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1. Introduction

The lattice approximation of quantum chromodynamice does not provide only a
scheme for calculating non-perturbative quantitiee like hadron masses, the
string tension, the critical temperature of the deconfinement transition
etc., but also a convenlent tool to explore its vacuum structure starting
from first principles. It is of particular interest to study the role of
those gauge fileld excitations which carry a topological charge
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As an indicator of the topoleglically non-trivial wvaoum etructure usually
serves the topological susceptibllity
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= 4 - .02
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Via Ward-Takahashi identities and 1/N_ arguments within the quenched
approximation it has been related to the mass of the »n -meson [1]
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Nr denoting the number of light flavours. Eq. (1.3) resolves the so—called
U,{1) problem.
Firat attempts directly to check relation (1.3) in SU(2) and SU(3) lattice
gauge theories have been undertaken with naive lattice discretizations of
q,(x) {2}, e.g.
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where Unuv denotes the Wilson loop around an elemeptary Jz_attice~plaquetbe of
size a at site n in the pv-plane, and t:‘za‘:—t:z“‘:—e_u“:. ..=1.
}:gm.wn(n) cannot be written in terms of a four-divergence like Ql

Therefore it retains ite geometrical nature only in the continuum limit or
on sufficiently smoothed lattice fields. The first Monte Carle (MC) x,

estimates [2] with expression (1.4) falled by two ordere of megnitude. Only

very recently it has been shosm that the resson for the discrepancy can be
traced back to the original neglect of the proper renormalization of the
operator (1.4) [31.

In the mean time several authors invented topological charge definitions
having a real geometric meaning for lattice gauge fields [4,5,6]. They
derive the second Chern number related to @ from a reconstruction of the
coordinate bundle by interpolating the lattice fields. The most attractive
algorithm became the one of Phillipe and Stone [6]. It is very fast, in the
SU(2) case [7.81. The main problem with the geometric algorithm is that
certain continuity conditions for the lattice fielde ehould be satisfied in
order to define the charge unembigaously. The conditione quoted in papers
[5,6] are mostly violated for MC equilibrium configurations =t accessible
bare couplinge. Therefore, different algorithme or different waye o
interpolate the lattice fields can yvield different Ql numbers event by
event. Moreover, Pugh snd Teper have recently shown [9] the Wilson &ction
to produce dislocations due to which x, measured with the Phillips-Stone
algorithm is expected to diverge in the continuum limit. Thie obeervation
has been confirmed in Ref. {10]. But then the besatiful scaling behaviour
produced for SU(2) with the Wilson action in a high statietice MC run [8]
calle for explanation.

There is another recipe to find a topological charge. Starting from MC
equilibrium configurations one can iteratively minimize the action to freeze
out ultraviclet fluctuations and determine a "background” topological charge
(11,12,13]. The “cooling” procedure is aimed to kill dislocations
disturbing the Ql measurements just in the equilibrium. Cooling has nice
properties. Doing it sufficiently carefully it seems to conserve for a

while fluctuations responsible for confinement [14] and might be interpreted
a6 a kind of MC renormalization group transformation [10].

Hore obvicusly, cooling can be used to explore the semi-classical situation
and to qstabl.‘l.sh possible classical background fields 1ike instantons
monopoles etc. [12,15.16]1. However, it deserves further study in as fal"
topologically relevant excitations are lost during cooling. Numerical X,
:::m‘oes E:sim the cooling method are in ressonable ngreement with the on;

on Eq.(1.4) with the renormalization of

well as with the fermionic method invented by S:I?:"xd tva::\[t:ff oo e
For SU(3) all the methods produce similar results. But in the lSU(Z) case
there is a clear disagreement between the gecmetric methods and the other
ones quoted before.

If this disagreement at the available f-values is due to dislocatione, then
the disagreement should dissppear for lattice actions which a-umrese; then
from the early beginning. Such actions are provided e.g. by Migdal-Kadanoff
renormalization group transformations in the space of coxplinge belonging to
different group representations of the plaquette term in the action. Bitar
et al. {18] have shown that for SU(2) the Migdal-Kadsnoff iterations lead to
pointe lying on a universal line in the plane of couplings 6., 0
corresponding to the fundamental and adjoint representations, mspec'z.ively‘.‘
Choosing the couplings along this line with fixed B _/B.<0 should
correspond to physice nearer to the contimam limit. o

In our investigation presented here we used Just this action. It ‘haa been
:xlzll:gbawdﬂeinm m:xt oia;lat;o:s O:O :,l;;b:ilmsm in wedive-sized volumes

susceptibility with the

Phillipe-Stone algorithm in MC-equilibrium and during cooling. The results
are compared with the corresponding onee of the Wilson action. As far as we
are going to present them in units of the lattice spacing of hoth theories,
we have to find relations bstween them, which at =mall s necessarily
include non-perturbative effects. Such relations can be found via 1IN
arguments [22,23]. They allow to express the resulte in terms of a uniqu;

effective coupling ﬂ."=4/¢' , according to which the lattice spacing has
to scale.

