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0. INTRODUCTION 

This work is devoted to the application of an apparatus of 
general linear transports (I-transports) along curves/3/ 
for defining and investigating the concepts of relative velo- 
city, relative momentum and relative energy between two test 
point particles in manifolds endowed with these transports. 

In Sec.1 and Sec.2 we define, without going into details, 
the relati.ve velocity and relative momentum, respectively, bet- 
ween two test point parti.cles (observed particles) with res- 
pect to a third particle (observer). This is done on the basis 
of a differentiable manifold endowed with a general linear 
transport (I-transport). In Sec.3 we show how in these mani- 
folds, in which a metric (i.e., a scalar product of the vec- 
tors) is defined, one can introduce the concept of relative 
energy between two particles. Here, as a special case we get 
the notion of proper (rest) energy of a single particle. Here, 
we also consider some properties and connections between con- 
cepts introduced in this paper. At the end (Sec.4), we give 
an idea of one way of comparing vectors (or tensors) defined 
at different points and demonstrate how the general concepts 
introduced in the present article work in the case of special 
theory of relativity. 

Now we shall introduce some preliminary notions and nota- 
tion needed for the following. 

Let a point particle with a (rest) mass m be moving along 
the C' -curve (trajectory, world line) Y : [ s', s"1 -P M in the 
space (differentiable manifold) M in which to any curve y: J-M, 
JCR is assigned a (linear) generalized transport (an I-trans- 
port) I \ ,  , , u, v G y(J) (for details see Ref. /3'). The veloci- 
ty of this particle (with respect to the parameter s C  [s',sM]) 
is defined as a tangent vector 3; to y with components ia (s) : = 
=:dya(s):/ds at the point y(s), where ya(s), a=l, ..., n=dim M 
are the coordinates of Y(S) in some local coordinates. Let us 
note that we do not exclude the case when the mass m may de- 
pend upon the position y(s), i.e., m may be a function of s. 

By definition (see/5/, ch. 111, 5 3) the vector 



where p(s) has a dimension of mass and is some scalar function 
on [ s', s"] (see below), is called momentum of the given par - 
ticle. If m # 0, then g(s) = m. If m = 0 (e.g., when we have 
a photon), we cannot. connect +(s) with m = 0;in this case, the 
momentum P is primarily defined and p(s) is then uniquely de- 
fined by eq.(O.l). (For example, in Sec.4 we shall consider 
in special relativity the case m = C, see, e.g., eqs.(4.8)- 
(4.15)). Let us note that in both the cases ~ ( s )  $ 0 for 
every s . (The case In = G ,  p(s) = 0 descri t.es the vacuum, not 
a particle). 

The parameter u defined by 

may be called"' the proper time of the particle. If we put 
z(u) : = y(s(u)) we get i = dza (u) /du = i2(s) (ds/du) = ,L(s)  a ( ~ )  
and from (1.1) we see that 

P = p(u) = i(u) , p a  = d~ "(11) / du = dy '(s (u)) /du , (0.3j 

i.e., when the proper time is used as a parameter,,the moinen- 
tum of a particle coincides with its velocity. It is easy to 
see that the definition of the moment-um is equivalent to the 
definition of the proper time, i.e., through momentum we can 
define the proper time and vice versa. 

1 Let two particles 1 and 2 be moving along the C -curves 
x, : [si, s'i ] + M ,  a =  1,2, respectively, and let they be obser- 
ved from a point particle (observer) with a world line 
x:[s',su1 + M. Let the C 1  -maps r,:[s',s"]+~s~,s','l, a =  1,2 
map the parameter s E [ s', s"] uniquely on the parameters s a = 
= rg (s) E [ s:, S; 1 , a = 1,2. And at the end let there be given 
two families of curves y :  r ,  r ,  M and qs: [ p : ,  p y l +  M ,  
such that ys(r',) = x l(rl(s)), , y , (r = x 2(r2 (s)), S(~L = x 1 (~I(S)) 
and Jp?) = x(s), s E Is', s"]. In the next sections we shall 
define the relative velocity, momentum and energy of partic- 
le 2 with respect to particle 1 relatively to the given ob- 
server. 

