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0. INTRODUCTION

This work is devoted to the application of an apparatus of
general linear transports (I-transports) along curves 78/
for defining and investigating the concepts of relative velo-
city, relative momentum and relative energy between two test
point particles in manifolds endowed with these transports.

In Sec.1 and Sec.2 we define, without going into details,
the relative velocity and relative momentum, respectively, bet-
ween two test point particles (observed particles) with res-
pect to a third particle (observer). This is done on the basis
of a differentiable manifold endowed with a general linear
transport (I-transport). In Sec.3 we show how in these mani-
folds, in which a metric (i.e., a scalar product of the vec-
tors) is defined, one can introduce the concept of relative
energy between two particles. Here, as a special case we get
the notion of proper (rest) energy of a single particle. Here,
we also consider some properties and connections between con-
cepts introduced in this paper. At the end (Sec.4), we give
an idea of one way of comparing vectors (or tensors) defined
at different points and demonstrate how the general concepts
introduced in the present article work in the case of special
theory of relativity.

Now we shall introduce some preliminary notions and nota-
tion needed for the following.

Let a point particle with a (rest) mass m be moving along
the C!-curve (trajectory, world line) y:[s’,s”1> M in the
space (differentiable manifold) M in which to any curve y:J-M,
JCR is assigned a (linear) generalized transport (an I-trans-
port) I7,,, u,vey@ (for details see Ref.’3). The veloci-
ty of this particle (with respect to the parameter s<[s’, s"'])
is defined as a tangent vector y to y with components y= (s):=
=:dy% (s)/ds at the point y(s), where y%(s), a =1,...,n=dim M
are the coordinates of y¥(s) in some local coordinates. Let us
note that we do not exclude the case when the mass M may de-
pend upon the position y(s), i.e., m may be a function of s.

By definition (see’/5/, ch. III, § 3) the vector

p=ps):=uls)y(s), p*=p%(s) =u(s)dy*(s) /ds, (0.1)
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where u(s) has a dimension of mass and is some scalar function
on [s’, 8] (see below), is called momentum of the given par-
ticle. If m # 0, then u(s) = m. If m = 0 (e.g., when we have
a photon), we cannot connect #(S) with m = 0;in this case, the
momentum p is primarily defined and p(s) is then uniquely de-
fined by eq.(0.1). (For example, in Sec.4 we shall consider
in special relativity the case m = 0, see, e.g., eqs.{(4.8)-
(4.15)). Let us note that in both the cases  u(s) # 0 for
every s. (The case m = 0, u(s) = 0 descrites the vacuum, not
a particle).

The parameter u defined by

du 1 St
—— = mm—— O U= | + const 0.2
ds p(s) () ( )

may be called’! the proper time of the particle. If we put
2(0): = y(s(w) we get z%(w) = dz®(w) /du = y*(s) (ds/du) = (s) y %)
and from (1.1) we see that

p = plu) =z, p? =dz%u) /du = dy%(s(u))/du, (0.3)

i.e., when the proper time is used as a parameter, the momen-
tum of a particle coincides with its velocityv. It is easy to
see that the definition of the momentum is equivalent to the
definition of the proper time, i.e., through momentum we can
define the proper time and vice versa.

Let two particles 1 and 2 be moving along the cl-curves
x,:[s;,871 > M, a= 1,2, respectively, and let they be obser-
ved from a point particle (observer) with a world line
x:[s%,8”] ~ M. Let the C! - maps r, o [s 8”5 1sy,s7L a=1,2
map the parameter s €[s’,5”] uniquely on the parameters S, =
=r,(s) [s;,s;] , &= 1,2, And at the end let there be given
two families of curves ys:[r;,rgl-»M and ng: [ps, p5 1o M,
such that y (r)) =x (r (s)),, ys(s) = xo(r5(8)), nglps) = x1(ry(s))
and 1]épg) =x(s), s € [s’,s”]. In the next sections we shall
define the relative velocity, momentum and energy of partic-
le 2 with respect to particle 1 relatively to the given ob-
server.