2
A Pirst topology study with the mixed fundamental-adjoint action was
carried out a couple of years ago by Bhanot and Seiberg {20]. They used

the algorithm of Ref.[4] and found the results in & reascnable agreement
with universality.



We will show that in the range of couplings 2.2 < ﬁ." 2.4 the xl—valnea
produced with the mixed action &are very eensitive with respect to the
non-perturbative relation used. In particular, it turns out that the method
proposed by Makeenko and Polikarpov leads to universality. At the same time
we demonstrate the mixed theory clearly to suppress dangemtm fluctuations
with small plaquette loop values W = str Uy, =-1. During cooling the
suppression of dislocations for the mixed action becomes even more
pmnour;.oed. Nevertheless, the corresponding x, values for both the
actions are of the sazme magnitude and definitely smaller than the
equilibrium reenlts. We are led to the conclueion that the disagreement
between reeculte of the geometric charge method and thoee of ccoling camnnot
be simply explained by the preeence of dislocations in the former one.

The outline of our paper is me follows. In section 2 we will specify our
choice of the lattice theory. Section 3 is devoted to a brief discussion of
the topological charge algorithm and the cooling method we exployed. In
section 4 we preegent. plaquette value distributions and demonstrate the
suppression of dielocatione. The main results of the MC similations can bbe
found in section 5. Finally we smmarize our findings and formulate

questions deserving farther studies.

2. Specifying the Lattice Action

The mixed fundsmental-adjoint, lattice action we are going to use is
defined as follows

1 1
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where the contribution of the adjoint representation of SU(2) can be
expressed by the fundsmental one

trudJUnyv = (trfundunyv)

Let the theory be quantized in the standard way by means of the functional
integral

z=[nq av,, ex‘p-S(Unu )y .

n,H v

dUnu denotes the Haar measure for the link variable p at the lattice site
n. Our final aim is to calculate the topological gusceptibility for the
action (2.1) with such a choice of couplings ﬁf,ﬂa which allows to
suppress lattice artifacte in the longer distance physics. Migdal-Kadanoff
renormalization group transformations have been shown to lead to points on a

stable trajectory in the (fif,fin)—plane with [18]
I"ﬂ/ﬁf = -0.24 (2.2)

In the following we want to use this mixed improved action and will compare
the results with those of the Wilson theory (3,=0) thought to be defined
at the same lattice scale a.

In the classical continmm limit the couplirgs are related by

4 8
— =3 + —3 (2.3
82 f 3 a )

In order to fix a common lattice ecale of the quantized theory one usually
considers lines in the (ﬁ‘.ﬁq%plane along which Wilson loopse and the

string tension, respectively, have the same values. These lines of constant
physice are parameterized by an effective coupling

Bats = Bogr Py ) = B (5,,0) = 3, = const.

of the corresponding Wilson theory. I.e. the Wilson theory at el o is
L ]

viewed as an effective theory for the mixed one at (fif,fin). Then 3 o 18
. -

related to the lattice scale by the two-loop renormalization sroup formula
(for SU(2))
51/121 3"2

6n2n_pe(5,.5,)
aA = [—_ exp|-—n_ (8..8) (2.4)
11 off 1 a

11

with a unique parameter AL. Perturbation theory provides [21]
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However this is obviously a bad approximation for negative [?u such that

/?r+8{‘?°/3 becomes small.
The relation can be improved non-perturbatively within the framework of an

1/Nc—expansion. In Ref. [22] the relation

8 5 2 (2.6)
Booe=B, + —B [ — w(a, )——] :
off f 3 @ 3 ff 3
has been proved with
1
m(fion) = < —trﬂmv>n

to be determined in the Wilson theory.

Using thie relation the lines of constent string tension determined
numerically were quite satisfactorily reproduced. The suthors of Ref. [19]
have recently ueed thie relation for & compatation of the string tension and
glueball mase ratioe st finite volumes. Their results reasonably confirm
universality.

