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1. Introduction 

QCD as a perturbative theory is applied mainly to describe 

the deep-inelastic reactions by means of calculations of the 

i.Jbaginary parts of the quark-gluon diagr-amac!'21 

The status of the perturbative theory is uniquely defined by 

the asymptotic freedom formula and the consideration of quarka and 

gluons ae free particles on their mass-shell (Le. part.one).c31 

In this paper we attempt to construct a perturba.tive QCD of 

hadrons in order to give a uniqne deecription of the spectra of 

hadrona and their elastic and inelast-ic amplitudes. 

There are two facts which prevent the construction of a 

perturbative QCD of hadrono: i} the consideration of quarks and 

gluons as the partons on their 

generalization of the aeympt.otical 

non-aaymptotical low-momentum region 

mass-shell. and ii) 

freedom fonrula to 

where it becomes 

the 

the 

a 

hypothesis ). The first fact yielde the .. gauge independence" 

illusion meaning that to calculate the s-JDS.trix one can use any 

gauge and any time-axis of quantization. The second fact leads to 

another illusion of "strong coupling"" which means 

perturbation theory of QCD is not valid outalde 

that 

of 

the 

the 

asymptotical region. To remove these Ulusione, we shall use the 

theoretical (QKD for atoms) and practical (the potential model) 

experiences. 

Tbe paper is organized as follows. In Section 2., tbe "'gauge 

independence" illusion and ito elilllination by the lldnima.l 

quantization .athod c.--6l are considered. Section 3. is devoted to 

the second illusion and its removal by means of a rising 

potentiaL In Section 4.. the perturbative QCD of gluons and their 
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bound states is discussed Section 5.. presents the perturbative 

theory of quarkonia, where the unification of the potential model 

with the effective chiral Lagrangians is demonstrated. 

2. Removal of the ··gauge independence·· illusion and the minimal 

quantization method 

2.1. Relativistic covariance of bound states 

Bound state computationa in Q1ID are carried out mainly in the 

radiation (Coulomb) 
,, 

gauge. This gauge has a number of 

advantages. In particular, it provides a natural separation of 

(the instantaneus Coulomb) and perturbating (ths 

transversal-photon exchange) interactions. However, the radiation 

gauge is not manifestly covariant. The dominating belief is that 

the relativistic covariance of bound states 

trarmition to the covariant gauge 
18

'
91 

is realized by 

In the literature different definitions of the transition 

from one gauge to another are used. Here by this tranaition we 

Wlderstand a modification of the Feynman rules 
ItO I 

As well known. the Green functions. S-matrix and all physical 

reBUlts are invariant under the substitution of variables ao' 

(2.1) 

'ItT = V (A9) '1'9 • 

where V (A;~] traneforma the Coulomb gauge fields. ( AT. "'T ) to 

covariant gauge fields This subatlt11tion is 

equivalent to the nodification of the Feynman rulea Le. the 



gauge change and inclusion of spurious diagrama induced by 

which do not follow from the initial Lagrangian ). Such 

additional diagrams do not. contrlrute on the mass- shell, and the 

invariance under the gauge change takes place. But off the 

mass-shelJ the dependence on a gauge takes place. In this ease the 

change of a gauge by t.he Feynman rule modification is equivalent 

to the inclusion of the npurious diagrams (owing t.o the invariance 

under (2.1) ) _ 

There is a net. of work.sc&.Pl devoted to the proof of the 

gauge independence of an at.om epectrum.. In these treatmentn, the 

Coulomb binding interact.ion ie used in the rest frame with the 

choice of the time -axis (1.0,0,0) However. all the 

authors have not. taken into account that the vector 

( contained in the Coulomb part of the interaction ) indeed can be 

arbit.rary. and t.hal a transition from one vector to 

another '7~ is realized by means of a special change 

of the gauge_ 

It is easy 1.o check that the usual Lorentz traneformat;ion 

p -->P. or special gauge change n --> r1 break the 

dispersion law (Le.P .2 ;;< tf s> ~u l The dispersion law ia invariant 

only under a combination of the usual Lorentz and special gauge 

transformations P --->P ·.n!J --> n·!J) satisfying the paralelliam 

of the time-axis to the total momentum ( "p pp' n~ fY 
p 

This combined transformation has been pointed out at first by 

Heisenberg end PauJi:
121 

and the parallelism ie equivalent to the 

Harkov-Yukawa descript.ion of nonlocal fiel~19l i.e. to the 

choice of the relative space and time with respect to eiM;envectora 

of the total momentum operator. 
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Thus. we have seen that the dependence of bound state 

calcul.a,tiona on a gauge does not only exist~ but it is necessary 

to provide the relativistic covariance. Certainly. if we take into 

account the spurious diagrams ( in accordance to eq.(2.1)) m the 

transition from one gauge to another, then the bound state 

calculation results do not change. The radiation gauge is unique 

which does not demand these spurious diagrams to reproduce the 

observed Lamb-shifts in atomic spectra.. 