1. RELATIVE VELOCITY

The velocities of the particles considered at the end of
the Introduction are V, = xa(sa), a = 1,2 and in any local
basis have the components
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a a a
V, =V, =dx,(s,)/ds,, s,=r,(s), a=12. (1.1)

The I-transport of V, from xésZ) to xl(sl) gives the vec-
tor

Ys

(V2)1 P= I)(‘2(52) *X1(S1)V2 € Txl(sl)(M) (1.2)

which can be compared with the velocity V,. This leads to the
following definition.
The vector

Ts

AV x (s

g b= Avgl(s,x): =1 ) x(s) (Vo) - V) =

2
(1.3)

Ns Vs

\Y
Ix1(s 1) + x( s)(Ixz(sz) - xl(s 1)

- o= V) T (D

will be called a (defined by the I-transport) relative veloci-
ty of the second particle with respect to the first one (as it
is "observed" from an observer with a world line x at the
point x(s)).

As 1is clear, in some sence, this definition is the most
natural generalization of the Newtonian concept of relative
velocity (defined as difference of the 3-vectors representing
the particle velocities).

In the (pseudo-) Euclidean case, when 1’ is simply the
Fuclidean parallel transport along y in a (pseudo-) Euclidean
space E_, we evidently have

)% g = V5 . (1.4)
ax%(r ,(s)) ax%(r, (s))
(M@ ly =ve -ve - B8 L s
2 n 2 1 ds, ds ds, ds

The relative velocity (1.3) is defined mostly from general
theoretical considerations. But for some purposes another con-
cept of '"relative velocity" is needed, which is introduced as
follows.



Let M be endowed with a covariant derivative V, i.2., M be
with linear connection,and D,ds::D/ds'y:=Vi,be the covariant
derivative along Vg * S s

The deviation vector between the observed particles (as
it is "observed" from the observer) is ‘3’

s’

T

n s y
'S s .
hoy =hg; (s5%): = T (e
o ) IXI(TI(S))"X(S) r[ Ivs('r)»xl (7, (5 YO dr=Ty (W,
S

(1.6)
where }sﬁ) has components ;g(ﬂ :«Jy%(ﬂ /.
As the deviation vector (1.6) has the meaning of a relati-
ve coordinate of particlie 2 with respect to particie 1 (rela-
tive to an observer), we can call the vector

Vg 0 = Dh

oy /ds (1.7)

a deviation velocity between the particles 2 and I because

it is a measure of the change of the deviation vector between
them with respect to the (proper time of the) observer.

- The deviation velocity has a direct physical meaning becau-
se it can be measured. In fact, if for exanple the cbserver
coincides with the first particle, then in one or another way
it can measure (e.g., by radiolocation) the position hy, of the
second particle with respect to himself and then to find the
deviation velocity by (1.7) in which parameter s must be inter-
preted as an observer s "proper time".

The relative and deviation velocities generally do not
coincide even in the (pseudo-) Euclidean case (1”7 = parallel
transport along y, V = flat connection, i.e. D/ds =d/ds )
in which

o Mhelp ) At (s x (5))) dxy(r(s)  dx (5 ()
BLE, T T gs - ds ds ds
Novertheless, in the Newtonian mechanics, where we have an
Euclidean world with an absolute simultaneity (s, = s;=8),
due to (1.5) and (1.8) both the definitions coincide.

The difference between relative and deviation velocities as
well as their meaning will be deeper examined elsewhere (see
also Sec.4).

In manifold endowed with a linear connection and an I-trans-
port one can introduce in an analogous way the concepts for
relative and deviation accelerations between the observed par-

-(1.8)
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ticles: to do this it is enough in the above definitions
to replace the velocities V, with the accelerations A,: =

D V., a=1,2 and h,, with V21.

a
ds, X,

2. RELATIVE MOMENTUM

The momenta of the observed particles are

=1, (2.1)
pa: =pa(sa):=u~a(sa)va ’ 3—1,2,
o) are scalars (see Sec.0) and the velo-

and p (s
where y, (sy) | R 1,2 are with components (1.1).

cities Va=xa_(s a) s @
Let

Vs (2.2)
. M .
(Po)y : = lxz(sz)-»xl(sl) Py € Txl(sl)( ) ;

o) to x4(s1) which

This is the I-transport vector pg from x4(s a8 (1.2)

can be compared with the vector p;. Due to (2.1) a

the vector (2.2) may be written also as

(2.3)

(92)1 = ﬂg(sg)(vg)l .
We define the relative momentum of thc'e sec'c:nd particlebm

with respect to the first ome, as it is "seen'" from the o

server, at the point x(s) as

s _
Apy, : = le(sl)ﬂ(s)((p o)1 = "1)

Ts ’s p_-pP) = (2.4)
= le(sl)—» x(s) xz(sz)-» xl(s1) 2 1

75 Vs V —ufs)V ).
_ 1 u \
= lxl(si) ax(s>(“z(sz) x,(59 X (sp 15y

it i ifficult to derive (see also ’®)
From (2.4) it is not difficult

that

"> (2.5)
Ap,, = (s ,) AV, + (uy(sy) /u(s) -1) 1’1(51) + xo?1’



where the relative velocity AV,; of the second particle with
respect to the first one is defined by (1.3).