By taking into account also self-correlations of plaquettes one can arrive
with the relation (23]

4 P (B ) o
B =060+ —ﬁq[ Zld(f?.”) +y — i .1
off 3 “"(ﬂen) .
: 1 2 2
vhere PUB ) = < (;trﬂmv) > - [w(ﬁ'") ]

ig understood in the Wilson theory as well. w’ and -2 denote the
derivatives with respect to /?.”. By means of (2.7) lines of conatant
physics have been even better reproduced. We used both formulae (2.6) and
(2.7) for our simulations.

As an input for the practical determination of ﬂ."(ﬁf,ﬁq) we used w~

and po-data of Ref. [24]. In order to find the derivatives «° and =
we did a polynomial fit which turned out to be in good agreement with some
osn data for these quantities directly produced on a 4* lattice.

All combinations of couplinge used throughout thie paper are collected in
Tab. 1. Monte Carlo similations were done on a 4° lattice with periodic
boundary conditions at B,.~2.2 andon a 6° lattice at 8,236, These
values according 1o expression (2.4) correspond to the seme physical lattice
size.

Such a emall volume, in which the one—instanton contribution is expected to
dominate the vacuum-to-vacuum transition amplitude {25], is well suited for
a study of the role of short-range fluctuations. For physical quantities,
of course, we have to recover strong finite-size effects.

3. The Topological Charge and the Cooling Algorithm

For determining the topological charge we used both the combinatoric
algorithm of Phillipe and Stone (6] and the naive chsrge definition (1.4).
Since the first method is defined on a simplicial lattice, we have to elice
our hypercubic lattice into a eimplicial one. Its diagonal 1link variables
are generated from link varisbles of the original hypercubic ‘lattice by
meang of some interpolation. For elicing and interpolating we adopted the
procedure of Ref. (7] in a slightly modified way. Oar computer code is
approximately as fast as that of Ref. (7]. Simultanecusly with the
computation of the geometric topological charge we have monitored continuity
conditions invented in Ref. {6] (cf. definition (2.7) of that Ref.)

d[ 1'12‘301) < — (3.1)

here 1 runs over closed loops ¥ around a particular simplex and d
denotes the geodesic distance in SU(2). On a lattice of size L*,  the
number of such conditions is 256 L‘. By obeying them a certain smoothness
of the corresponding lattice configuration is guaranteed, and hence the
independence of the topological charge value of a local ordering of the
verticee of the simplicial lattice. The reasder should keep in mind that
these conditions are sufficient but not necessary ones.

To check whether the computed charge depende on the way of interpolation to



Table 1

Lattice sizes and couplings used throughout this paper.

2 20 44 114 51 10 3 |N
1
N .
-3
3 2 1 3
2 1 T 2 2 6
1 2 3 24 32 5 1 67
0 1t 3 17 68 13 2 104
-1 1 6 18 17 3 43
-2 7T 38 4 19
-3 2 2
(2
Q
V] -8 -2 -1 0 1 2 3

a)

latt. siza |action | 1 B, |8, (Ba.(2.1)]1 |8, [Ea.(2.6)]

4 Wilson |2.20 | © 2.20 2.20
mixed |2.84 | -0.68 2.20

2.68 | -0.64 2.13 2.20

6* Wilson | 2.36 | © 2.36 2.36
mixed | 3.18 | -0.76 2.36

3.08 | -0.74 2.32 2.36
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a simplicial lattice and possibly from a local ordering of the corners we
calculated the charges QI“ and Q:z’ in two different interpolation
schemes for the same lattice configuration. We take the equality between

them a8 a necessary condition to be satisfied for a well-defined topolegy.

Tables 2a and 2b show the mumber of events N'L,' with i= le, ) = Qtz’
for Wilson and mixed improved =ction, respectively, both messured in MC
equilibrium at I?.“=2.2 according to relation (2.7). In approximately
half of the cases we found Q‘m > QIZ) Nevertheless, the charges are

correlated. For a more detailed discussion of the correlation matrix NLJ
we refer to the next paragraph.

By cooling it is possible to amooth the original equilibrium configuration.
Dislocations are expected to be removed [13]. We used a Langevin-type
relaxation procedure which has been invented in Ref. ([16]. The link
variables "move” in accordance with the equation of motion

du &5
np

dr &0
e

(3.2)

in the “computer time" 7. The discretization into time stepe AT leads to
the jteration procedure

- -1-2
(Unu)ml = (Unu)m (1+A1 nrw)m det (1+AT nnu)m (3.3)
with
1 x4 4 ~ s
M T Z (B + =B Uyl

v=%1

v |=u
and

+
U =0 U U

The links can be simaltanecusly updated after all new ones have been
computed. Adopting thie prescription the result will not deperd on the
sequence the linke are exposed to changes during a cooling iteration.

