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1. Introduction

QCD as a perturbative theory is applied mainly to describe
the deep-inelastic reactions by means of calculations of the
imaginary parts of the guark-gluon diasramst."m

The status of the perturbative theory is uniquely defined by
the asymptotic freedom formula and the consideration of guarks amd
gluons as free particles on their mass-shell (e parhonﬂ).m

In this paper we attempt to construct a perturbative QCD of
hadrons in order to give a unigune description of the spectra of
hadrons and their elastic and inelastic amplitudes.

There are two facts which prevent the conatruction of a
perturbative QCD of hadrone: i) the consideration of guarks and
gluons aa the partons on their mass-shell, and  ii) the
generalization of the asymptotical freedom formula to the
non—asymptotical low-momentum region ( where it becomes a
hypothensis ). The firast fact yields the “gauge Iindependence”
illusion weaning that to calculate the S-matrix one can use any
gauge and any time-axis of gquantization. The second fact leads to
another illusion of T“strong coupling” which means that the
perturbation theory of QCD is not valid outeide of the
asymptotical region To remove these ijllusionn, we shall use the
theoretical (GQED for atoms) and practical (the potential model)
experiences.

The paper is o;‘gan.ized as follows. In Section 2, the “gauge
independence” illuaion and ite elimination by thie mininal
guantization method '“™¥ are considered Section 3. is devoted to
the wsecond illusion and its removal by means of a rieing

potential In Section 4., the perturbative QCD of gluons and their



bound atates is discussed. Section 5., presents the perturbative
theory of quarkonia, where the umification of the potential model

with the effective chiral Lagrangians is demonstrated

2. Removal of the "pauge independence” illusion and the minimal

guantization method

2.1. Relativistic covariance of bound states

Bound state computations in QED are carried out mainly in the
radiation (Coulomb) gaugefw This Eauge has a mmbar of
advantages. In particular, it provides a natural separation of
binding {the jinstantaneus  Coulomb) and perturbating (the
transversal-photon exchange) interactions. However, the radiation
gauge is not manifestly covariant. The dominating belief is that
the relativistic covariance of bound states is realized by
tranaition to the covariant gauge 8.2

In the literature dJdifferent definitions of the transition
from one gauge to another are used. Here by this transition we
understarnki a modification of the Feynman rules e

As well known, the Green functions, S-matrix and all physical

results are invariant under the substitution of variables e

T

_ g g gt
Ai_-V[A](Ail-ai)V[A] s
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whare ¥ [A°] traneforms the Coulomb gauge fieldn ( A", ¥ ) to

covariant gauge fields ( a3, »? ) _ This substitulion ia

equivalent to the wodification of the Feynman rules { le. the



gauge change ) and inclusion of spurious diagrams induced by
VIA°] ( which do not follow from the initial Lagrangian }. Such
additional diagrams do not contrbute on the mass-shell, and the
invariance wunder the gauge change takes place. But off the
mass-shell the dependence on a gauge takes place. In this case the
change of a gauge by the Feymmwan rule modification is equivalent
to the inclusion of the spurious diagrams (owing Lo the invariance
under (2.1) ) .

8,5

There iz a set of works devoted to the proof of the

gavge independence of an atom apectrum In these tLtreatments, the
Coulomb binding interaction is ueed in the rest frame with the
choice of the time -axis My T (1,0.0,0) . However, all the

authorse have not taken into account that the vector Y).u

{ contained in the Coulomb part of the interaction ) indeed can be
arbitrary, and thal a transition from one vector n'u to
another ‘n’_‘l { n; = 1 ) is realized by means of a special change
of the pgauge.

It is easy to check that the u'sual Lorentz traneformation
( P-—->P " ) or special gauge change ( n ~--»> 7 } hbreak the
dispersion law (ie P Za M B) ) The dispersion law is invariant
only under a combination of the usual Lorentz and special gauge
transformations ( P -->P ‘,n#—-—> fJ'P) snatisfying the paralellism
of the time-axis to the total momentum ( N, o~ Pp, rrj; ~ I-':; )
This combined tranaformation has been pointed out at first by

(123

Heisenberg and Pauli, and the parallelism is equivalent to the
Markov-Yukawa description of ponlocal fieldaiﬂl ie. to the
choice of the relative space and time with respect to eigenvectors

of the total momentum operator.