It is also easy to see that in the (pseudo-) Euclidean case
(I:::-parallel transport ;see’/3/) the relative momentum takes
its well-known Newtonian expression

Ap21|En= Py-Py. (2.6)

By analogy with (2.4) one can define the relative momentum
Apyp of the first particle with respect to the second one:

: * . , 4 Yy 44 —-
ot i lptpg 7l My nt(pt ) = x,(s5) . n*(pr™) = x(s)

and we use the same curves Vg then

po o1 1 (2.7)
p12=Ix2(52)-) x(s)( xl(sl)-b x2(S£p1_p2)° :

Hereof, we find that (see /3 )

A _ (In: OI}/S ol ns )Ap (2-8)
Piog == xz(sz)-» x(8) xl(sl) - x2(82) x(s) - xl(sl) 21’

In the special cases when 7% 1is a composition of ys and 7
ns/3/or when 17%,, does not depend on y, eq.(2.8) reduces to

Ap, =-Ap, . (2.9)
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3. RELATIVE ENERGY

One has to be careful when defining the concept of "relati-
ve energy' of particles 1 and 2, because when it is applied
to a single particle only, one gets a quantity which has a
sense of energy of this particle (see below (3.8) and (4.7))

and hence,due to the established opinion/sﬁit must be positive.

Let the manifold M be endowed with a metric and g B(y) be
the covariant components of a metrical tensor at y <M.

We shall denote the scalar product of the vectors by a dot:
if A =A%3, € TyM) and B =B%9,€ T, (M) , then A.B:= A®B% 5O
The square of the vector A will be written as (A)Z := ¢
= Aa‘ABgaB(Y)==A'A for it has to be distinguished from the se-
cond component A2 of A (for dim (M) > 2). The metric is not
supposed to be positive, so generally (A)2 can take any real
values.

6

The relative energy of particle 2 with respect to particle
1 is defined as a scalar

Y
E212 = E21 (S) = 5((V1(Sl))2)(1x:( 52) N xl(sl)pg(sz)) 'Vl(S 1) =

(3.1)
2
=e((V () 7) pyy - Vy(syp),
where ¢(A) = -1 for A< 0 and «(A) = 41 for A > 0 (for some pur-
poses one may put ¢(0) = -1 instead of ¢(0) = +1; our general

results are independent of this choice).

If there is sy & [s’,s”] such that x,(r1(sg)) = x5(r2(sg))
i.e., for s = sy the world lines of the observed particles
intersect with each other, then from (3.1) we get

By (5g) = € (V,(r; (50 ) polrg ) + V{7, (59) (3.2)

In the case of the space-time of general relativity this
expression coincides with the definition of a relative energy
given in /%, ch.III, § 5, eq.(23). The deficiency of the ci-
ted definition is that it defines the relative energy only
for the "moment' s=s; because of which one cannot study the
evolution of the relative energy in time. Evidently, our defi-
nition (3.1) is free from this deficiency.

Substituting (2.4) into (3.1) we get:

2
E21(S) =c((V1(sl)) )“2(52)\]21"]1(51) =

2 1 V(s ) -V, (s,) (3.3)
=e((Vy (s))) ) uplsy)( X gs,) > X (s) 2 2 1817 :

Due to (3.1) and (3.3) the relative energy of particle 1
with respect to particle 2 is

14
B 1o = e (V0500 Ny (g y sy P11 Valoy) =
(3.4)
14
= e(Va(s)%) ey (5)) (les(sl) - ;2(52)V1 (s)): Vo (sp) .

If we use the most general I-transports/a/, then in the
general case the relative energies E,, (s) and E, (s) are not

1
connected with each other. However, f%t us consider the class



of not so general I-transports having the following property
(in the notation of Sec.0): ' .

Y Y

By -Ej =(I,,, B Uy, E;), (3.5)

where {E;}, i,j=1,..
basis in T,(M) .