A sample of typical cooling histories ie shosm in Table 3. The action
values § in unite of the classical one-instanton action
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Tables 2a,b

Correlation tables showing frequencies N,lJ of MC equilibrium

configurations with topological charges Qm =i and Q s J

a) mixed improved action at ﬂ'“ = 2.2 [Eq. (2.7)], number of
configurstiors investigated N .= 244 .
b) Wileon action at [?‘i” ='2.2, Nconf = 200 .
The lattice size is 4°
1 15 41 95 34 12 2 N
-3
5 1 1
4
3 1 1
2 1 3 4 2 10
1 3 18 13 3 1 38
0 1 4 12 57 12 4 1 91
-1 4 22 14 4 2 46
-2 6 4 3 13
-3
(2>
Q
"] 3 -z -1 o 1 2 3 4
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b)

S = 2n*(8,+83_/3) = 8n’/g"

(1) (2)

are shosm together with Q‘ , Q‘ and the naive topological charge

Q o Lowering A7 in the range AT = 0.05 we convinced ourselves that
the same histories with the same Q{” - values occured only within a
changed (computer) time scale.

Already after a few cooling steps with At = 0.05 for both mixed and Wilson
actions we arrive in a region where Qi” and Q:z) typically agree. As
one can see also from Table 3 the naive charge at the same time usually
tends to a platean value which exactly corresponde to the number
Q‘m = Q:z) . (Of course, the naive charge fails to provide an integer on
the 8o small lattices we consider.) Mostly the right geometric charge is
well-established earlier than the naive one. Comparing the mixed with the
Wilson case we find that the mixed one lowers the rate the action is
minimized step by step.

After having investigated in very detail samples of 25 cooling histories,
for each action case we decided to measure the topological charges
(additionally to the MC equilibrium case) only once in that region, where
Q" = Q” is mostly achieved. We take just 15 cooling stepe (“half-way
cooling”). Finally we compute the charges at those steps, where sz/d*rz
changes its slan. The latter case happens definitely at later stages of the
relaxation process and can mostly be related to the occurrence of
approximate solutions of the lattice eguations of motion 65/6Unp =0 . We
call it “"down-to-platean cooling”.

The half-way cooling stage is characterized by the following observations.
Indeed, only O(10%) of configurations are left, where the values Qi”
and Q;z) fail to agree. Moreover, typically 0.04% of all contimuity
conditions (3.1) are yet violated for both the actions, compared with 1%
in the equilibrium. After 15 iterations with At = 0.05 the average total
action hae been lowered from <«5/5,> = 33.1 # 0.3 (63.5 ¥ 0.3) down to
<S/S°> =3.5% 0.2 (6.87% 0.2) for the Wilson (mixed) action. So, we stay
more or less yet in a range, where Campostrini et al. [14] have observed a
constant string tension during cooling. From thig point of view the
"half-way cooling” stage is physically very interesting. The lattice fields
seem to contain yet all those fluctuations being responsible for

confinement.

11



Table 3

Typical cocling histories for the mixed action [ {Bﬁ” = 2.20, acc. to
Ey. (2.7)] with relaxation time step AT = .05 .

For the geometric charge Q:" the measurements corresponding to both
versions of interpolation are indicated. Only one value is shown if they