1. RELATIVE VELOCITY 

The velocities of the particles considered at the end of 
the Introduction are V, = X,(S ,) , a = 1,2 and in any local 
basis have the components 

The I-transport of V2 from x2(s 2) to x 1(~1) gives the vec- 
tor 

which can be compared with the velocity V1. This leads to the 
following definition. 

The vector 

will be called a (defined by the I-transport) relative veloci- 
ty of the second particle with respect to the first one (as it 
is "observed" from an observer with a world line x at the 
point ~(s)). 

As is clear, in sonre sence, this definition is the most 
natural generalization of the Newtonian concept of relative 
velocity (defined as difference of the 3-vectors representing 
the particle velocities). 

In the (~seudo-) Euclidean case, when 1' is simply the 
Euclidean parallel transport along y in a (~seudo-) Euclidean 
space En , we evidently have 

ds dx:(r2(s)) ds dx'f(rl (s)) (av,,)' 1, = V: -v: = -- - - - ----- . (1.5) 
n ds, ds dsl ds 

The relative velocity (1.3) is defined mostly from general 
theoretical considerations. But for some purposes another con- 
cept of "relative velocity" is needed, which is introduced as 
follows . 



I Let  M be endowed w i t h  a c o v a r i a n t  d e r i v a t i v e  \-, i.e. , Iq be 
wi th  l i n e a r  connect  i on ,  and D,ds = D, ds ' $ :  ='Y j, he tlie covar i a n t  
d e r i v a t i v e  along :. . s 

The d e v i a t i o n  vec to r  between t h e  observed p a r t i c l e s  (as 
it i s  "observed" from t h e  obse rve r )  is  1 3 '  

1 ( 1 . 6 )  

I 
where ;, (r) has  components ( r j  = .l y2  (I! : (1. . 

As t h e  d e v i a t i o n  vec to r  ( 1 . 6 )  has  t h e  meaning of a  r e l . 3 t i -  
ve  c o o r d i n a t e  of p a r t ~ c i e  2 w i t 1 1  r e s p e c t  t o  p a r t i c i e  i ( r e l a -  
t i v e  t o  an ubse rve r ) ,  we can c a l l  t!ie v e c t s r  

a  d e v i a t i o n  v e l o c i t y  between t h e  p a r t i c l e s  2 and 1 because 
it is a measure of t h e  change of t h e  d e v i a t i o n  v e c t o r  between 
them wi th  r e s p e c t  t o  t h e  (p rope r  time of t h e )  obse rve r .  

The d e v i a t i o n  v e l o c i t y  has  a d i r e c t  p h y s i c a l  meaning becau- 
se it can be measured. I n  f a c t ,  i f  f o r  exaraple t h e  chse rve r  
c o i n c i d e s  wi th  t h e  f i r s t  p a r t i c l e ,  t hen  i n  one o r  ano the r  way 
it can measure ( e . g . ,  by r a d i o l o c a t i o n )  t h e  p o s i t i o n  h 2 ,  of  t h o  
second p a r t i c l e  w i t h  r e s p e c t  t o  h imsel f  and then t o  f i n d  t h e  
d e v i a t i o n  v e l o c i t y  by ( 1 . 7 )  i n  which p a r a m e t e r s  must be i n t e r -  
p r e t e d  a s  an  o b s e r v e r ' s  "proper time". 

The r e l a t i v e  and d e v i a t i o n  v e l o c i t i e s  g e n e r a l l y  do n o t  
c o i n c i d e  even i n  t h e  (pseudo-)  Euclidean c a s e  (1' = p a r a l l e l  
t r a n s p o r t  a long  y ,  '7 = f l a t  connec t ion ,  i. e .  D/ds  =d/ds ) 
i n  which 

Nover the le s s ,  i n  t h e  Newtonian mechanics, where w e  have an 
Eucl idean world w i t h  an a b s o l u t e  s i m u l t a n e i t y  (s2 = s z s ) , 
due t o  (1.5) and (1.8) both  t h e  d e f i n i t i o n s  co inc ide .  