., 0 is any local (coordinate or not)
This condition is equivalent to

A-B=(’

u-v

Ay.a) ,B), ABcT, (M. (3.57)
(One can say that the metric and I-transport are consistent
if the last equality is valid for every y, u, v, A and B).

As examples of I-transports obeying eq.(3.5) or (3.57)
equivalent to it we shall mention, e.g., the parallel trans-
port and Fermi-Walker transport’/5/ . A complete description of
all I-transports satisfying (3.5) is given in '%/

It is not difficult to check (see (2.5) and (3.1)) that for
I-transport satisfying (3.5°) the relative energy and relative
momentum are related by

Bpy =V, 5, 07) (Ap,. le(sl)-»x(s)vl +P V). (3.6)
For I-transports obeying (3.57) from (3.3) we get:
2 Vs
E21(S) = ‘((Vl (Sl)) )#2 (52)(Ix2(S2) o xl(sl) V2(52)) 'Vl(sl) =
2 Ys Ys V. (s.)]
=c((V1 (Sl)) ) #2(52) [(le(s D xy(s9 ng(sg) 5 xy(sy) ) Vy(sg)Ix-

Vs
% (le(sl) > x2(52)v 1(89)) =

Vs

KA CACHIEDIICIR ICIN s NIRVLIRE

Multiplying this equality by c«Vg(sg))2)u1(Sl) # 0 and using
(3.4) (and the symmetry of the metric g =gB or A-B=B.A),
we find af @

eV, NN e DE, O =@ (NP 6 )E6) . (3.7)

Let us remind that this relation takes place only if the
condition (3.5) is satisfied.

Applying the definition (3.1) to the first particle itself,
for which one has to put Xg=%Xy and Sy = sl(or To=1 ), we find
the energy of this particle (with respect to itselfs to be

Vs

E, =ec(V,60%) Uy'ts ox (s P1ED) V1 G =

= (VG DD - Vi) = eV, (6 NP uy(s DV (5 )" =

= DIV N =106 0F /a6, (3.8)
where |[A|:=¢(A)X is the absolute value of A& R,

One can call E,y a proper energy (or an intrinsic, or rest
energy) of the particle (for the case of special relativity
see Sec.4). If m; >0, then due to py(sy)=m, and (3.8), we
have E;,; > 0 and if besides this (Vl(sl))2 # 0, then E ;>0
which corresponds to the usual case of nonzero mass material
particle.

If m,# 0, then p,(sy) =m; and (3.8) shows that E 1; is pro-
portional to m,; hence, if we suppose that E,, is a continuous
function of m, at the point m = 0, we get

lim E =0, (3.9)

m1»0

which, due to (3.8) (and y,(s,) # 0 for any m;),is equivalent
to

v, (sl))2=0 for m,=0, (3.10)
or

= = .10°
E11 0 for m,=0. (3 )

Remark. If we accept lim E21= 0, i.e., the continuous depen-
m -0

dence of E,, onm,, then (3.3) and the fact that the I-trans-

port is an isomorphism leads to V,(s,;)=0, which contradicts

the assumption that we are dealing with a material particle

(and not with the vacuum). Moreover, the equality lim E, = 0

m2—»0



is unacceptable from a physical viewpoint, for instance, it
means that the photon, which is a zero-mass particle, has zero
energy with respect to any other particle, something which is
not true.

Let us note that without further assumptions one cannot
derive that (V, (sl)) = 0 implies m = 0.

The relatlon (3.10) must be considered as a direct analog
and generalization of the well known fact that in special and
general relativity zero-mass particles are moving with the
velocity of light (in vacuum).

The energies E,; (or E,;,) and E;; can be connected with
the components of Ap,; (or Apyp),pp; (or pyp) and p; in the
following way.

