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I • GENERAL REMARKS 

1\l'e study the parametrization of a representative set of 
well-known central nonrelativistic, spin-averaged potential 
models for heavy quarkonia which flavour-invariantly reprodu­
ce excitation energies and decay widths of charmonium and 
bottonium states with surprising accuracyll-6( 

Especially, we are interested in the role of the consti­
tuent quark masses. In each model they are introduced as free 
parameters to be fitted to the data together with the remaining 
parameters which directly appear in the potential. This leads 
to values of mbi and mci (i - model index) distributed in the 
intervals 1.2< mci < 1.9 GeV and L,.6< mbi <5.3 GeV. Presently 
a number of successful potentials exist and, from a more gene­
ral point of view, one should look for an alternative approach 
with equal constituent masses for all models. Indeed, if non­
relativistic quantum mechanics is taken seriously as a tool of 
successful phenomenological description of heavy quarkonia, 
the constituent quark mass should be a quantity of the physical 
bound state to be described approximately by different poten­
tial ansatzes and therefore should not vary as functional of 
the potentials V1 (r), whatever its meaning may be in a deeper 
OCD-like theory. Of course, if the different potential models 
acquire corrnnon masses m Q(Q = c, b), the freedom of the choice 
of parameters is restricted and one should study the consequen­
ces for data reproduction. 

To proceed in this direction, we start with the Schroedin­
ger equations for the QQ levels in different models 

[---1- ~ + 2mQ + V. (r)l ,ij(i) 
mQi t I n,mQi 

< r) = M < i) 
n,mQi 

</1 (i) 

n, m Qi 
(I) 

and study the simultaneous transformations 

' 1 v m Qi "" m Qi + 2 01 (2) 

As is known from fit experience /4,6,7/, application of eos. (2) 
compensates the major effect of a change rnQ . ....,. mQ. by a cons­
tant shift V0i of the potential. But with i~creaslng v0i the 
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Fig.1. The underlying poten­
tials in the region 0. 1 < r < 
< 1.0 fm. 

energy level deviations become 
larger and must be investigated. 
It is a known fact that in the 
relevant rep;ion 0.1 < r < 1.0 fm 
of in~erquark distances for cC 
and bb physics, the potentials 
vi (r) approximately differ from 
each other only by constant 
terms (see Fig.1). This proper­
ty we use to apply eqs. (2) in 
order to shift together the po­
tential curves bet.ween 0. 1 and 
1.0 fm to study the new masses 

mQi. But first we briefly review the set of potentials and 
their parameters used in the following. 

2. THE UNDERLYING POTENTIALS 

We evaluate six well-known potentials in different paramet­
rizations. The corresponding quark masses m Qi are given in 
the table. 

1. Cornell potential:/!·/ 

V1 (r)=-Kir+ar 

k 

a) 0.494 
b) 0.47 

a (GeV 2) 

0. 173:181 

0.19 161 

2. Martin potential:;2:1 

V2 (r)=-A+Bra 

A(GeV) 

a) -6.31 

b) -8.06 

5.22 

6.87 

3. Richardson potential/3"/ 

a 

0.126 121 

0.100 :;g.; 

(3) 

(4) 

(5) 



b 0 = II - 2/3nr A= 0.375 GeV 161 
(n 1 - number of effective quarks). 

4. Potential of Buchmilller, Grunberg and Tye/4/ 
Short range part: 

v~s) (r)=-_i...!. 41T 
3 r b 0 F(r) 

2 
F(r)=ln(l/(Ar) ). 

Long range part: 

( L) ' 
V4 (r)=a r 

b 1 In F(r) c 
[1------+---+ ... ]' 

b0 F(r) F(r) 

(6) 

where nr = 3 and yE is Euler's constant. 
The intermediate part of this potential is obtained from di­

rect interpolation of the ~ function between small and large 
relative quark momenta. No parameters to be fitted to the cC 
and bb data (except the constituent masses) are contained in 
this potential. 