The d i f f e r e n c e  between r e l a t i v e  and d e v i a t i o n  v e l o c i t i e s  as 
w e l l  a s  t h e i r  meaning w i l l  be deeper  examined e lsewhere  ( s e e  
a l s o  Sec .4 ) .  

I n  manifold endowed w i t h  a l i n e a r  connect ion  and an I - t r a n s -  
p o r t  one can  in t roduce  i n  an  analogous way t h e  concepts  f o r  
r e l a t i v e  and d e v i a t i o n  a c c e l e r a t i o n s  between t h e  observed p a r -  

t i c l e s :  t o  do t h i s  it is enough i n  t h e  above d e f i n i t i o n s  
t o  r e p l a c e  t h e  v e l o c i t i e s  V, w i t h  t h e  a c c e l e r a t i o n s  A , : =  
- D 
- - 1  v , ,  a = 1 , 2  and h 2l w i t h  V2, . 

ds, 

2 .  RELATIVE MOMENTUM 

The momenta of t h e  observed p a r t i c l e s  a r e  

where (sl) . and p2(s2) are s c a l a r s  ( s e e  Sec.  0)  and t h e  ve lo -  

, c i t i e s  V, = x,(s &) , a = l , 2  a r e  w i t h  components ( 1 . 1 ) .  
Let 

T h i s  is t h e  I - t r a n s p o r t  v e c t o r  p2  from x2(s2) t o  xl(s 1) which 

can be compared w i t h  t h e  v e c t o r  P Due t o  (2 .1)  and (1 .2)  

t h e  v e c t o r  (2 .2)  may be w r i t t e n  a l s o  a s  

W e  d e f i n e  t h e  r e l a t i v e  momentum of t h e  second p a r t i c l e  
w i t h  r e s p e c t  t o  t h e  f i r s t  one,  as it is "seen" from the  ob- 
s e r v e r ,  a t  t h e  p o i n t  x(s) as 

From (2 .4)  it is n o t  d i f f i c u l t  t o  d e r i v e  ( s e e  a l s o  I S / )  

t h a t  



where the relative velocity AV21 of the second particle with 
respect to the first one is defined by (1.3). 

It is also easy to see that in the (pseudo-) Euclidean case 
(1: : : -parallel transport ;see/3/) the relative momentum takes 
its well-known Newtonian expression 

By analogy with (2.4) one can define the relative momentum 
Ap12 of the first particle with respect to the second one: 

and we use the same curves y s ,  then 

Hereof, we find that ( see /3/ ) 

'I*, 
0 I  y 8 ' I s  

AP12 = -(1x2(s2) + x(s) x l ( s l )  - x2( s2 )  O1X(S) + x l ( s l )  . (2.8) 

In the special cases when q*s is a composition of y ,  and 'I 

'I s  /3/ or when I?.. does not depend on y ,  eq. (2.8) reduces to 

3. RELATIVE ENERGY 

One has to be careful when defining the concept of "relati- 
ve energy" of particles 1 and 2, because when it is applied 
to a single particle only, one gets a quantity which has a 
sense of energy of this particle (see below (3.8) and (4.7)) 
and hence,due to the established opinion/6< it must be positive. ' 

Let the manifold M be endowed with a metric and g  B(y) be 
the covariant components of a metrical tensor at y  E 8. 

We shall denote the scalar product of the vectors by a dot: 
R if A  = A a d a  €Ty(M)  and B  = B a d a & T y ( M )  , then A . B : = A ~ B  g (y). 

The square of the vector A will be written as ( A )  : = 
aB 

= Aa . A B ~  , ~ ( y )  = A .  A  for it has to be distinguished from the se- 
cond component A 2  of A (for dim (M)? 2). The metric is not 
supposed to be positive, so generally ( ~ ) 2  can take any real 
values. 

The relative energy of particle 2 with respect to particle 
1 is defined as a scalar 

where €(A)  = -1 for h  < 0 and c ( h )  = +1 for h  2 0 (for some pur- 
poses one may put r ( 0 )  = -1 instead of c ( 0 )  = +l; our general 
results are independent of this choice). 

