1.0 fm
of interquark distances for c&
and bb physics, the potentials
Vi(r) approximately differ from
each other only by constant
terms (see Fig.1). This proper-
ty we use to apply egs. (2) in
order te shift together the po-
tential curves between 0.1 and
1.0 fm to study the new masses
mai. But first we briefly review the set of potentials and
their parameters used in the following.

2. THE UNDERLYING POTENTIALS

We evaluate six well-known potentials in different paramet-

rizations. The corresponding quark masses mg, are given in

the table.
1. Cornell potentia171y
V,(1)=-K/r+ar {(3)
k a(Gev?)
a) 0.494  0.173787
b) 0.47 0.19 78/
2. Martin potential”®/
Vo(r)=- A+ Br? : (4)
A(GeV) B(Gev! ™% a
a) —6.31 5.22 0.126 "%/
b) -8.06 6.87 0.1007%

3. Richardson potential 73/

(3}

vV, (r)=-2
3 8 by " (22)® 32In( L+p%/A%)
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bg = 11 - 2/3n, A = 0.375 Gev’®/
(n¢ - number of effective quarks).

4, Potential of Buchmiiller, Grunberg and Tye’%’
Short range part:

b
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b, =102———n,, Comme (31—
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Long range part:

(L) ]
V, (r)=a’r A=Arg=0.5CeV, a"x1GeV?

where ny = 3 and y_ is Euler's constant.

The intermediate part of this potential is obtained from di-
rect interpolation of the B function between small and large
relative quark momenta. No parameters to be fitted to the cZ
and bb data (except the constituent masses) are contained in
this potential.

5. Kithn—Ono potential”%/

b, Inf -
Vs(r):—-i—l 47 1- ! nf(r) + ¢ +oaJ+AVE+ C,
3 I byf(r) b, f(r) f(r)
(7)
f(r)= Infl/(z\r)z +B]
A(GeV)  A(Gev®/2) B C(GeV)
a) 0.14 0.63 20 -1.39 75/
b) 0.20 0.67 238 -1.4178/

The short range part differs from that of vV, by introduc- .
tion of the parameter B avoiding the Landau singularity in the
extrapolation to larger r.

6. Potential of Hagiwara et al.”®’

Ve()=VF @+ v® ()4 v 0y,



c } -1/t L
Ve(s)(‘):"TE“s- vy =r(e vene 0, v ()=cpr. (8)

ACGeV) €, (Gev®)  Cy(cev®)  Cy(Gev®)  ry(GevTh)
_ /6/
a) 0.2 0.22 1.12 1.19 0. 70/6/

b) 0.4 0.18 ~ -1.35 .15 0.57

VéSXnalnly agrees with the short range behaviour of V A phe-—
nomenological intermediate part viI} {s included to get a
soft, flexible interpolation.

3. CHANGE OF THE CONSTITUENT MASSES mg,

The potentials Vi{t) are shifted to agree in some point r =
=1, if in eqs.(2)

Vo, =V (rp)+ Vg (9

where V, appears as arbitrary constant not depending on the
model index. We have studied the massesrngi(ro) for each po-
tential of section 2 (Vg = 0) and obtain the two curves given
in Fig.2 for the mean values

Vla =V Vg =V
12

. 1 1
in(r0)=—i§— il (mg; +§-Vi(r0)) Vip=V% V, =V ,  (10)

where all 10 parametrizations (table) are included with the
same weight for each of the six potentials. The surprisingly
small mean square errors are indicated. These errors are one
order of magnitude smaller than those of the fit quark masses

g
Lz oo Ve T —p (/2 |
(in_in) <<(mQi —in) . (11)

They have minima near 0.5 fm and near 0.3 fm for b and c, res-
pectively, as shown in Fig,3. But how to fix r09 First we give
two phenomenological arguments: a) The best agreement of the
potentlal curves V. (r) between 0.1 and 1.0 fm is obtained for
ry = 0.5 fm /4,107 which should correspond to the lowest mean
square error of m (r ). Figure 3 confirms this if we rely mo-
re on the bottonlum curve giving the smaller error. b) It



' 1  Fig.2. mg (ry) and my: {ry} as
Gev functions of the point ry in
S0} 1 Vir} =V () -V (r ). The mean
square errors are indicated.
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Fig.3. The mean square errcrs of ’
my; and mg as functions of r. o
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should be a reasonable assumption that the mean value of the
fit quark masses is not too_far from mg, . Their approximate
equality mg = mg; entails Vj(rg) 20. Using the above set of
potentials to calculate Vi(ro), we obtain Ty = 0.52 fm which
is in the expected region. A third more principal argument in
favour of ry; 2 0.5 fm is due to the construction of the poten-
tials Vi and V; which work with a minimum of parameters and do
not admit any shift of their fit quark masses. This fact re=-
quires the equalities