What is a reason of the peculiarity of the radiation gauge? 

And why does the relativistic transformation changing a gauge 

arise ( in the off maas-shell case )? These questions get a 

natural explanation in the miniJDa1. quantization scheme 1 ~-.sl 

2.2. The minimal quantization scheme 

The Feynman rules in the radiation gauge and the relativistic 

transformation accompanied by the gauge change are justified by 

the min:ime.l quantization scheme of gauge field theories that has 

been formulated in refs. I-4--<Sl as tJle following axiOIIlS: 

i) the energy-momentum tell8or is the Belinfante one 

..J.. - i - X 
T~Jt..>;;;; Fp)..lx>F.vlxl + 'l'l:x>(irl.l'i7V~x>- ~vhx> + ;i'A['I'<x>r ~Jt..>'l'l:x>) 

(2.2) 

where are 

the Lagr-angian mxJ. the usual tension, respectively. and 

the covariant derivative; 

ill all the physical quantities (the Hamiltonian 
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Belinfante tenaor) are defined on the explicit aolution of the 

Gauss equation for the time component of the gauge field A
0

, i.e. 

0; 

Hi) the minimal set of only physical variables is quantized by 

diagonalization of t.he Belinfante Hamiltonian. 

For example, ln the eaoe of QKD. the eubetitution of the 

Gauae equation solution 

into expreoeion (2.2.) leade to the nonlocal tranevereal 

variables ( since F 0 i 

-IJ IJ-2j T 
i 0 

V [A) ( Ai -: a1 ) V_,[A] } 

V [AJ .. 

_, 

(2.3) 

Theee nonlocal variables are invariant under the gauge 

traneformatlon of the initial fields 

transformation of the initial fields with the parameters ck 

( 6~ ~ ::: ckAo + c i (.xibl -tbA ). on the solution of the Gauss 

equation. leade to the follmrinll: transformation for the 

transversal variablee as the functionale on A and 'it, Le. 

~[ A; + 6~ A1 l- ~ [A;l = 60 ~- .kA L ... [ Ai 
60 A. ... + 6:'11] - .. [A;•"'J = 6 o'IIT + if!J'\'Il, + L 

' L 

(2.4) 

where 

A 



is a special gauge trBllBfol"'Dation paraJOeters that changes the 

tilDe-axis ~" : 1) ---> n~ + (6°'1?) 
,._. ~ p L p 

'l'be same transformation laws (2.4_) are valid for a usual 

boost of the quantum fields. for example~ 

where Mok ::: I cfx ( Too ~ - Tok t ). 

It Bb:>uld be noted that the Binimal quantization is unique for 

which the relativistic transformation laws for the classical 

variables (2.4) and the quantUID ones (2..4) coincide. 

In perturbation theory the combined 

transformation (2.4) leads to additional diagl"8Jb8 with the 

vertex A defined by the BellDfante teneor (2.2) ~· ,ol As we 

have seen in the previous subsection,. such additional (spurious) 

diagraD'I are eqUivalent to the change of the gauge_ 

'l1le consistent llliniaal quantization scheme yields the result 

that the radiation gauge is a unique one that appears without 

gauge fixing as an initial aseumption ~ ... 6J 

But the IDinimal quantization scheme leaves a freed<M for the 

choice of the :Initial tt.e-axte ( n ).. Ae we have ee~ the 

choice of amt be done under the Markov-Yulta.wa principle 

( "~ P,_, ).. which provides the relativistic invariance of the 

dioperoion law. 

For an interaction of many bound etates described by the 

bilocal fields ~y) we BlllfReSt to chooee the time-axis for a 

bound state as an eigenvector of its total 1110mentum operator : 

where X 

- 1 ~ 
P~ ~yJ = T ~X ~yJ 

~ 

(x + y )/2 ie the total coordinate. 

7 
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As a result, the spectrum of fermionic bound otates and 

their interactions in the neglect of radiative correctiOil8 due 

to the transversal-field eJtChange can · be described by the 

effective action[UJ 

J rf'x { ~(:r..) ( i~/- JD.
0 

) 'l'(x) (2.6a) 

-~I r/'y >JrfJ(y)iot(x)[K.r}(x-y)lot ~ ~ fJ >JrfJ(x)l'a.{Y), 
2 f ~ff22 f 2 

where the kernel Kr} has the form 

I 
- X 

~ 

(2_6b) 

= 

vw is a potentiaL action according to f 
ftSI re _ '" 

relativistic invariant. 