agree. The lattice size is 4

cost | 55, qu Qive || 55, Q:L) QhuLvn 5/8, Q:U Qhai.vo
0 1%2.2 |-2/-1]-.07 ||56.0 | 0/-1 .04 ] 53.1 [+2/+1 .20
5 ]21.5 |-2/-1|-.29 |[22.3 ] o/-1] -.01 {| 21.4 0 .23
10 J11.3 { -2 -.44 |J[11.8 [ 0/-1] -.01 10.8 0 .20
15 7.5 | -2 -.53 7.9 9/-1 .02 6.7 0 .14
20 5.7 | -2 -.59 5.8 0 .06 4.5 0 .10
25 4.6 | -2 -.83 4.7 | +1 .12 3.2 0 .06
30 3.9 | -2 -.67 3.9 ] +1 .17 2.3 0 .04
35 3.4 -2 ~.70 3.4 { +1 .22 1.7 0 0z
40 3.1 |~2/-1{-.71 3.1 4{ +1 .26 1.3 0 .02
45 2.91-1 -.72 2.8 | #1 .31 1.0 0 .01
50 2.6 1-1 -.71 2.6 | #1 .35
60 2.3 1 -1 -.B87 2.3 | #1 .43
70 2.0 | -1 ~-.62 2.1 | +1 .50
80 1.7 ] -1 -.59 2.0 | +1 .54
0 55.1 1 -2 ~.17 [|54.0 | O/+1 .09 {563.1 1] -1 .01
24.6 | -1 .21 [|22.0 | +1 .06 p21.5 | -1 -.18
10 {13.9 | -1 -.22 |111.2 |+1/ 0| .03 JJ10.4 | -1 -.19
15 8.5 | -1 -.22 7.3 0 .02 6.5 | -1 -.17
20 7.2 | -1 -.21 5.3 0 .03 4.5 | -1 -.14
25 5.8 | -1 -.20 4.3 0 .06 3.5 | -1 -.13
30 4.8 {-1/ 0{-.18 3.6 o .09 2.8 | -1 ~.12
35 4.2 -1/ 0]-.18 3.2 1 +1 .13 2.3 |-1/ 0 -. 11
40 3.7 (-e/-1|-.17 2.8 | +1 .18 2.0 0 -.11
45 3.3 | -1 -.18 2.6 | +1 .23 1.7 0 -.09
50 2.3 -1/ 0 |-.14 2.4 | +1 .28 1.5 Q -.07
60 2.3 0 -.10 2.0 | +1 .38 1.0 0 -.03
70 1.8 0 -.N5 1.7 | +1 .43
hlt 1.3 0 -.02 1.4 | +1 .45
12

4. The Role of Dislocations

Dislocations 1.e. fluctuations living at the scale size of one lattice
spacing and carrying a non-trivial topolegical charge can be dangerous for
the existence of the continuum 1limit of the topological susceptibility
(1.2). This may happen, indeed, if such fluctuations possess an action

value

2
S (43rr

disl 11 3 x 10.8 A, (4.1)

eff

Their density ~ exp(-5 )/a4 taken from semi-classical arguments will

diverge in the limit B::l—b o and consequently x, as well. Ltscher
has applied thie ressoning in order to explain the strong scaling violations
for the topological susceptibility obeerved in the 2D non-linear a3
o-model [26].
Recently for the Wilson theory Pugh and Teper discovered a dislocation in
the Q =1 sector (with respect to the Fhillips-Stone charge) with an
action value S¢nl: 9.6 ﬁf [9]). Gockeler et al. were able to lower this
number by systematically minimizing the action with the Phillipe-Stone
charge held fixed at Q =1 [10). They found even S7'" = 6.8 /3. For
our further argumentation it ie importent. that theese dislocations always
carry one plaquette with tr Unuv/z X -1 at their centre and after a small
variation they run immediately into the Qt =0 sector with very high
probability.

One can algo ask how the mixed action (2.1) behaves for  these
configurations. One finds [10]

Spo =688 +11.78 (4.2)

Using far in the continumm limit the classical relation ﬂarr: ﬁr+8ﬂa/3 we
easily convince ourselves that (4.1) holds for ﬂg > —OA2&Z_ ( ﬁr >0 ).
Therefore, the improved mixed action correeponding o Eg.  (2.2) should
allow to determine x, with the geometric charge algorithm in the limit
ﬁ.ff-* ®, unless there are yet other dislocations with a smaller action.
This does not mean that (4.1) cannot be satisfied at such small ﬁorr we

use in our practical calculatione. In fact we find

13



min 5.1 ﬁo“ z.2
Sdlﬁl. = for ﬁe” = 6 ace. to Ba. (2.7). 4.9
5.4 non 2.3

There ig a simple way to check how many dislocations of the kind described
above can maximally appear in the Monte Carlo equilibrium or after cooling.
One can count the number of those plaquettes with WP = ; terv ~-1. So
we have computed the distribution of plaquette values P(HP) in the MC
equilibrium. It is presented in Fig. 1 for the Wilson asnd mixed improved
action at ﬁ.“= 2.2 acc. to Eq. (2.7) . First of all, the comparison
shows that the mixed action really stronger suppresses plaquettes with
negative Hp—valuee.