Let (V, Y2 £ 0. Then, along x we can define a basis {A
such that Aq: =V1/V1(V1)2) and Ay Ag= 0 for a # 1 ( 1f‘<’ihmM

=n>1), so (7\1) =e((V, ¥ ). (The concrete Ch01ce of A, for
a £ 1 is 1n51gn1f1cant for us). The component Al of any vector
A=A%Xr;in {1} is given by

Al cA M /(2= e (V)P AV N}(Vl)zl , (3.11)
because of A-A1=A% Ag- Aq = Al Ay

Applying (3.11) to the defined by (2.1) vector p; and using
(3.8), we get

=B,/ VIV)D?, pi=0, a#1. (3.12)

In a similar way applying (3.11) to P, (see (2.2))and ta-
king into account (3.1), we find

®,)) =Egz /VINDEL, (3.13)

According to (2.4) the relative momentum of particle 2
with respect to particle 1 as it is '"'seen" from particle i is

Aﬂ21:=(p2)1—p1(=Ap21lx=x1). (3.114)

So, in the basis {)\ai we have
s =] -pi=E, -E11>/\/1(v'1>2\ : (3.15)

Let us suppose now eq. (3 5) to be satisfied and v, ) # 0.
Then, def1n1ng a basis {)\ .} along x1 so that

Ao -1) (S)”(s)z/\/\(V) l

10

and Ape Ay = 0 for a# 1 and using (3.5°), we find the first
component of p, in {A .} to be

1" _ o . / 2 _
P’ =p Al,/()\l,) =

Y ‘
=Py Uy yoxy(spVe) ¢ @) ®) /VI(VR)? =

S B o 15 P s Vg / VIV Y

Thus, because of (3.4), we get

Y = EL/VIV )R (3.16)

If (V )2 # 0 and (3.57) is satisfied, then along g there
is a ba51s {E } such that

s

e .=1% A
xl(sl) -+ Xx(s) 1

2—1/2
1 x(s)—»x(s) l(v ) !

and ;- €, = 0 for a # 1" in which the first component of Ap
(see (2.4)) is . 2l

APy = APy -0y /WE = Amy A /(0P

=A”$1=(E21—E11)/\/\(V1)2\ . (3.17)

. 2
{\t last, if (Vl) = 0, then (see (3.8)) Ei11 = 0 and the in-
variant (py), - = Amgy - Vi=Epjcannot be connected with a sing-
le component of (p2)1 or Awmgy ) in some basis; so the relati-

ve energy E, is spread over (all) the components of (py),
(or Amy, ).

For I transports obeying (3.5°) we want also to mention the
invariant (see (3.88), (3.1) and (2.4))

(Ap21)2 =(A7721)2 =((p2)1)2+ (p1)2 - ((92)1'91 +b1'(p2)1) =
=PI+ @)% - Py, -p,+ (P, Py)

= (VOB ugEpy + e (V) ?) w, By, -

11



Cele (V) Egpr (V) ®) B pp) (3.18)

the two terms in the parenthesis being equal due to (3.7).

4., DISCUSSION

From a mathematical viewpoint the basis of Sec.l and Sec.2
is a method for comparing vectors (or more generally tensors)
defined at different points by means of I-transports (genera-
lized linear transports) along some (smooth) curve connecting
these points. The general scheme of that method is as follows.
Let AaCTZ&(M) » a= 1)2) )’:[Sln Sg]"M) }’(S a) =Za’ a = 1’2 and

._1Y .
Bedy =1y p Ag (A)p = (4.1)
for some I-transport 17 along vy . Now instead of the vec-
tors Ay and Ay, one can compare the vectors A1€£Tzl(M)and

(Az)lé”rz(M). For instance, we have met several times the dif-
1 -

ference
AA21:=AA21(Z1,Z2.}/):=(A2)1—Aln ([’-2)

In an utterly equivalent way one can compare the vectors
Ayc Tzz(M) and (Ay), € Tzz(M)' For example, if we put AA,, =

=(A),-A,, then due to the group property of the I-trans-
12 2 g P prop y
port /3, we have

M. =17 AA (4.3)

Y
I AA
21° 21 zg> 2 12

127 z,” %y
As an illustration and as a reason for the introduction of
the concepts defined in this work we shall reveal their mea-
ning in case of the special theory of relativity. (As a stan-
dard reference about special relativity see, e.g., /4/).

Let us have a standard (4-dimensional, flat, with signatu-
re (+- - -)) Minkowski space-time in which a parallel trans-
port will be used as a concrete realization of the general
I-transport, so the components of the vectors (or tensors)
remain unchanged under its action. Let two point particles 1
and 2 with proper masses m; # 0 and my # 0 be moving with
constant 3-velocities Vl and V_, with respect to a fixed iner-
tial frame of reference along the world lines x,(s,) =
= (ct, t3a) +y,, 8= 1,2 where ¢ is the velocity of light in

AA

L3

vacuum,t is the time in this frame,sa:=ty/1_V%/c2,a=1,2 are the

12

corresponding proper times and y, and ¥y, are fixed points,
Due to (1.1) the 4-velocities % of the particles are