Such explicit construction of the :nonlocal phyeic,al variablea 

for the non-Abelian gauge theory has been done in refe. 1 ~- 61 1!. 

ha8 been shown that this construction of the Vlllriablea contaim• 

their topological degeneration ~ to the homotopy group 

0
3

(SU(3)c)= Z ). and leads to a confinement mechanism as a 

destructive interference of the phase factors of the generation'
5 ~ 

The adnimal quantization axiome (i) and (ii) CBD explain tJte 

quark-hadron dualit.y in the spirit of the t' Hooft mechanimo[~!Jl 

Generalization of the ll1inimal quantization scheme to the 

non-Abelian theory requires an additional az:iom.: 

iv) the transition to purely tranavereal nonlocal variables like 

out by the principle of the 

correspondence to t.he perturbative theory. 
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The mm.aJ. quantization can be reducedc 4 ~ to the ~UP licit 

gauge invariant 

quantization 

Hamiltonian 

Here 

~ot 
coupling 

eqUation 

of 

construction of 

the non-Abelian 

and the function 

the Schwinger operator 

theory 
C.id • .i71 

with the 

+ 
(2.7) 

+ non local 

Schwinger teras. 

= "iEi = 0 

d'b(<x-y> fA) eatisfles- the 

(2.8) 

As to the Scltwinller te1'1118, they are defined froiD. the Lorentz 

covariance condition[~-dl 

It ia easy to eee from (2. 7) and (2.8) that ln the case 

of QKD the function 

propagator. So. the interaction part of Hamiltonian (2.7) 

reproduces the Coulomb gauge deecriptioa 

We use Hamiltonian (2.7) aa a et.arting point for 

constructing the- perturbe.tlve QCD of hadrona (QCDhadrona).. 

9 



3. Removal the "stro~ coupling'' illuSion or the 

redefiriition of the_QCD Hamiltonian 

3.1. The in~~~~ divergencies of QCD 

infrared 

From the point of view of the description of atomB in QRD. 

there two types of the interaction: the "static" one that 

detet'ID!nes the nonperturbative structure of the bound state. and 

the "dynamic" one that ie considered ae a perturbativa correction. 
' . 

The QCD Hamlltordan (2.7) aJlowa the same separation due to its 

Coulomb gauge determination. and bears a new problem.. 

The non-Abelian HamiltOnian (2.7) l-eads to a new type of 

the "atatic" divergenciea . in corrections to the Coulomb potential 

( which are absent in QRD ). Because of such new divergences the 

Hamiltonian is not a correct mathe!J16.tical object. unlike the Q1ID 

one. 

For the infrared redefinition of the QCD Hamiltonian the 

aa}'"llJPtotical freedom formula ( which is theoretically correct only 

for a large momentum
1
l0

1 
) is not enough.. 

3.2. The rising potential ansatz 

The lattice calculations
1201 

and the potential quark IDOdel 

~lo8Y12s 1 point out the rieins potential in the amall 

regioiL 

oonatituent 

potential 
lf.2,ZZl 

1088868 

aYoid the infrared problem.. 

tbe:r>efore it 

to 

can 

describe 

be used 

the 

to 

As the rialna potentie.l does not play a aianificant role at 

the Bm8..l.l distances ( in particular. in the heavy-quark sector 
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we think that the modification of Hamiltonian (2.7) by the 

substitution 

H (gzL(riA)J ---> (3.1) 

( where io the rising potential is enough to give the 

correct infrared definition of the perturhative theory for 

Hamiltonian (2.7) and to take into account the nonperturbative 

effects like the constituent maseea of quarks and gluona as well 

ae their bound states. 

The QCD with the "minimal" Hamiltonian (2.7) and the rieing 

potential aneatz (3.1) will be called by ua the QCD of hadrone 

(QCDhf~41 in contrast to the QCD of partona. 

Now. we should coneider the constituent gluon mo.ee and the 

glueball maaa spectrum in the lowest order in the coupling 

constant (g). and estimate the modified running coupling constant 

in order to be convinced in the validity of new perturbative QCD 

of hadrone, Le. QCD" . 

4.The ~description of the gluon physico 

4.1. The eingle-gluon energy 

ht the purely gluonic sector. in the lowest order in g2 

we obtain the following Haluiltonian 

For simplicity we coneider the oscillator potentialru1 

vo"' (234 HeV)
9

• 

I I 

(4.1) 

(4.2) 



The fields E~ 
' 

have the following decomposition 

over creation and annihilation operators 

~=if (~~/ 2 ~{exp(i(w(k)t -kx)]eja~(+)(k)-
e:z:p(- i(w(k)t +kx) ]eja~(-)(k)} • 

(4.3) 

+ e:z:p [- i(w(k)t+kx)]eja ~(-~k)}. 

Here kjej ::: o. e~ ej ::: 6 ij - ~iy!J. k the 

operators a ( ±) satisfy tile coamutator relatione 

[ a~±>(k).a~±)(q)]=o. 

and the oingle particle energy w(k) is defined as the average of 

the Hamiltonian (4..1) over the one-gluon states 

with the quantum numbers b. r and the IDOblentUJD k 

with 

jib,r,k IHib,r,k ~ow(k) 6(k-k")6bb· 

l~r.k ~ = a~(+)(k) IO>. 
(4.4) 

After the substitution of (4.3) Into ( 4.1) azpreeeion 

(4.4) can be rewritten aB the following equation for u.(k) 

(4.5) 

where the left-hand side corresponds to the three te:noe of 

(4.1) To obtain the solution of (4.5) two 

numerical methods are used the ··shooting'"1 
Ul and the 
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Both give similar results the 

solution ie shown in Fig. 1 ). 