If there is s o  € [s ' ,  s"] such that x l ( r l ( ~ O ) )  = x 2 ( r Z ( ~ O ) )  , 
i.e., for s = s o  the world lines of the observed particles 
intersect with each other, then from (3.1) we get 

In the case of the space-time of general relativity this 
expression coincides with the definition of a relative energy 
given in / 5 / ,  ch.111, 3 5, eq. (23). The deficiency of the ci- 
ted definition is that it defines the relative energy only 
for the "moment" s = s because of which one cannot study the 
evolution of the relative energy in time. Evidently, our defi- 
nition (3.1) is free from this deficiency. 

Substituting (2.4) into (3.1) we get: 

Due to (3.1) and (3.3) the relative energy of particle I 
with respect to particle 2 is 

If we use the most general I-transports /3/, then in the 
general case the relative energies E ( s )  and E Z 1 ( s )  are not 
connected with each other. However, fkt us consider the class 



of not so general I-transports having the following property 
(in the notation of Sec.0): 

Y Y 
E i  - E J . = (I,,, El) '(I,,, Ej ) , (3.5) 

where (E 1 , i , j = 1,. . . , n is any local (coordinate or not) 
basis in T,(M) . This condition is equivalent to 

Y Y 
A.B = (I u+v A) <(IU,,B), A, B &TU (M) . (3.5*) 

(One can say that the metric and I-transport are consistent 
if the last equality is valid for every y, u, v, A and B ) .  

As examples of I-transports obeying eq.(3.5) or (3.5.) 
equivalent to it we shall mention, e.g., the parallel trans- 
port and Fermi-Walker transport'5' . A complete description of 
all I-transports satisfying (3.5) is given in '2'. 

It is not difficult to check (see (2.5) and (3.1)) that for 
I-transport satisfying (3.5-1 the relative energy and relative 
momentum are related by 

2 s  
E2, =(((V1(sl)) (ApL1. I X  ( s  b x ( s )  V l + ~ l - V 1 ) .  (3.6) 

1 1  

F3r I-transports obeying (3.5-) from (3.3) we get: 

Multiplying this equality by r((~2(s2))2)pl(~l) # 0 and using 
(3.4) (and the symmetry of the metric g a g  or A.B=B.A), 
we find 

Let us remind that this relation takes place only if the 
condition (3.5) is satisfied. 

Applying the definition (3.1) to the first particle itself, 
for which one has to put x = x and s2 = s (or r2= r ) , we find 
the energy of this particle (w~th respect to itself) to be 

where I XI : = 6 (A) X is the absolute value of R .  
One can call Ell a proper energy (or an intrinsic, or rest 

energy) of the particle (for the case of special relativity 
see Sec.4). If m l  > 0, then due to pl(sl) = ml and (3.81, we 
have Ell 2 0 and if besides this (Vl (s 1))2 # 0, then Ell> 0 
which corresponds to the usual case of nonzero mass material 
particle. 

If m l #  0, then pl(sl) = m l  and (3.8) shows that E 11 is pro- 
portional to ml; hence, if we suppose thatEll is a continuous 
function of m at the point m = 0, we get 

lim E l l = O ,  
ml+ 0 

which, due to (3.8) (and pl(sl) # 0 for any ml),is equivalent 
to 

I (v~(s~))~=o for m l = O ,  (3.10) 

I Or 

E l l  = O  for m l = O .  

Remark. If we accept lim E = 0, i.e., the continuous depen- 
m +O 

21 
2 

dence of Ezl onm 2, then (3.3) and the fact that the I-trans- 
port is an isomorphism leads to V2(s2)=0, which contradicts 
the assumption that we are dealing with a material particle 
(and not with the vacuum).  oreo over, the equality l& E 21 = 0 

rn -rO 
2 



is unacceptable from a physical viewpoint, for instance, it 
means that the photon, which is a zero-mass particle, has zero 
energy with respect to any other particle, something which is 
not true. 

Let us note that without further assumptions one cannot 
derive that (Vl (S = 0 implies rn = 0. 

The relation (3.10) must be considered as a direct analog 
and generalization of the well known fact that in special and 
general relativity zero-mass particles are moving with the 
velocity of light (in vacuum). 