Thus, we have seen that the dependence of bound state
calculations on a gauge does not only exist, but it is necessary
to provide the wrelativistic covariance. Certainly, if we take into
account the spurious diagrams { in accordance to eq(21) in the
transition from one gauge to another, then the bound state
calculation resulte do not change. The radiation gauge is unique
which does not demand these spurious diagrams to reproduce the
observed Lamb-shifts in atomic spectra.

What is a reason of the peculiarity of the radiation gauge?
And why does the relativistic transformation changing a gauge
arise ( in the off mass—shell case )? These gquestions get a

natural explanation in the minimal guentization acheme'? ™

2.2. The minimal guantization scheme

The Feynman rules in the radiation gauge and the relativistic
transformation accompanied by the gauge change are Jjustified by
the minimal quantization scheme of gauge f{ield theories that has

Lo

been formulated in refs*™™ &s the following axioms:

i) the energy-momentum tensor is the Belinfante one

T“v = F “)‘(x)ﬁ)\vm) + i‘(x:(jy“vp)i«m - gpva) + %o)\[i(x,rhyu\nm] s

(2.2)

A I _ P N
where [T, = 3 2, W, g, 7 g, ¥, . bo and F, = are
the Lagrangian and the usual tension, respectively, and vu in
the covariant derivative;

ii) an the physical gquantities {the Hamiltonian and the



Belinfante tensor) are defined on the explicit solution of the
Gauss eguation for the time component of the gauge field Ao, j.e.
5 L
S L -
& AO
iii) the minimal set of only physical wvariables is guantized by
diagonalization of the Belinfante Hamiltonian.
For example, in the case of QED, the substitution of the

Gauss equation solution

!
Ao[A]*EZ“’i’oAi*-'}o)-

into expression (2.2.) leads to the rnonlocal transversal
2
variables ( since Foi =& Ai - &i A Al = ( 61‘1 - aia od )aoAi -
-, T
-267°3.7 )

ii'm = VIAI ( A

s
ifai)V[{A]

i V sexp(3e0,A A=ich . 2.3
¥ [A) = VIAl ¥ .

These nonloccal variables are invariant under the gauge
transformation of the initial fields {A;;¥). The usual Lorentz
transformation of the initial fielde with the parameters £y
{ éz Ak = skﬁo + £y (xiot —tt’klﬂk ), on the msolution of the Gauss
equation, leads to the following transformation for the
transversal variables as the fﬁnctionala on A and ¥, i.e.
A DA+ 60 A1~ Ay [AD= 6] AL - G4 2.4
VLA 6T A LW ST - [AL¥] = 08 & ied, B

where
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is a special gauge transformation pjaranetera that changes the
- O

time—axin [N M M (tﬁLvo).,_l .

) The same transformation laws {2.4.) are valid for a wusual

boost of the quantum fields, for example,

ioy [ My L TS N =0

where Hok:Id’x(Tnoxk—Toktl

It should be noted that the =minimal quantization is unique for
which the relativistic tramsformation laws for the ciassical
variables (2.4) and the guantum cnes {Z2.4) coincide.

In the quantm perturbation theory the combined
transformation (2.4) leads to additional diagrams with the
vertex A defined by the Belinfante temsor (2.2) -*'°' As we
have smeen in the previous subsection, such additional {spuricus)
disgrams are equivalent to the change of the gauge.

The consistent minimal quantization acheme yields the result
that the radiation geuge is & unigue one that appears without
gauge fixring as an initial assumption .

But the minimal gquantization scheme leaves a freedom for the
choice of the initial time—axie { m 2 Az we have seen, the
chotce of » =must be done under the Markov-Yukawa  principle

{ Ny - Pp ), which provideas the relativistic invariance of the

[TE))

dispersion law.

For an interaction of many bound statea describad by the
bilocal fields Mx,¥) we ouggost to choose the time-axis for a

bound state as an eigenvector of its total mowmentum operator :
P owry = 12 waw 25
” r—i,xp ¥, (2.5

where X = (x + ¥ 2 is the total coordinate.