In particular we have

R = P(WPS—O.SJ)"““cl e P(HPS—O.S) = 1/4

Wilson
The suppression becomes stronger at larger fi'” . HWe get R= 1/6 at
ﬁ.” = 2.36 . A similar somewhat less pronounced behaviour can be observed
if EBEg. (2.6) 1is employed. S0 the mixed improved action works in the right
way. Moreover, the small absolute value of P(HPS—O.Q), e.g. for the
Wilson action at ﬁe" = 2.2 it ise 0.03% , tells us that roughly speaking
only every second 4* lattice configuration carries one plaquette with
WP < -0.9 . Certainly only a amall number among such plaquettes represents
dislocations with Ql = Q. Cansequently the possibility to find a
dislocation of the kind described in Refs. ([9,10] is practically very small
in spite of their small action values (4.3) .

Now let us return to the correlation Tables 2a and Zb , respectively. Are
the dislocations with Hp % -1 the main reason for the ambiguity in
assigning the right topological charge to the equilibrium lattice fields *?
The answer is definitely not. For the Wilson action there are only
approximately as mich violations of Q:” = Q{z) as single plaquettes with
Hp < -0.9 are available. It is highly unprobable that all these plaquettes
belong to real dislocations carrying a topological charge. For the mixed
action the number of the dangerous plaquettes is even lowered by the factor
R quoted above, whereas the mmber of cases with Q:" L4 Q{b is of the
game order of magnitude as for the Wilson action. So there must be other
short-range fluctuations (see also Ref. [27]) common to both actions due to
which the topological charge is not well-defined event by event. How they
look like and whether they can spoil the contimum 1limit deserves further
study .

14
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WP=tr UanIZ

Fig. 1 Plaquette distritutions P(H,) in the MC equilibrium at  f,,=2.2
acc. to Bg. (2.7) for Wilson action (straight lines) and for mixed
improved action (dashed lines), lattice size 4% .

15
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Fig. 2 Distribtutions of topological charge Ql in the MC equilibrium at
IE] acc. to Eq. (2.7) for Wilson action (dashed lines) and for

eff
mixed action (straight lines), lattice sige 44. For drawing these
distributions both charge versions Q:“ and QIZ) have been

taken into account,. The statistice is 244 and 200 configurations
for the mixed and Wilson action, respectivenly.

T v T T v ~
h 79
ax, L ~ ) 4
~
~ ~
~
4
03 r }\ \“.\ p
~ ~
g ~
L s ~0 J
o <6
\\ \\
02 N LN -]
~o 6\2
~
L < J
o‘ L 'l A . :'
21 22 23 2
Pen

Fig. 3 Topological susceptibility in MC equilibrium as a function of f?."
acc. to prescription (2.7). Open circles correspond to Wilson
action, croeses and triangles to mixed action. Dote show data
points of Ref. [8]. The integers indicate the linear lattice size.
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The correlation matrix NlJ allows to quantify in as far the topology is
statistically 111- or well-defined for MC equilibrium gauge fields. Let us
calculate the quantity

N,
o’ =ZZ - ~ N - (4.4)
N N

with NL_ =2NI._| , N_J :ENLj and N = Nl'l . Let r be the number of
J L vy

the different. values Q:m found during the N measurements. Then in the
limit N — » Np° satisfies a x”—distribution with £ = (r,-1)(r,-1)
degrees of freedom if Q" and Q¥  are statistically independent.
From Tables 2a and 2b we obtain for f = 36 Mo® = 107  and 205
respectively. The confidence level CL for Q" and Q7 to be really
statistically independent turms out for the Wilson action CL < 0.01%
For the mixed action it is even eome orders of magnitude emaller. Thus
there is a strong correlation in toth casee, and it seems to he slightly
better in the mixed action case. We are led to the conclusion that the
topology is well-defined in a statistical sense at lemst for small lattice
slzes.

(2

During cooling the correlation between QI“ and Q\ becomes still

better. Thie wae mentioned already before. At the eame time after
half-way-cooling the average minimal plaquette becomes
<m}n Wp) = -0.10 ¥ 0.09 in the Wilson case and even

<m2.n HP> = 40.30 * 0.03 in the mixed one, respectively. We have convinced
ourselves that in fact all plaquettes with Hp < -0.9 were removed.
Nevertheless, in O(10%), of all cases @ and Q7  disagree. This
once more pointe out to the existence of other fluctuations rather than
thoee of Refs. {9,10] which prevent the wunambiguous assignment of the

topological charge.

5. Estimates of the Topological Susceptibility

Now let us discues the resulte of our mumerical simlations. We applied the
Metropolis method snd separated the topological charge messurements bty 50
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sweeps. This number ie sufficient to remove all correlations between
consecutive measurements. Our statistice 1is based on 0(200)
configurations for ﬁ-“ = 2.2 (4‘ lattice) and O(100) for ﬁ.“ = 2.36
(6 lattice).