The energies E 2l (or E 12) and E 11 can be connected with 
the components of Apzl (or Ap12), p 21 (or p l2 ) and p in the 
following way. 

Let (V )2 # 0. Then, along x we can define a basis Ih I , 
such that hl:=y1/\/I(Vl)2)jand hl.ha= 0 for n # 1 ( if%iml= 
= n >  1), so (Al) =c((~~)~). (The concrete choice of ha for 
a # 1 is insignificant for us). The component A' of any vector 
A = Aa ha in { h is given by 

1 
bec'ause of A.h1=Aa ha. hl = A  hi. A 1  . 

Applying (3.11) to the defined by (2.1) vector p l  and using 
(3.8), we get 

In a similar way applying (3.11) to p2, (see (2.2))and ta- 
king into account (3.1), we find 

According to (2.4) the relative momentum of particle 2 
with respect to particle 1 as it is "seen" from particle i is 

So, in the basis (h 1 we have 
a 

2 
Let us suppose now eq.(3.5) to be satisfied and (V2) # 0. 

Then, defining a basis {ha, 1 along x so that 
,I 

1 - 

and hl*. hat = 0 for a # 1 and using (3.5*), we find the first 
component of p in ( hat 1 to be 

Thus, because of (3.4), we get 

If (V # 0 and (3.5,) is satisfied, then along x there 
is a basis rea 1 such that 

and el- e a = 0 for a # 1 in which the first component of ApZ1 
(see (2.4)) is 

At last, if ( ~ 1 ) ~  = 0, then (see (3.8)) El1 = 0 and the in- 
variant (p - V1 = AR . V1=Ezlcannot be connected with a sing- 
le component of ?or AnP1 ) in some basis; so the relati- 
ve energy Eel is spread over (all) the components of ( P ~ ) ~  
(or A R ~ ~ ) .  

For I-transports obeying (3.5-) we want also to mention the 
invariant (see (3.88), (3.1) and (2.4)) 



2 2 
- 4 ~  ((V1) p1E21+ 6((V2) C( 2E12) * (3.18) 

the two terms in the parenthesis being equal due to (3.7). 

cor~.esprn.ling proper times arid y and y are fixed points. 
1, 4 , 

Due to (1.1) the S--velocities of the particles are 

4. DISCUSSION 
and consequently 

From a mathematical viewpoint the basis of Sec.1 and Sec.2 
is a method for comparing vectors (or more generally tensors) 
defined at different points by means of I-transports (genera- 
lized linear transports) along some (smooth) curve connecting 
these points. The general scheme of that method is as follows. 
LetA,cT (M), a=1,2, y:[sl,s21+M,y(sa) = z , ,  a =  1,2and 

a 

for some I-transport I Y  along y /3/. Now instead of the vec- 
tors A 1 and A 2 , one can compare the vectors A E Tzl(M) and 

(A2) € T, (M) . For instance, we have met several times the dif- 
1 

ference 

In an utterly equivalent way one can compare the vectors 
A, G TI $M) and (A1) E T (M) . For example, if we put AA 12 = 

2 
= (Al)2-A 2, then due to the group property of the I-trans- 
port '3/ , we have 

As an illustration and as a reason for the introduction of 
the concepts defined in this work we shall reveal their mea- 
ning in case of the special theory of relativity. (As a stan- 
dard reference about special relativity see, e.g., 14/ ). 

Let us have a standard (4-dimensional, flat, with signatu- 
re + -  - -1) Minkowski space-time in which a parallel trans- 
port will be used as a concrete realization of the general 
I-transport, so the components of the vectors (or tensors) 
remain unchanged under its action. Let two point particles 1 
and 2 with proper masses m l  f 0 and m 2  # 0 be moving with 
constant 3-velocities Gl and G2 with respect to a fixed iner- 
tial frye of reference along the world lines x,(sa) = 
= (ct, t v,) + y a, a = 1,2 where c is the velocity of light in -- 
vacuum,t is the time in this frame, s,: = t\/ 1-$ 2/c 27 a =  172 are the 

Thus, using (2.7)-(2.41, (3.14). ( 3 . i ) ,  (3.5) and (3.8), we 
get 

Evidently, E ll and E 22 are the proper energies irest ener- 
gies) of the parti-cles and if, e.g. G l  = 0 ,  then Eel = ---- 
- - m,c2;'\'1 - v2/c i2 = E is simply the energy of the second par- 
ticfe with respect to the given frame /4/. 