A a result, the spectrum of fermionic bound states and
their interactions in the neglect of radiative corrections ( due

to the transveraal-field exchange ) ca.ﬁ "be described by the

effective act.'xcm[“l

- 5 VAN
Bopp = I d'x { F(z) (ig/- = ) ¥x) (@.6a)

| £y T o)
-3 | &y T, @@ ¥ (7))
2 -[ ﬂz ol! alﬂlpzﬁz Bi az

where tyhelkﬂxml K’ haa the form

U = nf 1y s / :
[ 8" @ Japn, = §ap V02 s6m 9 .60
L _ LI FAREY)
[ X, =x, x, » %, = np(:m),. »} =, ] .
Vix) im a potential This action according to ret""  in

relativistic invariant.

Such explicit construction of the nonlocal physical variables
for the non-Abelian gauge theory hss been done in refa.[.'_m 1
hax been shown that this construction of the varisbles contain:
their topological degeneration ( due +to the homotopy group
nEws) = z ) and leads to & coofinewent mechaniem ae a
destructive interference of the phase factors of the gemeration[s.]
The minimal guantization axioms (i) and (ii) can explain the
quark-hadron duality in the spirit of the t° Hooft mechaniem .

Generalization of the minimal quantization scheme to the
non~Abelian theory reguires an additional axiom:
iv) the transition to purely transversal nonlocal variables ( like
(2.8) )}  which are aingled out by the principle of the

correspondence to the perturbative theory.



The minimal guantization can be reduced’ *’ to the explicit
gauge invariant construction of the Schwinger oparator
quantization of the non—-Abelian theory sam with the

Hamjltonian

H(gZD) = fdsx[% (E:(x))z + % (F;’fx;)z + ;qp(iykvk + o gty  +
(2.7
+ %Id’x dy Jfotcx: [ gzlfh((x—w[m ] J?Mcyx + nonlocal

Schwinger terms.

_ a,a _ a _ a abc b ,c
Here Y = 9 + 8 A A2, Fj = A7 - 9AT + 8 £50 A AT,
= ofp® C - -
J:ot“g("/zh“fmf;ai » Ay = 2K =0 , 8 s the
coupling constant, and the function PPrx-y [8) satisfies the
equation
1 ac
{ (vioo}oz_ (vi"o)} fb((x—yv[m_ = & x-p sab {2.8)

¢ where ngzéaboii»gf"bca‘;.)_

As to the Schwinger terms, they are defined from the Lorentz
covarience condition . ©
It is eapy to see from (2.7) and (2.8) that in the cane
of QED the function Iix—-y[A) is the same but not the Coulomb
propagator. So, the interaction part of Hamiltonian {2.7)
reproduces the Coulomb gauge description.
We wuse Hamiltonian 2.7 as a starting point for

constructing the perturbative QCL of hadrons (QCDMOM).



3. _Removal the "5trong coupling” illusion or the infrared

redefinition of the QCD Hamiltontan

3.1. The infrared divergencies of QCD

From the point of view of the description of atoms in QED,
there two types of the interaction: +the ‘“static”™ one that
determines the nonperturbative structure of the bound state, and
the d:m?mic one that ia considered as a pearturbative correction.
The QCD Hamiltunian (2.7) allowa the same seperation due to its
Coulomb gauge depexmjnation. and bears a new problem.

The ’nqn—Abelia.n Ha.miltdnj:/a.n\ . leade to a new type of
the “static” _djvergemies L in comcticms t» the Coulomb potential
{ which a.re- absent in QED ). Because of such new divergences the
Hamiltondan is not a correct mathematical object, unlike the QED
one.

For the infrared redefinition of +the QCD Hamiltondan the

agymptotical freadom formula ( which ie theoretically correct only

for a large momentum } is not enough.

3.2. The rising potential ansatz

120]

The lattice calculations and the p:otantia] - quark model

phenomenclogy - point out the rising potential ‘in the esmall
momentum region. This potential i ueed to  describe the
constituent gquark masses ', and therefore it can be umsed to
avoid the infrared problem.

As the rising potential does not play a asignificant rols at

the small distances { in particular, in the heavy—quark asector )

10



we think that the modification of Hamiltonian (2.7) by the
substitution

H s” De| A

> H Vg + o Dridt (31)
{ where VR is the rising potential ) is enough to give the
correct infrared definition of the perturbative theory ° for
Hamiltonian (2.7} and to take into account the nonperturbative
effects like the constituent masses of quarks and gluona as well
as their bound states.