’

ei (Tg)=meg =Meq .

m

(12}

rd
Mmy; (Tg)=lpg =My, o

which again lead to rg=0.5 fm (Fig.2 and the table). We have
checked that the point 1, is not too sensible against exclu-
sion or inclusion of one or the other potential. A subjective
error related to our choice of a representative set of poten-
tials should not be larger than +0.05 fm. Hence we arrive at
r, = 0.5020.05 fm which corresponds teo uniform constituent

0
masses {(Fig.2)



Table. The values of mg; and mg; (@ = b,e) and. the
difference my - my for the underlying potentials. Mean
values and mean square errors are given

}7oten- P P
siodel t1al By  Dpy BpyPgy By Bys
index ' :
Cornell la 1.35  4.75 1,42 1.47 4.89
' 1b 1.32 4,75 3.43 1.47 4,90
Martin . 2a 1.76 5.14 3.8 1.54 4,92 °
2b 1.80 5.17 3.37 1.54 4,91
Riohardson 3 1.50 4.91 3,41 1,50 4.91
Buchmuller 4 1.48 4.88 3,39 1.51 4.90
ot al.
Kuhn-Ono 5a 1.22 4,66 3,44 1.47 4,91

5b 1,90 5.26  13.36  1.55 491

Bagiwara et al.ba 1.587_; 4,99 J.41 l.48 4.89
" 6b 1,36 4.79 3.43 1.46 4,89

mean values . - 1.53  4.93  3.40  1.50 4,90

mean square
errors 0.21 0.19 0.026 0,030 0,008

m, = 1.50 % 0.07 GeV my = 4.90 +0.05 GeV (13)

for all potentials of section 2. Uniform masses not agreeing
with (13) would exclude the potentials Vg and V, from the ana-
lysis. In our opinion, this cannot be admitted because just
these potentials based on a minimal number of parameters, are
the most interesting ones from a theoretical point of view.
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4. THE RELATIVE STABILITY OF m,; - m,,

It is a known remarkable fact discussed already 10 years
ago” 1+ 12/ that the difference of the bottom and charm fit
quark masses myp; — My approximately appears as potential mo-
del independent quantity. Its mean square error-is one order
of magnitude smaller than the corresponding errors of my; and
me; (see the table). Using the above result (13} on the rela-
tive accuracy and approximate model independence of the primed
masses méi = m, we can simply explain this stability of my; -
T Mgy - . : . 3 .

Considering two potential models labelled :by the indices i and
j one obtains by substraction of the two equations

—-é-Vi(rO)=m =

m ai

@’ Q’

1 ’
Mg +5 Vy (fg)=mg =mg.,
the relation
Mai ~ Mgy E%[VJ'.(-YO')?‘.“'H (rg)1, 4

where the right-hand side carries no flavour index Q which
immediately leads to the model independence of the difference

Mp; = Mgyl

Mpg =My =Mgy —Mgj OF My ~Mgy =My —Mgy . (14)

5. INFLUENCE ON ENERGY LEVELS AND
LEPTONIC DECAY WIDTHS

If all potentials are reldted to thé same constituent quark
masses Mg, the number of adaptable parameters is reduced and
the effect on data reproduction should be studied. Eqs. (2)
transform the Schroedinger equations (1) into

-1 A, , () ppy_ g (D, (1) 2
[ mmA+2mQ+Vi_(t)]¢n (r) Mn ¢n (r). , (1a)
Because of the common mass mgy now the mass index at the eigen-

values and wave functions is dropped. The new QQ levels

MG =2mg + <1,0][ T+ (V) = Vg, )]0, 1>,



are expressed by the old ones

(i) . -
Mn.maiz2mm+<1Jqui}[Ti+Vé]iin.nJ>

through the relation (H = T+V)

(i) i . . . .
Mo =M£Aﬁi+<Ln“%|HJ>—<Lnﬂnm|H“mm,nJ>. (15)

As an example we have studied the change of S states of the
Cornell potential V, (r) (3) with masses m,y = 1.32 GeV and
myp; = 4.75 GeV. Following Eichten et al”!/, we started with
the asymptotic dimensionless radial Schroedinger equation

a2
(-E;?-P+§“)UD(P)=G. (16)
where

—1/8 -4/3 May 172 ulp)
t=a (mg,8)  p. B =mg (mgyay) Cn’R(r)=(_;§-) ’—5—(]7)