If ml# 0 and rn - 0, then above we have to change x2 and 
2 5  s2 to x2(s2) = (ct, ct n 2) + y2 and s = t , respectively, where 

+ n2is a unit 3-vector(n'22 = 1) showing the direction of the 

propagation of the second particle, i.e., v2=cn2 -+ 4 and 

IfE2 is the energy of the second particle with respect to 
the used frame, then (see /4' ) its 4-momentum is 

-+ 

p 2 E 2  ) = (E2/c, (E2/c)i2) = (E2/c)(l8n2) (4.9) 

and,due to (1.1), we have 

2 
~ ( 2  = ~2 (s2) = E2 /C 



In this case (4.6b) hold and (4.7) take the form 

+ -. + 
E , ~  = E, (1  - v l  . n 2  / c )  / v' 1 - v ; / c 2  , (4.11a) 

the last equality being in+accordance with (3.10 * ) .  
Note that E Z 1 = E 2  for V l =  0, whence it follows that (4.11a) 

expresses the usual Doppler effect ' 4 1 5 /  in tefms -+of energies. 
In fact, if we have a moving with 3-velocity v l = v  soyrce o_f 
zero mass particles (e.g. photons) with 3-velocities v2 = c n  
and energy (with respect to the source) E Z 1 = E o  which are detec- 
ted from an observer at rest to the given frame, then, the ob- 
server will find the energy of these particles to be E  = E 2  
which according to (4.11~1) is 

--- - 
v' 1 - v2/c2 "' 1 - v  2/c 

E = E  - = E ----, (4.12) 
1 - V:ii/c 1 - (v/c) cos e - 

where v  : = d ;  and 0 is the angle (in the given frame) between 
the direction of emission and the direction in which the sour- 
ce moves. 

The corresponding formulae for m l =  0 and m 2 #  0 are obtai- 
ned from the last considered case by the change 1+2, 241 of 
all subscripts. + 

And at the end, when m l =  m 2  = 0, we have x a ( s a )  = ( c t , c t n a ) + y a ,  
s a  = t ,  a = 1,2 and (of. (4.8)-(4,lO): 

* 
+ '2 ' 2  2  v  = c n  n a  = 1, Va = c(1, n,) , (V, ) = 0, c((Va) ) = +1, a-  1.2, a'  

(4.13) 

and equations (4.6) hold, whence we find: 

Olie can easilv check that in all the considered above cases 
eauation ( 3 . 7 )  is satisfied. 

At the end, let us look of the concepts of relative and de- 
viation velocities in the case of special relativity. 

Let K be nrbitrarp fixed inertial frame in which the arbit- 
- rary moving particle 2 has a 4-radius vector x2(") - ---------- 

+ + ' 
= ( c t , ; z ( t ) ) .  s z - t \ 1 - v f , c ' ,  v 2 . = d x 2 ( : )  d t ,  t being the 
time in K. Let the inertial frame K'be attach5d to the parLic- 
Le 1 khose world line in K is x 1 ( ~ 1 )  K = ( c t ,  t v  1 , ; 1 = c o n s t ,  

s, - t \ 1 -;;, c  2. The observer-~ world line is fully arbitrary. 
* We have i n  the frame K 

and in the frame K. 

+ 
where v i  is the 3-velocity of the particle 2 with respect to 
the frame Ke(i.e., to the particle 1) in a sense of special 
relativity whose exp,licit form when K and I(-have one and the 
same orientation is 4 0  5' 

So, as we are dealing with a pseudo-Euclidean case, due 
to (1.5) the relative velocity is hV2, = V 2 - V l  and 

Moreover, in the pseudo-Euclidean case h z l  = x Z ( s )  - x 1 ( ~ )  ; 

so that 

' ' 
So if n l =  n 2 ,  then E z l  = E l 2 =  0 and vice versa. 
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