In dimensionless variables the asympt.otic behaviour is the 

following 

(1.6) 

~(~) k -> 00 > ~ 

Thus the gluons effectively acquire the atrueture maaa depending 

on the momentum ( mgOl> :/ ~,} (k) - k
2 

) and such that m(O) = oo_ 

We see that the increasing potential leads to the appearance 

of a mass for massless color particles. Le. it has infrared 

regularizing properties. 

w 

3 

2 

1 

/ 
/ 

/ 
/ 

0 

Fig._L The solution 

/ 
/ 

to 

/ 
/ 

/ 

/ 
/ 

eq.(4.5) 

/ 
/ 

/ 

2 

for 

/ 

the gluon spectrum 

expressed in units of the energy scale (V
0

Ncf/3 ~<~ = (V
0

Ncfv3 w. 

~ = CV0 Ncf
1

/
9
k). where the dashed and solid lines correspond to 

the free and bounded ( in a hadron ) gluons • respectively. 
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~ig.J. The masses of glue­
balls with several orbital 
momants 1 in unite of the 
energetic scale 1 ~ = 
CV: N )-t/sM. 

0 0 

K -

Fig.2. The effective potential 
for the spinless glueballa where 
1 is the orbital moment charac­
terizing the orbital excitation 
of a glueball. 

3770GeV -• 
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4.2. The two-gluon (glueball) spectrum 

Now let us consider the simplest bound state of two gluona : 

the scalar ( spinless gluebalL They are a linear combination of 

the two-particle eigenatates of the Hamiltonian 

(4.7) 

where H is the glueball mass and the state is defined by the 

action of the creation operators on the vacuum 

For theBE-l states the spectral equation has the form 

M<PG(ko ~2w{kJ4lG(k.o .k)-~Nc V o{[Al ~k) 
with 

dw(k)]'- ;!u?A.}<l> (k ,k) 
dk k---kGo (4.8) 

<t>G is the wave function of the glueball G. The subatituion of the 

standard decomposition of' <PG into (4.8) gives for 

the "radial'" equation ( <PG ::: l: f 10rJ Y lm(&,p) ) 

l,m 

VJrl ] f 11<1 o 0 , V 11<1 o~23 (kJ ~ ~)+1 r--- r~ 2w(k) k 

Here V fJiJ is the effective potential see Fig. 2 with the 

quantum number 1 of the orbital momentuaL '!be easses H and 

the "radial" wave functions JP prJ were found .ttU.lOerically by the 

"shooting'' methode UJ and are shown in Fige_ 3 and 4 _ One can see 

that the values for the glueball CGasses are in the region expected 

up---to-datec2~ 1 
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t = 0 

t = 2 
0 1 

~ :; . \, 
~- ...... . 0 

1 2 •• -;t,.:__t./ 5 6 

4.3. The running coupling constant 

Fig.4. The 11radial 11 wave 
functions of glueballs with 
the orbital moments 1 =0, 1, 
2 (where 1£ = (V

0
Nc)_,_/3 k 

is the dimensionless rela­
tive momenttun). 

A new perturbation theory in 9 
2 

has to be formulated in 

terma of qua.eiparticlee ( quarks and gluona with nonzero structure 

masses ). It is easy to see that the Green function of the 

transversal gluon 

..JDO<L. - - 1 
u ij ~~ .k,):::(6 ij-kik~ ~7C"k"l:-::,-;i~£ (4.9) 

vaniebes in the region of a emall k and changes into the 

standard p&rton Green function for large momenta k( k ~ 300 HeV ). 

The aaymptotical behaviour of (4.8) in the propagator of 

(4.9) eliminates all infrared divergences and modifies the ueual 

formula of the asymptotic freedolll in the region of small momenta.. 
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To compare the modified formula with the experimental data. it ia 

enough to estimate it with a one--loop diagram and propagator 

(4.9). We substitute such one-loop diagram. or a lllOdified 

polarization operator 

-2~­
o.,-w(q) 

into eq. (1_5) instead of Irfj .In this way we obtain the 

infrared modified running coupling constant having a finite limit 

0.3 

0.2 

0.1 

1 

a:O~o)=---~1'---.4-,N.-"'V:t./s- ~ 0.2. 

f9 [ 1 + ln ( --cA.'o'---"0'-)' ] 

n _ 11 
~~ - 4TT 

' 
CLEO\ 

' ' ' \ 
\ 

' 
' ' 

CUSB ', 
' \ 

' ' 
QCO curves: second order MS 

oC5 [0,11(Nll] 

' ' ' ~ 
' ',, 
' ' ' ' ' ' ' ' ........... 

'- ball ........_ '...._ 
ARGUS ~' CrystaH '-...._ -.... 