1
and ViL)(r) = r/a?. Eqs. (15)-(17) yield

- 1/3 Vy, ~1/8
(1-(1+ =2y 3¢ (18)
Mgy "

1 1
M() (1)

a-l(a Mpyy )
= +
n N, My 1 1Ya1

and the Coulombic interaction can be taken into account pertur-—
batively in the eigenvalues {, which is sufficient approxima-
tely also in the case of bb. Figures Z4a,b show the deviations
of the lowest three level spacings ag functions of Vg, for the
Cornell potential V,(r) = ~k/r + r/a| (Fig.4a), and for the
pure asymptotic potential V{L)(r) = ar = r/a% (Fig.4b). As is
seen from Fig.4, the changes of the level spacings in both ca-
ses are roughly similar i.e. they are mainly determined by the
long range part of the potential. Thus Fig.4b can give rough
information also for other linearly raising potentials.

The result taken from Fig.4a for the Cornmell potential with

V01 = V1 (0.51fm) = 2(mQ - Mg, ) ~ 0.30 GeV ,
are corrections Ag§-1s , Agg_gs and Aﬂ%_ss to the S level
spacings between 3 and 7 MeV. The corresponding cc quantities
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Fig.4. a) The change ¢f the three lowest S level
spacings for cc and bb as function of Vg, in the
Cornell potential model with k = 0.47 and a = 0.19 GeV¥.
b} The same funetions as in Fig.4a fbr a pure linearly
ratsing potential v{Xp) = ar.

are 3—4 times higher. The overall shift of the spectrum is near
3 MeV for bb and near 14 MeV for cc.

Generally, it should be noted that these deviations in the
spectra can be reduced more or less by adapting the other pa-
rameters of the potentials to the -common quark masses. This
should work the better, the more parameters exist in a given
potential model. As example weé mention the Kiihn-Ono potential
(7). It contains four parameters and was fitted to the data
with rather different values of these parameters together with
correspondingly different gquark masses in the regionms 1.22 <
<mgg <1.90 GeV and 4.66 <myg < 5,26 Gev. One of these fits Y8/
works with mgg = 1.4]1 and mypg = 4.83 not far from the common
.masses (13). Hence, in the case of potentials containing three
and more parameters, the condition of common, fixed quark mas-—
ses mainly reduces the possible number of fits with different
parameter configurations rather than the quality of data repro-
duction.

Concerning the relative leptonic decay widths in different
potential models, the introduction of eadual quark masses should
be studled thbroughly For 9 states the replacements

ey u® ¢m Sy
ns 'in ns Qi ns



are necessary in the expression

2

r M 2 2
5 18 3 GV r dV r

—2e 2 o Sy o) S a9
IR M2 nS dr

18 ns
obtained from the Weisskopf - Van Rovyen formula’1® and the
relation’ 14,15

av(r)
g O - fdr g (of S (20)

As example we have numerically evaluated eq.(19) for the Cor-
nell potential with mg = 1.5 and my, = 4.9 and have calculated
1§ D )w1th n = 2,3,4. The deviations from the known re-
results /1013/re smaller than the experimental limits of er-
ror for cc. Practically no deviations appear for bb. Some
authors 2%/ prefer a relatively large m =1.8 to improve the
agreement with experiment for ([’S/T )éE with n> 3. But up

to now the relation between these d1screpanc1es and relativis-
tic effects in the cc system is not clear.

6. CONCLUSION

Summarizing, first we note that the intreduction of common
fixed quark masses in the considered potential models, as al-
ternative to the usual point of view, seems to be attractive
because the common masses turn out automatically when the po-
tentials are shifted together at rg = 0.5%0.05 fm. The va-
lues of m, and m, from empirical arguments agree with the fit
quark masses of the models of Richardson”® and Buchmiiller,
Grunberg and Tye” 4/ yhere these masses are fixed because of
a minimum of parameters. The approximate model independence of
the mass difference mp; — m¢; can be simply explained. Maximal
differences between the fit masses and the common fixed masses
appear in potentials containing three and more parameters
adaptable to the new conditions. Hence, the change of energy
levels should remain small as confirmed for potentials with li-
nearly raising long range behaviour. Especially, bottonium
maintains its role as "ideal hydrogen atom of particle phy-
sics". But a complete survey on data reproduction of different
potential models under the condition of fixed constituent quark
masses requires corresponding new fits.
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