5. Knhn-Ono potentiat'' 5:1 

41 4, b1 lnf(r) c . -V (r) =--- --:---c'-"-:-f 1-------+ ---+ ... ] +Av'r + C, 
5 3 r bo f(r) b0 f(r) f(r) 

2 
f(r)=inf1/(Ar) +Bl 

A(GeV) 

a) 0. 14 
b) 0. 20 

A(GeV 312
) 

0.63 
0.67 

B 

20 
238 

C(GeV) 

-I. 39 151 

-I. 41 161 

(7) 

The short range part differs from that of v4 by introduc­
tion of the parameter B avoiding the Landau singularity in the 
extrapolation to larger r. 

6. Potential of Hagiwara et al. 161 

V (r)=V(S)(r)+V(I) (r)+V(L)(r) 
6 6 6 6 ' 
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A(GeV) 

a) 0. 2 
b) 0.4 

2 c1(GeV) 

0.22 
0. 18 

3 c2 (GeV ) 

-I. 12 
-I. 35 

v(Slmainly agrees with the short 
8 1 . . d' nomeno og1cal 1nterme late part 

soft, flexible interpolation. 

2 c3 (GeV ) 

I. 19 
I. 15 

-I 
r 0 (GeV ) 

0. 7ol6l 
0.57

161 

range b~.haviour of 'V5 . A phe­
v<1l is included to get a 

3. CHANGE OF THE CONSTITIIENT MASSES mQi 

The potentials ~(r) are shifted to agree in some point r = 

r0 if in eqs. (2) 

VOi =Vi (ro)+Vo • (9) 

where v0 appears as arbitrary constant not depending on the 
model index. He have studied the masses m ~i (r0 ) for each po­

tential of section 2 (Vo = 0) and obtain the two curves given 
in Fig.2 for the mean values 

(I 0) 

where all 10 parametrizations (table) are included with the 
same weight for each of the six potentials. The surprisingly 
small mean square errors·are indicated. These errors are one 
order of magnitude smaller than those of the fit quark masses 

mQi" 

(II) 

They have minima near 0.5 fm and near 0.3 fm for b and c, res­
pectively, as shown in Fig.3. But how to fix r 0 ? First we give 
two phenomenological arguments: a) The best agreement of the 
potential curves V. (r) between 0.1 and 1.0· fm is obtained for 
r 0 = 0.5 fm.14 • 101 ~hich should correspond to the lowest mean 
square error of m~.(r0 ). Figure 3 confi.rms this if w~ rely mo­
re on the bottoniuci curve giving the smaller error. b) It 
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Fig. 2. m;i (r 0) a:nd m.;i (r0 ) as 
functions of the point r 0 in 
V'(r) = V. (r) - V. (r;,)J). The mean 

l l ••• td square errors are ~ ~ca e . 
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Fig.3. The mean square errors of~ 
m~i and m;i as functions of r 0 • r 

0.5 r.lfm) 1.0 

should be a reasonable assumption that the mean value of the 
fit quark ·Plasses is not too_.far from m~ • Their approximate 
equality mQi = m,(;u entails V; (r0 ) "0. Using the above set of 
potentials to calculate Vi (r 0), we obtain r 0 = 0.52 fm which 
is in the expected region. A third more principal argument in 
favour of r 0 :: 0.5 fro is due to the construction of the poten­
tials v3 and V4 which work with a minimum of parameters and do 
not admit any shift of their fit quark masses. This fact re­
quires the equalities 

m ~i ( ro):::. mc3 .:::. m c4 ' 
(12) 

m~i (ro) == mb3 = mb4 ' 

which again lead to r 0 = 0.5 fm (Fig.2 and the table). We have 
checked that the point r 0 is not too sensible against exclu­
sion or inclusion of one or the other potential. A subjective 
error related to our choice of a representative set of poten­
tials should not be larger than ±0.05 fm. Hence we arrive at 
r 0 = 0.50 ±0.05 fm which corresponds to uniform constituent 
masses (Fig.2) 
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Tabte. The vatues of mQi and mQi (Q = b,o) and. the 
difference mbi - mc1 for the underLying potentiats. Mean 
vatues .and mean square errors are giv8fl 