' ' 1 ....... ........ 
' ',,, ~~~~'t;.::_o~s ~' K JW·IJEI_ 

'<L .......... __ ]. ___ '-..._ ...._ W•OJET 

--- 1· -~u-- .......... __ ro 

5 

ls~;.s --~~~ 1::-------:_;;-=-f~­}l •EMC(~; so7-- ------- _ -J-
71 e-e- ----::. -::. 

(dote a:-19-85) 

' 10 

Ener-gy- Energy 
correlation 
Average 

TASSO- PLUTO-MARK~ 

' Q{GeVI 50 
' 100 

Fi.g_5. The dependence · of et 
6 

on the momentum Q and parameter A. 

Given are the experimental data and theoretical (dashed linea) 

values obtained by the aaymptotical freedom formula The solid 

line corresponds to the modified formula with amod(Q:::O) 
• 

when N
1 

::: 0, Nc = 3 and A = 110 MeV. 
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This JDOdified running constant ie in the whole 

smaller than amod (0) ~ 0.2 and therefore one can use the 
• 

perturbation theory for all transfer momenta Q
2 

( see Fig..5 )_ 

In 

a"""\o) 
this approac~ it seelll.B better to work with the parameters 

• and rather than with the parameter A ( since the 

parameter A can be ~seed through Ct~O) and V 
0 

). 

5. Unification of the potential model with the effective chiral 

L81JrBDSians 

5.1. Bilocal Lagrangians and the choice of the time-axis 

ht describing the quarkonia in the framework of QCDh one can 

neglect the transversal fields in Hamiltonian (2.7) 

a result. one gets the following effective action for the quark 

sector in the color-singlet channel ( the color factor ~ ~ 
4

) ~ ~ t»/4. 

in this channel. equala (4/3 6 j 14
'
2

"": 
Ia. b) 

s.,, 

Here. G-' - i .._I .. 
-o - 1 .. 

the bare maeses 

-. m -. m 

(5.1) 

is the Dirac operator for free quarks with 

or are the ehort 

notation for the Dirac and flavour indic;:es. iB the 

instantaneous interaction (kernel) with the defined time-axil!!l nJ-1. 

i.e. 

18 



I -'· I ' ?a ~ V<x-o 6(JCI?l ?a A • n =1 • 
t 1 z· z 

(5.2) 

and V<x-l-1 is the oum. of the Coulomb and oscillator potentials, 

V<<' ( r I ,.c I > (5.3) 

For the relativistic description of the mass spectrum of 

mesons and their interactions the Markov-Yukawa principle should 

be used ( as has been stated in Section 2 h Le. 

(5.4) 

Action (5.1), rewritten ehortlytZdl as 

in terms of the Legendre transfot'IOation can lead to the linearized 

( on «N ) fono 

s=(<lii.< -G-i + II} ) + ;e ( H. [I[J?ff. If ] • 

where ~y) ie the bilocal fieldc 2?.2?J Mter quantization over 

the quark fields we get the following effective a.ctionu.•.zm 

(6.5) 

where means both the integration over continuou.e variables 

and the trace over discrete indices. 

Extremum condition for action (5.5~ '• 

coincides with the Schwinger-Dyson equation for the quark · 10888 

operator L ( when H = L ) 

(5.6) 

19 



where ~'<x-y> This equation defines 

the spectrum of quarkB and, in particular, the spontaneous 

generation of the dynamical quark mass. 

Hxpanaion of action (5.5) around the classical solution 

(5.6) over fluctuations, H ':;;: H - ~ • gives the free part of the 

action 

(5.7) 

and the term describing the interaction of the bilocal fields has 

the form 

00 

s,,.,t[H J :;;: i 2 * Tr(~H 1° 
n:o9 

(5.8) 

where the field 'I> 

-1>;:::; ii<x.y> ~ J d
4

z ~<x,2? H'<z,y> 

is introduced for convenience • and Tr is to be lUlderotood as 

(5.9) 

Variation of (5.7) over H ' leads to the homogeneous 

Bethe-Salpeter equation in the ladder approximation to the vertex 

function r, "b > ' x, y > of the bound state 

r b <x,y>=-~KT)<X-}1'Jd
4 z d

4
z C.:_ <Z ,z>r ,_,IZ,z>C:b<z-y> 

<a.> i ZL<a> i Z<o..,..t.:zL<>Z 
(5.10) 

that must be considered with equation (5.6). 

5.2.Constituent quark masses 

Let us consider the Schwinger-Dyson equation (5.6) for a 

quark in the momentum space 

~(k-'--q-l-J>/ '>,:(q) -{ 

'"' 
(5_!1) 

• 20 



where 

Separating the integration variable 

longitudinal and transversal components 

out the integration over qp with 

in (5.11) in 

and carrying 

(5.12) 

one can easily ave that the maaa operator depends only on the 

transversal momentum (k-L) 

L,o.>(ki-Fk71+ s~:(kl-)K1,{f1-); ~w(kl-}e~-k)/(<P(kl-}-- ; 1} (5.13) 

- 1 kt ~ ---n;rr k;'; 
S(Jr:l) is the transformation matrix of the Foldy-Wouthuyaen type. 