The equilibrium topological charge distributions at By =22 can be
easily read off Tablee 2a,b and are plotted together in Fig. 2. There is
no significant difference betweer. both theories considered. The resulting
topological susceptibilities a‘'x, for all couplings including both the
prescriptions (2.6) and (2.7) are shown in Table 4. The etatistical
errors (in parentheses) are rather pessimistic ones estimated mostly
avereging over consecutive bunches of measurements with length 0(60).

Our MC equilibrium data show that the X, values are rather sensitive with
respect to the non-perturbative relation ﬁ." = ﬂ."(ﬁ‘,f?q) . The method
of Makeenko and Polikarpov [23] (Ea. (2.7)) leads to an impressive
agreement between mixed and Wilson action data at B = 2.2 as well as at
2.36, i.e. to univereality, whereas according to the prescription (2.6) of
Grossman and Samuel [22] the mixed action results lie significantly above
the Wilson ones. Anyway, there is no suppression of the topological
susceptibility for the mixed action although the latter suppresees
dislocations as argued in section 4 ! Thus the topological susceptibility
estimated with the Phillipe-Stone algorithm in the equilibrium at realistic
I?." is certainly not disturbed or overestimated due to dislocations
described in Refs. [8,10].

In Fig. 3 all our equilibrium data are showm in terms of f?." determined
from Eq.(2.7). The crosses correspond to points (ﬂf,ﬁa) = (2.68,-0.64) and
(3.08,-0.74) originally aimed to belong to £, = 2.2 and 2.38 with
respect to Eq. (2.6). Physically these couplings produce a somewhat larger
volume on a 4 and 6* lattice, respectively. Into the same Figure we
have plugged some of the high statistica data of Ref. [8] obtained with the
Wilson action and corresponding to the large volume limit. We eee that our
data are definitely smaller due to finite size effects. Revertheless, as
far as we have produced the same physical lattice sizes at I?." = 2.2 and
2.36 , these data nicely fit to the scaling behaviour (2.4) .

Let us finally comment on our data found by cooling (see also Tab. 4).
After "half-way-cooling” with 15 iterations and AT = 0.05 we arrived at
configurations where the topology was well-defined for approximately 80% of
them. It is difficult really to compare the x, results at this stage.
Reverthelese, the numbere quoted in Table 4 indicete that the mixed action
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Table 4

Overview of numerical results for the topological susceptibility obtained
with the Phillips-Stone algorithm in equilibrium and during cooling. N‘w“f
denotes the number of configuratione investigated. Statistical errors are
given in parentheses. For the corresponding (ﬁr,ﬁq) ~ values we refer to

Table 1.

MC equilibrium cooling

a‘x 4 4
ef f t conf a xl a xl conf

size (Eq.(2.7)] half - vay plateau

lattice|action A

4 Wilson 2.20

(=]

.00410(53) | 200 |0.00158(30) | 0.00078(23) | 100
mixed 2.20 | 0.00412(24) {244 |0.00239(23) | 0.00110(12) | 227

2.13 | 0.00886(80) | 300 [0.00289(44) | 0.00160(20) | 100

Wilson 2.36 | 0.00074(12) | 100
mixed 2.36 | 0.00089(18) | 100

2.32 | 0.00160(57) | 100

allows to enlarge the cooling estimate for x, from below. Such a tendency
is seen a5 well at the "action platesmus”. In thies respect we would like to
argue that the use of the mixed improved action ace. to Eq. (2.2) may
improve the situation and mske the dissgreement  between the
equilibrium-geometric method and the cocling algorithm to become emaller.

6. Conclusions

In thie paper we have investigated the topological vacuum structure of the
quantized SU(2) lattice gauge theory from a more technical point of view.
Our main question was the following. Can the difference between the
topclogical susceptibility calculated with geometric charge algorithms in
the MC equilibrium on the one hand and with the cooling prescription on the
other hand be explained by the existence of dislocations, which in the
Wilson case are expected to produce a divergent result at large (3 for the
geometric methods? To atteck this question we employed the mixed action
with parametere corresponding to a Migdal-Kadanoff renormalization group
improvement and made the comparison with the Wilson action. We considered a
swmall lattice size and reobserved clear finite eize effects.
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Our main result is that the topological susceptibility at ﬁorr x 2.2+ 2.4
does not become smaller for the mixed improved action, although the latter
clearly suppresses those excitations having small plaguette loop values
tr UN_W/Z X -1. This holds for equilibrium configurations as well as for
cooled ones. So we have a strong indication that the disagreement mentioned
before cammot be simply explained by the dislocations described in Refs.
[9,10]. How other short-range fluctuations causing ambiguities in defining
the Phillips-Stone charge and being common to both actions influence the
results especially in the continuum 1imit deserves further studies.

