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i) During the last years a lot of efforte have heen made to investigate
the topological vacuum structure of lattice gauge theories {17, As an
indi=ator, probing the contribution of topologioally non-trivial excitations
to the quantum vacuum usually serves the topologinnl suerceptibility

x, <@/ (H)
where Qt represente the topological charge of the gawe field and V(d)
the volume in the d-dimensional space-time Varicus methods have  been
invented to define QL on the lattice (see Ref. [11). For the quantized
fields generated numerically by Monte Carle (MC) simalations they lead
typically to different Qt values event by event and to scomewhat different
x, estimates at accessible couplings in the scaling region. Surely, the
digasgreement is due to short-range fluctuations :nd possibly to lattice
artifacts, which are taken into account or are suppresesd in a different
manner {2]. However, a priori, it is very diffienlt to say in as far
short-range fluctuations with Q{ = ) should be irrelevant in the continuum
limit or whether Iinstanton-like semi-classical background fields alone
determine the topological properties of the vacuum state.
In thie letter we are going to discuss this question within the framework of
the two-dimensional P ' model, which has a lot of similarities with the
Yang-Mills theory in four dimensions. The latter fact concerms also the
emall volume limit for both theories formulated in the continuum on spheres
52 and S* , respectively. It has been shown for the Yang-Mills theory by
Luscher (3] and afterwards for the Gﬂ_l mode] by Schwab {471 that in  this
limit X, tends to zero and becomes dominated by the one-instanton
contribution, provided the semi-classical approximation makes sense at all.
We want to see, whether the same will happen within the formulation of the
theory cn a latticlized sphere, i.e. winder the same bxndary conditions as In

the continuum case.

i) The (P“.l model we are considering is defined in a curved continuum

space by the action
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where the complex veotors 22 = za(x) , as1,2,....n saticfy the

i * .
normalization condition L 272") =1 . guv denotes the metric tenscr on

S2 and deE represen:,s the invariant volume element. The covariant
derivative D’J = du - iAp contains the Abelian "gauge” field A}J which can
be eaeily expressed by the z-fileld using the equations of motion., Here we
want to treat it sz & dynamical field which allowe to read off the

topological charge as a sam over winding numbers

1
Q = z—ngi%dprp (3)
€
in a straightforward manmer.
The theory is approximated on a triangular lattice. In principle, the
latter could be a random one, but we prefer to generate an almost regular
lattice. It can be obtained by starting from a regular tetraeder in r?
the comers of which are placed on the ephere S2 . Then successively finer
lattices enmerated by N = 1,2,... &are provided by dividing all the edges

into two parte each and projecting the midpointe onto the  sphere.
Connecting the newly projected sites with each other by new linke gives us

the next, finer lattice, In this way the lattices produced contain
P - 22 sites and L = 3(P-2) links. Every site has six nearest

neighbours except the original corner points of the tetraeder which have
three. This lattice construction has the advantage easily to be mapped onto
the two-dimenzional plane by cutting the lattice along three of the original
edges of the tetrasder. We take the simplices of the lattice to be plane
ones in R . Already for N = 2 the area sum of all simplices represents
88% of the area of the sphere.
The lattice formulation of the model (2) looks as follows. We approximate
the covariant derivative at lattice site x_ in the standard way

D2 (x) =" [ U2 ) (4)
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where lLJ ig the length of the link vector llJ comnecting the rneighbour

sites x , X The link variable is defined by

= exp(—iAu(xl)llMﬁ) = exp(—iphnﬁ) e V(1)
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The metric teneor at the flat simplex (i,Jj,k)
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is given by [51
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with the simplex area
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The lattice action can be cast into a form of a sum over links Jjoining the
nearest neighbours i, J

_ 1
SL = ﬁz Bn,]] o A ;. (6

where By gets contributions of both adjacent simplices (i,3,k) and
(i,j.k7)
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(ur lattice action ie manifestly locally (1) gznge invariant. In

contrast to P -1 lattice actions invented in earlier papers [6,7,8] it is
a non-local one containing products of two U(1) link variables, In the

following we restrict oureelves to the (1’3 model, 1.e. n=4 .

iii) The model is quantized sccording to the functional integral

P 4 ) . n dp.k
[7.0, &2 scp im0 [0 —2 ewl-s (2 00,0)] (9)
v=1 ast ' a=1 " _nu,kl 2n !

The quantum fields z and ¢ have been generated in the MC simulation acc.
to (9) by the heatbath and the standard Metropolis algorithms, respectively.
We tried as well different Metropolie update codes for the z-fields, but
found the coonfigurations to be strongly correlated from iteration to
iteration.