Equation (5.11) after integration over the longitudinal 

component (qn) aplite into two equations for ¢<a> (k..l) and E
181 

(kl-) 

B<a.> (k.l·)ain¢<a> (k-L)= 
0 !J d9q\. V(]<L -q.l..) ain¢

1 
al (q.l.) m '., 2 ( 2n> 

(5.14) 

E<a> (k-L)coe¢ 1a 1 (k.L)= I k.cl • !Jd9 q.L9 
2 <2n> 

V(kL -q..L)(k-l.q..L)coa¢
101 

(q.L). 

In the reet frame, where nJ..I::::(l,O,O,O}, these equationa 

coincide with the one a of f12l re . In that work, the numerical 

aolutiona, in the of the oscillator potential and 
-o 

0 case m ~ 

yielding the spontaneous quark maea have been obtained. Equationa 

(5.14) for the oscillator potential with have been solved 

numerically in ref
281 

where it ie ahown that the effect of t.he 

spontaneous breakdown vaniahea when ~0~ (4/3 V
0

)
1

/
9

: 300 MeV (aee 
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Fi.g.6. The numerical solution. 

E(p). to the Schwinger-Dyson 

equation ((5..19). (5.20)) 

for different bare quark 
() . • .t/3 

masses m • m uruts of (4V
0

/3) ~ 

300 MeV. Here E
0

(pJ = (p
2 + (m0 ff/ 2

. 

Fig.6). (Note that the Coulomb potential should yield 

renormalization of the bare mass. ~0 ) It should be noted that the 

clrlral ayonetry breakdown has been essentially eubstantiated in 

.l2Pl 
rer where the authors have discovered tJrla phenomenon instead 

of the confinement suggested due to increasing 

potentiaL(Remember that QCDh baa another confinement mechanism.) 

5.3.New three-dimensional _re~l~a~t"-"i~v~i~e~t~i~cc_~e~q,.,u~a~t~i~o~n'-~f"'o~r~---"" 

The spectrum of a quarkonium ie deacribed by 

Bethe-Salpeter equation (5-10) that in the momentum space is 

written as 

(5-15) 
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The one-particle Green fWlCtion ~~~ [ ?/ -~ t a) (ql-) ] ~
1 

can be 

represented in the• fortn of the expansion over the states with 

positive and neg11tive energies (ql() 

",;(q)= -

'"' 
] ' (5.16) 

whore A<l(} (ql-) are the projectors 

(5.17) 

The vertell: function r(kj P) as well as the lllaas operator 

dependS only on the tr811Bveraal momentum (ll P). The integral over 

the longitudinal I!IOIDentum ia easily performed with the equality 

(n PJ=,("#"'_ 

We denote this integral by 'II pq-L) 

A<-l (q-L)fabJq-LJJ?A<+> (q-l) 
< al ( bl = 

where B.,. is the I!IUID of . the energies of two quarks 

:!.r(ql-)::: Btal(ql-} .+ Btbl(ql-} 

being the solutions of Schwinger-Dyson equatlODB for each quark. 

(5_lll) 

(5.19) 

Then equation (5.1.5} for the wave function VJ p , tabs the 
fona 

(5_20) 
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where y;'±' are the components of the eJIPanBion of the function V-' 

over the projectors 

"'p' ±'(-') :o A~ f)l(gL) ~ ') .. ! il'(-') 
,.. oc- ~ 'P pq . "+ .,.-- . (5.21) 

According to eq. (5.18) '1-' satisfies the identities 

(5.22) 

which allow us t;o define t.he ex:panaion of VI ::: 1/1(+) + VI,_' over the 

Lorentz structurel:3 

L 1 {q.L) + ( r ~J -· n~J 
'<~b) 

(5.23) 

( The equatiorw for the eomponents L. ,. N, 

given in Appendix A ). 

Equations (b.20H5.23) are the relativistic covariant 

generalization of the SchrO dinaer equation with the 

potential for quarkonitmL 

Up to the one particle energies and the projectors equation 

(5.20) coincides in the rest frame ( n = <~O.O.O> with the 

Salpeter equation
1 301 

got for the Coulomb potentiaL In the latter 

case the Scbrt:Jdinger equation is a good approximatioiL 

In our case of the sum of the rising potential (oscillator} 

and the Coulomb one the SchrOdinger equation is a good 

approaimation for heavy quarks with IIDB.88es arucb larger than the 

energy scale of the rising potential (: 300 MeV) t.oo. 