> T T T :
V, =(c, vy) /o l""a/C a=1,2. (4.4)
and consequently

(V)2 = =¥ (1-9%c)% = ¢2, c(V,)?) = -1,2=12.(4.5)

Thus, using (2.2)-(2.4), (3.14), (3.1), (3.4} and (3.8), we
get

p, = ma(c,Ga)/\’]—Gs/cz, a=1,2 {u,=m ,pu,=my), {(4.6a)
(P Yo =Py (P)y =Dy, BPyy = Mgy =Dy=Py (4.6b)
By = mpe®( - \71 ’ ‘72 /e [ - "}12/02)(1 - ‘722/02)]"1/2 , (4.72)
Blo =mio2( - vy ve/eB) L1 = VE/ 2N = v e®)I™ 2 (4.7p)

By = mpc®, Egp=mge? (4.7¢)
Evidently, E, and Eg, are the proper energies (rest ener-
gies) of the particles and if, e.g. v, = 0, then E, =

= moc2/Vl _Jg/gz=.E2 is simply the energy of the second par-
ticle with respect to the given frame /4/.

If rnl# 0 and my= 0, then above we have to change X, and
5, to x5(s5) =(ct,ct32)+-y2 and sgo=t, respectively, where
iy is a unit 3-vector (f2 = 1) showing the direction of the
propagation of the second particle, i.e., Vz=cﬁe and

- 2 .
Vo=c(, By)s Ra=1, (V)2 =0, «(Vy)?) =41, (4.8)

If Eg is the energy of the second particle with respect to
the used frame, then (see’%’) its 4-momentum is

p, =(E, /e, 52) =(E,/c, (EZ/C)EQ) =(E2/0)(1,52) (4.9)
and,due to (1.1), we have
Hy = up(sg) = Eg/c’, (4.10)

13



In this case (4.6b) hold and (4.7) take the form

Egy =Ep (1 -vy-ng/c) /v 1-vE/c?, (4.11a)
E,,=mc Ba-v, /c)/\/l—-vz/c (4.11b)
Eq = mc?, Egp =0, (4.11c)

the last equality being in accordance with (3.107).

Note that Ep;=Ep for Vi= 0, whence it follows that (4.1l1a)
expresses the usual Doppler effect/45/ in terms of energies.
In fact, if we have a moving with 3-velocity v1— source of
zero mass particles (e.g. photons) with 3-velocities v2 =cn
and energy (with respect to the source) E, =E; which are detec-
ted from an observer at rest to the given frame; then, the ob-
server will find the energy of these particles to be E = E,
wh1ch according to (4.11la) is

\/1-v2/c2 v1-v®e?
E -E, —— -E , (4.12)
1 -v.n/c 1 - (v/c)cosf

where Vv:=yV? and  is the angle (in the given frame) between

the direction of emission and the direction in which the sour-
ce moves.,

The corresponding formulae for m,;= 0 and my,# 0 are obtai-
ned from the last considered case by the change 12, 2-»1 of
all subsecripts.

And at the end, when m;= mp = 0, we have x, (s,) =(ct, ctna)+&,
Sy=t, a = 1,2 and (of. (4.8)-(4.10):

v PO 2 2 2\ _ _
Vo= ch, B2=1, V, o), (V)P =0, «(V)?) -+l,a-1.2
(4.13)
p, =E/0)(,n,), p,=p ® =E, /c? a=1,2. (4.14)
and equations (4.6) hold, whence we find:
n.-n - _n..n (4.15a)

Ep=E,(-n;-n), Ejp <E 0 -n,-0,),

- - (4.15b)
E11“E22‘0'

So if nl— nz, then Egy=Ej5=0 and vice versa.
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‘'same orientation is

One can easily check that in all the considered above cases
equation (3.7) is satisfied.

At the end, let us look of the concepts of relative and de-
viation velocities in the case of special relativity.

Let K be arbitrary fixed inertial frame in which the arbit-
rary moving particle 2 has a 4- radlus vector x,(sg) ¢ =

= mt,§2(0 Sg =ty 1~ vf,c s v2 dxe() dt, t being the
time in K. Let the inertial frame K'be attached to the partic-
le 1 whose world line in K is xl(sl) K = = (ct, Lvl) s vl = const

Sy =ty 1 —V1/02. The observer s world line is fully arbitrary.