--- -------------------------
jroten- I I 

lA<> del t1al mci mbi mb1~o1 moi mb1 
_______ !!!!!.!!_ 

Cornell la 1 • .)5 4.75 J.42 1.47 4.89 

lb l.J2 4.75 J.4J 1.47 4.90 

Martin 2a 1.76 5.14 J,J8 1.54 4.92 

2b 1.80 5.17 J.J7 1.54 4.91 

111ohardaon J 1.50 4.91 J.4l 1.50 4.91 

!Uohmiiller 4 1.48 4.88 .). J9 1.51 4.90 
et al. 

itiihn-Ono 5a 1.22 4.66 J.44 1.47 4.91 

5b 1.90 5.26 .) • .)6 1." 4.91 

Bagiwara .et al.6a 1.58 4.99 .).41 1.48 4.89 

6b l.J6 4.79 .).4J 1.46 4.89 

---~--------. -------
mean values 1.5J 4.9J ).40 1.50 4,90 

mean square 
errors 0.21 0.19 0,026 0,0.)0 0,008 

me = I. 50± 0.07 GeV mb = 4.90 ± 0.05 GeV ( 13) 

for all potentials of section 2. Uniform masses not agreeing 

with ( 13) would exclude the potentials v3 and v4 from the ana­

lysis. In our opinion, this cannot be admitted because just 
these potentials based on a minimal number of parameters, are 
the most interesting ones from a the~retical point of view. 
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4. THE RELATIVE STABILITY OF mbi - m01 

~t is a known remarka,ble .fact discussed already 10 years 
ago.fll,l2/ that the difference Gf the bottom and charm fit 
quark masses mbi - mci approximately appears as potential mo­
del independent quantity. Its mean square error·· is one order 
of magnitude smaller than the corresponding errors of mbi and 
mci (see the table). Using the above result (13) on the rela­
t{ve accuracy and approximate model independence of _the primed 
masses m~1 : mQ we can simply explain this stability of mbi -

· - mci : " 
Considering two poten~ial ,mo9els labelled ·:bY the in&ices i and 
j one obtains by substraction of the b .. .ro -equations 

m l..v(r)-' Qi + 2 i o - m Qi " mQ • 

the re.lation 

where the right-hand side carries no flavour index Q which 
immediately leads to the model independ.ence of the difference 
mbi - mci : 

5. INFLUENCE ON ENERGY LEVELS AND 
LEPTONIC DECAY WIDTHS 

. ( 14) 

If all ·potentials are reLlited to the same constituent quark 
masses mQ' the number o;f adapt-able parameters is reduced and 

the effect on data reproduction should be studied. Eqs. (2) 
transform the Schroedinger equations (I) irtto 

(I a) 

Because of the common mass mg now the mass index at the eigen­
values and wave functions is dropped. The new QQ levels 

( i ) . 
Mn =2mQ+<i,nf[T1+(V1 -V01 )]fn,i>, 
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are expressed by the old ones 

through the relation (H = T+V) 

As an example we have studied the change of S states of the 

Cornell potential V1 (r). (3) ~ith masses me}= 1.32 GeV an~ 
mbl = 4. 75 GeV. Follow1ng E1chten et al:fl , we started w1th 
the asymptotic dimensionless radial Schroedinger equation 

d2 
(---p+\; )u (p)=O, 

dp2 n n 
(16) 

where 

-113 -4/3 mQlll2u(p) 
r=a (m a) p, E =mQ 1(mQ 1a 1) \; ,R(r)=(--) ---(17) 

1 Ql 1 n n 2 p 
al 

(L) 
and V 1 (r) r/a~. Eqs.(IS)-(17) yield 

V01 -1/3 
[1-(1+-----) 1\;n 

2mQ 1 

(18) 

and the Coulombic interaction can be taken into account pertur­
batively in the eigenvalue~ ( 0 which is sufficient approxima­
~ely also in the case of bb. Figures 4a,b show the deviations 
of the lowest three level spacings as functions of v01 for the 
Cornell potential v 1 (r) = -k/r + r/a~ (Fig.4a), and for the 
pure asymptotic potential vfLl(r) = ar = r/ai (Fig.4b). As is 
seen from Fig.4, the changes of the level spacings in both ca­
ses are roughly similar i.e. they are mainly determined by the 
long range part of the potential. Thus Fig.4b can give rough 
information also for other linearly raising potentials. 