But when the quark masses are llUCb maaller than the 8Cale. 

the solutions of equations (5.20K5.23) , differ not only from 

the solutions of the SchrOdinger eqUation but also from those of 
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the quasi-potential 
• . ( 91l 

equat1ons ln the latter case the 

contribution from the negative energy st.atee is absent and one 

doea not take into acc01mt the Schwinger--Dyson equation for the 

one-particle energy. Just these changes are very important for the 

p~of of the Goldstone theoreRL 

Let us show that equations (5.14) and (5.20) describe the 

purely relativistic effect. the Goldat.one mode which acco.:panies 

the epontaneoua ctrlral synnetry breaking,. The latter means that 

the nontrivial eolution <. sin¢ of equation 

the zero current mass m 
0 

=0. 

Comparing equation (5.14) for 

equation (5.20) we see that the same fun:::tion 

(+) (-) 

ll' = ll' -t ¥' 
sin¢ . r, --F-, 

(5.14) exists for 

,with covariant 

(5.24) 

(where F Is a """" scale parameter) ia a solution of equation 

(5.20) with the eigenvalue /]} 0 0 

The proof of the Goldstone theorem in 
f(UJ re. where the 

Salpeter equation ia considered only in the reot frame 

(ry::~l.O.O.O>) is not correct as for the Goldstone mode a state in 

the rest frame does not exiet ( in addition the Lorentz structures 

have been confused. therefore the massless pion has 

been traneformed into the fourth component of a vector particle ).. 

ThoU41h there are inaccuraciea in ref_rul the conclueion 

about the strone mass splitting of n- and p-mesona am a 

qualitative structure of the light quarkonia spectrwo (for the 

oscillator potential and m0 
jt.il are true and are in fair 

agreement with the experimental data 

Thus equationa (5.14}-(5.20) for the sum of the riaing and 
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Coulomb potentials qualitatively describe the spectroscopy of 

light and heavy quarkonia_ 

5_4 Quantizatl~~_of the bilocal fields 

For calcu]at.ions of matrix elements of meson interactions it 

is necessary to use the expansion of the bilocal fields M'"(x.y) 

over the orthonormalized eet of solutions of equations 

(5.14}-(5.23) with eigenvalues and energies 

o/p' +~ 

H"(x,y) o H"(ziXJ o <;' J--;:---;-id7";fp~:;;:::::;::;;;- J~ e 1""* 
L.. (2n)3 z -f2w (P) (2n)'. 
H H 

*{ eiPX r Ifq-1-l PJ "'fPJ + e -PX r Ifq-1-J aJP! } ' 

where H is a set of hadron qwmtWD IUDibers 

rffq-1-IPJ o n<.-"uJ .,'.'<q-1-J + O<.+"u> .,'-'<q.LJ 

rffq-1-IPJ <1\-"u> ,r'<q-LJ + n<.+"u> ,'-'<q.LJ 

(5.25) 

(5.26) 

The annihilation and creation operatore for mesons with the 

quantWD numbers H satisfy the relations 

[ ajiPJ.a:i . (F) ] • ::: 6mr 6 <P-P); [~.ai;-]oo. (5.27) 

The normalization of solutions of (5.21}--(5.23) is defined from 

the free action (5-9) (like in the local case
1171

) 

J~ [ <2n> 
] 0 1 

(5.28) 
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For the calculation of (5.26) we use the expansion of (5.9) 

The Green funct~on for the bilocal fields in tel'IDB of the 

vertex function (5.26) baa the form 

5.5. Matrix e'lemen:ta 

Matrix elemento for action (5.8) can be written in tei'IllS of 

the field operators II ::::: ~ · H • 

§(x.y) :::::) ~§/2-- «fq e qx I d. p · I i 
ft < o< l /2wH ~ 

[ eiP"tH(ql-j P).;(P) + 

e -iP-\"H(q.LJ PJ..,;-~J'l ] ' 

where 

0a <ql-JJ'l = ">: < q + f J r a (ql-JJ'l 

0a (ql-JJ'l = ">: ( q - f) FH (ql-JJ'l. 

The matrix elements for the interaction tf"' 
the vacuum and atatea of n ueaons ie 

n n 1/Z 

(5.8) between 

<Hp·"p·-~.Hplw'"'!O>:::-<z,n" 6"<}:P1>n [c2rr~ ;_;;--" J K"'u~---1~,) 
12 n i=1 j;=:t. i 
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Rx;pressioll8 (5-25)-(5_30) give the Fa~ rules for the 

quantWII. field theory in tel"Dl8 of bilocal fields. 

5.6.Low-energy limit of bllocal action 

As a nert step let u.a conaider tbe bilocal meson interaction 

in the low-energy limit. At firat we define the pion constant Fn 

of leptonic decays by the formul.a 

where 11-' is the matri.z element of the leptonic current. 

'lhe interaction of a meson with the leptonic current ie 

defined by the redefinition of the ID8.8B operators ( ;o 
"o 

--> .. 

- y !:5 Jl (PJ exP(i~ X) ) in the action (5.1). Then the action s<2 
' 

In (5_31) takes the form 

The substitution of expansion (5_25) 

(5.32) leads to the following ~ssion for Fn 

28 

into eqs. 