We have in the frame K

dx (s )} (c,v.) . dx
N o 412 vy = ———, (4.162)
2 'K ™ i at
a \I—V /C
a

and in the frame K-

‘ 0. Vol =(e,v.)/y1-v2/c?, (4.16b)
Vitgr = @0 Volgr = (e vy iy 2’

where GE is the 3-velocity of the particle 2 with respect to
the frame K (i.e., to the particle 1) in a sense of special

relativity whose exp11c1t form when K and K have one and the
4,5/

->

T, o ‘o >
UL =vE/ D Py,

-1

P (1= V2/eDYE Y (Vv /v B =11 ¥ 1 (L =V, vg/e®)

So, as we are dealing with a pseudo-Euclidean case, due
to (1.5) the relative velocity is AVy = V,-V, and

-1/2

AV :(1_\722,'(32)'1"2(@,?/2)_(1_Jf/c2) (c,vy), (4.17a)

21 'K

AV —(1 =920 e, Vs ) - (e, 0). (4.17b)

211K

Moreover, in the pseudo-Euclidean case h21<.xz(s)— x 4(s).
so that

ho ! :(o.ie(c)-c\71>. (4.18a)

21' K
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A P : 4.18b
o, 1= 0,%7,), ( )

where x2 is obtained from x2(0 4through a Lorentz transforma-

tion when we pass from K to K~
Due to (1.8) the deviation velocity is

Voy = dhyy , ds = (ds;/ds)(dh gy /dsy) = (dt/ds) (dhgg /dt),

. Y
where sq1=t" is the time in K 4 » hereof we get

. dt - -
V21 K T '___(Ov V2—V1), (A'lga)
ds
‘ ds, '
Vor ly» = = O vy ). (4.19b)

So, if the observer coincides with the first particle, then
s1 =s and Vo1 ig” = (0, v5) which shows that in fact the devia-
tion velocity is a straightforward generalization of the 're-
lative velocity" in a sense of special relativity.

The author thanks Professor N.A.Chernikov for the useful
discussion of the problems put in this work.
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AnueB B.3.

E2-89-616
OTHOCHTEJIbHAsA CKOPOCTb, HMIYJILC H 3HEprHs

TOYEeUHbBIX YACTHI, B IIPOCTPAHCTBAX C oO6GmMUM

JIMHEeHHBIM MepeHOCOM

Ha oCHOBe NOCHATHA 006 ob6mHx JIHHeHHbIX lIepeHocaXx  BOOJb
KPHBBIX ONpefeyiAlNTCA OTHOCHTEJIbHaA CKOPOCTh H HMIYJIBLC ABYX
TOYeuHbX 4acTHL B mobblX npocTpadcTBax /MHoroobpasusx/,

B KOTOpBIX 3adaH Kakoi—-HHO6ynb nepeHoc /HanpuMmep, napaiesnb-
Huiit , PepMu—-Yonkepa 4 T.0./, @ eCJIH B 3THX IPOCTpaHCTBAX 3a-
[aHa M MeTpHKa, TO ONpefeiiAeTCA M OTHOCHUTenbHAas 3Heprus
Mexay STHMH 4YacTHUiaMH. BBeldeHb HeKOTOphe B3aHMOCBA3H MeX—
Oy S3THMH BeJIMUHHaMH H obpaimleHo BHHMaHue Ha cnydan Gesmac-—
COBBIX YacCTHI[. B KauecTse mnpuMepa nogpo6GHO pacCMOTpeH Cly—
yajt crneyManbHONH TEOPHH OTHOCHTENbHOCTH.

Pa6ora BrmomyeHa B JlabopaTopuH TeOpeTHYECKOH GH3HKH
OHAN .

Coobenne O61enuHeHHOr0 HHCTUTYTA ATNEPHBIX HecenoBanuii. [ly6ua 1989

Iliev B.Z. E2-89-616
Relative Velocity, Momentum and Energy
of Point Particles in Spaces with General

Linear Transport

On the basis of the concept of genmeral linear transport
along curves, the Trelative velocity, momentum and
energy of two point particles in any spaces (manifolds)
are defined in which some transport (e.g., parallel, Fer-
mi-Walker, etc.), and in the last case the metric, is gi-
ven. Some connections between these quantities are deri-
ved and attention is paid to the case of massless partic-—
les. As an example the case of special relativity is in-
vestigated in detail.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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