The result taken from Fig.4a for the Cornell potential with 

. • bb 
are correct1ons u 2s-ts 
spacings between 3 and 

bb bb 
, 1'!38-28 and 1'! 48 _ 38 to the S level 
7 MeV. The corresponding cC quantities 

8 



a) MeV b) MeV 

50 50 

·O.S -0.5 
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Fig.4. a) The change ~the three lowest S level 
spacings for cc and bb as function of V01 in the 
Cornell potential model with k = 0;4? and a= 0.19 GeV 2

• 

b) The same functions as in Fig. 4a for a pure linearly 
raising potential v< L YrJ = ar. 

are 3-4 times higher. The overall'shift of the spectrum is near 
3 MeV fo~ bb and near 14 MeV for cc. 

Generally, it should be noted that these deviations in the 
spectra can be reduced more or less by adapting the other pa­
rameters of the potentials to the -common quark masses. This 
should work the better, the more parameters exist in a given 
potential model. As example we ment-ion the Klihn-Ono potential 
(7). It contains four parameters and was fitted to the data 
with rather different values of these parameters together with 
correspondingly different quark masses in the regions 1.22 < 
< mc5 <1.90 GeV and 4.66<mb5 <5.26 Gev. One of these fits'/6'1 
works with mc5 = 1.41 and mb5 = 4.83 not far from the common 

.. masses ( 13). Hence, in the case of potentials containing three 
and more parameters, the condition of conu:non, fixed quark mas­
ses mainly reduces the possible number of fits with different 
parameter configurations rather than· the quality of data repro­
duction. 

Concerning the relative leptonic 'dec·ay widths ·in different 
potential models,· the introduction of equal quark masses should 
be studied thoroughly. For S states the replacements 

</1(1) 

nS, m Qi 

~ <fr(i) 

nS 
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ar~ necessary in the expression 

2 
rnS MIS 3 2 --= ---fd r 11/J (r)l r M2 nS 

lS nS 

2 dV(r) 
(r)l ---­

dr 
(19) 

obtained from the Weisskopf - Van Royen formula113/ and the 
relation'~ 14 • 151 

2 ffiQ 3 2 
(0)1 ~--fd r 11/J s (r)l 41T n 

(20) 

As example we have numerically evaluated eq.(l9) for the Cor­
nell potential with me= 1.5 and mb = 4.9 and have calculated 
(rns ~r 15 )with n = 2,3,4. The deviations.from the.k~own re­
results /10,16·~re smaller than the exper~mental ll£Uts of er­
ror for cC. Practically no deviations appear for bb. Some 
authors 12•51 prefer a relatively larp,e me =1.8 to improve the 
agreement with e~periment for (inS /~"18 )cC wi~h n;:::: 3. But ~p. 
to now the relatton between these dtscrepanc1es and relatiVIS­
tic effects in the cC system is not clear. 

6. CONCLUSION 

Summarizing, first we note that the introduction of common 
fixed quark masses in the considered potential models, as al­
t;rnative to the usual point of view, seems to be attractive 
because the common masses turn out automatically when the po­
tentials are shifted together at r 0 = 0.5 ± 0.05 fm: The va­
lues of mb and me from empirical arguments agree with the fi.t 
quark masses of the models of Ric:hardson/3/ and Buchmiiller, 
Grunberg and Tye-/4-/ where these masses are fixed because of 
a minimum of parameters. The approximate model independence of 
the mass difference mbi - mci can be simply explained. Maximal 
differences between the fit masses and the common fixed masses 
appear in potentials containing three and more parameters 
adaptable to the new conditions. Hence, the change of energy 
levels should remain small as confirmed for potentials with li­
nearly raisin?, long range behaviour. Especially, hottonium 
maintains its n'le as "ideal hydrogen atom of particle phy­
sics". But a cJmplete survey on data reproduction of different 
potential mod~ls under the condition of fixed constituent quark 
masses requires corresponding new fits. 
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