We have seen that the topological susceptibility at small ﬁ." is
sensitive with respect to the non-perturbative lattice scale fixing. It
distinguiehee the l/NC method of Mekeenko and Polikarpov [23], which
allows to establish universality at asmall lattice sizes. It seems to be
worthwhile to reconsider the glueball and string tension data of Ref. [191]
in view of this result.

By measuring the Fhillips-Stone charge with two different kinds of
interpolations of lattice fields we were also able to demonstrate in as far
the topology is well-defined. We have seen that in the equilibrium both
charges are statistically strongly correlated and that the correlation
became slightly better for the mixed action. During cooling the geometric
charge was found to become properly determined. Thie allowed us to define a
cooling stage, where one can study the vacuum structure more thoroughly.
Nevertheless, even on a small lattice for configurations having not any
rlaquette with tr Umw/z < -0.9 we have observed a few cases, where the
topology was ambigucusly defined and where a small number of violated
continuity conditions (3.1) was left.

What remains to be done? First of all the study presented here should be
extended to larger lattice sizes and ﬁ.". A comparison with other actions
e.g. non-local ones with gix-1link loop contributions was propsgated in
Refs. [10,11]. Of course, universality should be checked yet by expressing
the susceptibility in physical unite like the string tension or the 0
glueball-mess.
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BopHakos B.F. » ApP. E2-89-606
Tononornueckaf BOCNPHHUMUHBOCTL, AMCNOKA LMK

H yHrBepCankHOCTb 8 KanNMEGPOBOUHON Teopuu

Ha peweTKE CO CMELAHHHIM AEHCTBUEM

B npegene ManeHbkoro ofbema BHUWCNAETCA TONONOIrMUECKAA BOCAPHMUMUMBOCTL B Te
opun fiHra-MMNNCa CO CMewaHHbiM YNyWleHHHM AEMCTBMEM C NOMOLLO MeToaa MoHTe-
Kapno. PesynbTaTu cpaBHWBANTCA CO CTaHRapTHWM BunkcoHoBCkuM aeficTamem. Npume-
HAETCA rEeOMETPHUYECKMI anFopuTm Tononoruueckoro 3apApa dunnunca w CToyHa Ana
PABHOBECHHX W ONA TeX KOHGUrypauun, nonydeHHx Bo BpeMa '‘oxnampenwn''. Peaynp-
TaThl OKa3LBAOTCA UYBCTBUTENLHHMHU OTHOCHMTENBHO METOAA ONPEAENieHMA PEWETOUHOro
wara, YHuBepcanLHoOCTh NOAYUYAETCA NPU NPUMEHEHMH METOA3 BBEAEHHOro MaxkeeHKo W
Nonvkapnoewm, Mpu 3ToMm B cnyuae cMewaHHOro AeACTBMA AWUCAOKAUMHW CHNLHO NOAAAB-
NMBaKRTCA, MO3TOMY, OHW HE RBNANTCA ONACHBIMM ANA ONpPefeNeHWA TONOAOIrHYECKOW
BAKYYMHOM CTPYKTYpPH NPWU ManeXx KoHcTaHTax A.

Pabota BunonHeHa 8 JlaGopaTopumn TeopeTuueckon ¢mankn OUAU,

INpenpunr O6peNMHEHHOr0 HHCTHTYTA AACPHEIX HCcleobanmR. TyGra 1989

Bornyakov V.G. et al. E2-89-606
Topological Susceptibility, Dislocations and Universality
in SU(2) Lattice Gauge Theory with Mixed Action

In a small volume limit we present Monte Carlo measurements of the topolo-
gjcal susceptibility for an appropriately chosen mixed fundamental adjo!nt
action and compare the results with the case of the standard Wilson action,
We apply the geometric algorithm of Phillips and Stone directly to equilibri-
um as well as to background configurations at different stages of cooling.

We show the results to be sensitive to the way of determining the correspon-
ding lattice spacing. A method proposed in this respect by Makeenko and Poli-
karpov allows to establish universality for the topological susceptibility

in equilibrium. Since plaquette distributions show a strong suppression of
plaquettes with trU,, /2 = -1 for the mixed action case, we conclude that
dislocations seem not to be dangerous for topological charge measurements
with the geometric algorithm at least at small g-values in the scaling
region.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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