(5_32) 

(5_31) and 

(5_33) 



If a pion corresponds to the Goldatone mode (L
1
=8 in¢) (see 

(5_24) )~ expression coincides with the normalization 

condition for L
1 

and L
2 

when the equality F=Fn takes place. 

We can also find the solution of the equation for 

L
2 

which has the form 

f d
3 k.L H {, (q_ . ..LJ..::2E(q-l-)L -t --sV(qL. 

")T 2 1 ( 27l) -
(5_34) 

up to- the order If one can aee that 

the right~hand ~ida of eq. (5_34) is equal to (In 

accordance with 'eq. (5.14) }. In this caae we get L:r ..,_ 

The substitution of the last expression "into the definition 

of Fn (5.33) and the conventional definition of the vacuum 

expectation value 

<qq> = iNc 2tr J-4j.>' r. (q) o - 2N -JI:~ - I d' j_ 

L c < 21r) sin ¢ 

givea the well-known low-energy theorem 

-2mo <qq> 

Thus. for light. quarkonia the elements of the chiral Lagrangians 

here arioe which very olightly depend on the form of the 

potentiaL 

This independence of the biloca.l fielda of tho potential in 

the low-energy region can easy be explained if we take into 

account that the bilocal meson field H '(><,y) ia connected with 

the normalized wave function 'l'(xl- - y.L} by the relation 

In the low-energy limit the wave function .. hae a 6-tn>e 
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asymptotic& 

approxiaation of the bilocal field 

~x.y) _ 6•(x-y) . 

The same lilllit arises in the case of a local potential or the 

local Bethe-Salpet.er kernel 

l(x-y) _ 6•(x-y).. 

Just such a potential for the four-fenaion interaction wae the 

initial one in the original formulation [ SZl of the spontaneous 

chlral snaetry brealdng. 

Recently it has been shown in ref. rnJ that a 6-type 

potential leads to the phenomenological chiral Laat-analana- In our 

case thle Lagrangian occurs due to the ~ical behaviour of 

the qUarkoniWD wave fWlCtion. Light meeone in tbe fra.ework of our 

approach in terms of action 

were .studied 1n ref.9 ~ 1 

e.Conclusion 

(5.1) but with a 6-type potential 

We have Bhown that the 8-matriz for atoms and badrons (UDJJke 

the s--.atrix for asymptotical free elementary particles) depends 

on a sause ae the ele~~~entary particles are off .am~-ehell in the 

bc:nmd states. 

The 8-ma.trii for bouo:l statea ebould be constructed ~ the 

projection of the Belinfante energy-~ tellltor on tbe Gause 

equation solution for the time c()q)OD8Jlt ~ =fl?Al (we call this a 

''ainimal quantization}. Tile .um.ai quantization leads to the 

J'e:rmum rules in the Coulod:J gause with the Heistmberg-Pauli 

transformation group that chanses the aauae for a new relativilltic 
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frame. In QCD this quantization can explain the confinement as 

the destructive interference of phases of the topological 

degeneration of the physical variables corlatructed by the explicit 

solution of the Gauaa equation(~51 

The time component or the time- rude of quantization 

is chosen in according to the Markov~Yukawa description of the 

norllocal object in the - quantum field theory: the time-axis is an 

e\genvector of the bound state total momentum operator. 

In QED the Lamb shift calculation does. not contradict these 

principles but rather confirms them. 

We have shown that the QCD Hamiltonian determined ln the 

infrared region by the rising potential aneatz, besides the parton 

model in the specific gauge, , contains the nonrelativiatic 

potential model for heavy quarkonia, the - chiral Lagrangiane for 

light quarlronia with their spectrum, the gluebi!.ll physics and the 

modified aeymptotical freedom formula with the amall effective 

coupling constant in the whole region of transversal momenta.. 

The QCDr. can be applied to the description of decaya of heavy 

quarkonia into light mesons. 
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Appendix A. 

Let ua consider the equation (5.20) in the terme of (5.23) in 

~he rest frame T) ::: (1.0,0,0) • 'tfli ::: (O,N' ) 

:ll 



(A.l) 

-J~V(k_l- _1.>[ (A A -C" c' +(-)+(-)B' B' )6kt + 
<2n> q (<>., <b> Cal <b> Cal <b> 

+Ck d +d d -(+} -(+)i' B1 -(+)B1 rf + 
\al <b> '"' <b> <o.> <b> <a> CbJ 

· l<l t ( c'" A Ci. A ) ] N' ( ~) 
+l£ (O.J(bJ+(b)(().) i<2lq, 

where ~B'.rf are defined with the help of the matrix (5.13) 

::: A, a> {k.l. ,q.J...) 

= a: a> <k.J.. ,qj._) 

d; (lj (k.l. .q.L) = 
.J. 1- .L 

s,o.>(q) = .einC2f><oJ(q )) • 

In ref's tul the following errors have been done i) the 

etructurea of and are confused, ii) the 

equation for ~,21 is true up to certain omitted terms. 

'!be systems (A.l) • describe the spectrum of bound states witJl 

arbitrary potential tZ&l. 
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