Oar MC runs were carried out for lattices with divielons N =2, 3 and 4.
Usnally we made 400 thermalization sweeps, after 'which we started
measurements during 5000 sweeps (except for N = 2, 7 = 4.75, 5.00 whers ve
have run 50000 sweeps). We checked cur MC code by comparing the numerical
results forn < zi”if; » with a corresponding strong coupling expansion up
to order f3°.

iv) The topological charde on the lattice for the CP“ -1 model is
defined by

1
Qt:;n—Z[ Z ‘”m] (10)
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where the first sum runs over all simplices ¢ and the second one over the
corresponding links (the latter ore implies to take the angles £ in the
right orientation). The brackets mesn the reduction to the interval

-~ < [zpij] = zpi‘j +2np05 +T, z)OFZ . (11)
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By Monte Carlo simalation we measure 1° Xy acc. to Eq. (1), where the

average lattice scale 1= 2 1ij / L should behave in accordance with
[1,4]
the renommalization group

ai={— ] Tew [-— ) (12)

Firet topological investigations. of the lattice CPl model (which is
identical with the non-linear 0(3) o-model) showed strong scaling
violations for l2 X, due to the dominance of dislocations with an  action
SL(disl) <n [7]. It has been argued that scaling should be restored for
n>4 . Moreover, Petcher and LUscher [8] have constructed a modified
("ferromagnetic”) lattice action ;for which in the n=3 case the MC data
were in agreement, with ecaling. In our cage, the ()P3 model, we have made &
rough check, whether dislocatione are expected to spoil scaling. For a
single simplex % with an arbitrary position we have chosen the

surrounding lirnks with 'pijl =7/3 +s, = <« 1, such that v acc. to
o
(11) became just +1. All other g¢’'s were put equal to zero and the z's

equal to (1,0,0,0). .For this kind of dislocation one finds

SL(disl) =3.2917 » a3 (13)

after averaging over all positions of the simplex - So this kind of
excertional configuration does not cause darger in the continam  limit of
the theory.



v) The topolagical charge has been measured every 10-th MC sweep. In

this way correlations between subsequent measurements were under control.

- 2y
Our results for the topological susceptibility 1 x tl/ “ are presented in
the Figure for all lattice sizes considered. The errore indicasted, for
2
simplicity, are the puare statistical ones for Qt“. The straight line

corresponds to the scaling behaviour acc. to Eg. (12). We see that all the
data points' very well fit to thie behavioar. At the given accuracy we do
not see any =scaling violation in the range 3.25 < LS 5.0. Very

surprisingly, at least for us, the pointe for N = 2,3 and 4 lie on the same
universal curve., 1. e, there is not any finite size effect visible!
Obviously, the topological susceptibility at large 3 is dominated by
short-range fluctuations only. For the N=2 1lattice, which contains 34
lattice sites only, we found 36 and 13 events with IQt[ = 1 among the 5000
measured charges at /¥ = 4.75 and 5.0, respectively. These non-trivial
events were isolated, they disappeared immediately. Nevertheless, there is
a region, where Qt-values happen to be “frozen™ over up to ((100) sweeps.
For N =4 this has been obeerved at 4.0 (3 ¢ 4.5. One would like to
interpret thie phenomenon by the existence of long-range fluctustions, what
hae been reported for the (P> model as well [8]. If one would like to
insist in suppressing short-range fluctuations in Qt measurements, e. 4.
by "cooling” (eee Ref. [11), then finite size effects became visible for
M=-4 at 32 4.5 It is only in this case that the semi-classical
finite-volume picture [3,4] could be established as well on the lattice.

vi} Our findings very much resemble lattice results obtained in SU(2)
Yang-Mills theory, where Qt has been determined on MC equilibrium
configurations by the geometric method of Phillips and Stone [9]. There is
seen a beautiful scaling behaviour [10], where at the same time short-range
fluctuations are present. Finite size effects are weak compared with those
ecen after cocling {11]. Of course, it would be worthwhile to study the
finite volume effects in the 4D Yang-Mills case on the sphere in the esame
way 6 it has been presented here for the (P° model.
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Topological susceptibility as function of 3. Dots, triangles and stars
correspond to lattice egizes with N - 4, 3 and 2, respectively. The dashed

lire shows the renormslization €roup behaviour g, (12)
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C nomowsio MeTtoma Moure—-Kapmo onpegensercs TomoliorHuec—
Kas BOCHPHHUMYHMBOCTH Ha CHMHIIEKCHOH pemeTKe allpokKCHMHDYK=
wmeit chepy 32. [lonyuyeHnHsle JaHHBE XOPOWO COrJACYIOTCH C pe-—
HOPMIPYNIIOBbHIM noBefeHHeM, B ppegenie ManeHpKoro obmema He
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B OTJIHYHE OT NPefaca3aHHOH HHCTAHTOHHBIX BLIYHCIICHHI,
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) Using Monte Carlo simulations we calculate the topolo-
glca} susceptibility for the CP® model on a simplicial
1?tt1ce approximating the sphere S?.. Our data exhibit the
right scaling behaviour but do not show a suppression of

topologically relevant fluctuations in the small volume
limit.

The investigation has been performed at the Laboratory
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