The QCD with the “minimal” Hamiltonian 2.7) and the rising
potential ansatz (3.1 will be called by us the QCD of hadrons
(QCDh)“,“ in contraat to the QCD of partona.

Now, we should consider the constituent gluon mass and the
glueball maas spectrum In the lowest order in the coupling
constant (), and estimate the modified rurming coupling constant
in order to be convinced in the validity of new perturbative QcD

of hadrons, ie. QCD, -

4.The QCD-description of the gluon physics

4.1. The single-gluon energy

In the purely gluonic sector, in the lowest order in gz .

we obtain the following Hemiltondan
_ 3 1 a z | 1 a 2
H - J-dx[z(Bitm) z(oiﬁd«m) ]+
40

3o o [ dx Sy Fw B Ve - v K K.

For simplicity we consider the osacillator potential““

2

Vgo = Vo x, Vv, = (234 MeV)'. 4.2)

11



The fields E? and a2 have the following decomposition

i
over creation and annihilation operators a}:‘ *

B} I ey I {oxe[ 1w 1] efabt " go-

- exp[—i(w(k)t +kx) ]egag(_)(k)} .

{4.3)
ab{ dk I exp[i(emt —kx)]erab“)(kn
3 (o3 2 2(d(k)1 P Jr
+ exp [—i(w(k)t'rkx)]ega :(_zk)}.
k. k
Here kl_jeg = 0, e‘:es = éi.‘l - —ige=d, E = |Xx. the

)

operators a satiafy the commutator relations

b~} c{+) ]_cbe —
[ .0 @] -7, s0c-a,
[ﬂ:_xt)m,agt)(g)]=0
and the single particle energy (k) is defined as the Average of
the Hamiltonian {(41) over the one-gluon statee | b r, k >

9
with the guantum numbers b, r and the momentum k

§b',r',k' [Hibr, k 2 =0k} S(k-k)s
& b(+) 4.9
with bk 3 = a2a) fo>.

After the substitution of (4.3) into (41) expression

(4.4) can be rewritten as the following equation for (k)
w(k) K 1 d(n) 17 L) .
2t En Vo Ny { [ 20(x) dk = = e, (4.5)

where the left-hand side correspomds +to the three terms of

Hamiltonian (41) . To obtain the eolution of (4.5) two

1283

numerical methods are used : the Tshooting” and the

12



Runge-Kutta-Gill methods™" Both give similar results ( the

solution is shown in Fig. 1 ).

In dimensionless variablea the asympltotic |behaviour is the

following
) 2
2B 5o ,
N =¥ -1.-3 .
mm(g_(ucvo) (;] (4.6)
wk) o3> k

Thus the gluons effectively acquire the structure maes depending
on the momentum ( mg(kz) = W® (k) - k;q ) and such that m{0) = w

We aee that the increasing potential leads to the appearance
of a mass for massless color particles, ie. it has infrared

regularizing properties.

w
3

0 1 2 3 k

Figl. The solution to eq.(4.5) for the Eluon apectrum
expressed in units of the energy scale (V o Nc ’1/9 HAw = (Vo NC )-ng.
E = (VK ¥*°K), where the dashed and solid lines correspond to

the free and bounded ( in a hadron } gluons , respectively.

13
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4.2. The two-glucon (glueball) spectrum

Now let us consider the simplest bhound state of two gluons
the acalar ( spinlesa } glueball. They are a linear combination of

the two-particle eigenstates of the Hamiltonian

Hi b,r..k:c,srk)ggﬂ{ | b, s,—bgg ’ (4.7)

where M is the glueball mass and the state is defined by the

action of the creation operators on the vacuum

lb.rge.o,-k> = aPm o jo> -

=4

For thene states the spectral equatior has the form

1 1 de(k)}’ 4
e g0, =2k, -3 Vo [ty S| - feves Joge, b .8
with
az
AL = 3 20k, k) :bE | b, b, r, ko>
r

‘DG ia the wave function of the gluebali G. The s=substituion of the

standard decomposition of' @G into (4.8} gives for £, = k wF)
the "radial” equation { @G = z fl(k) YIm(B,p) }

Lm
2
SEE L [ne v ] w0 s 0. v few iy UL

2
d 2w (k)

Here WV I(k) iz the effective potential ( see Fig. 2 ) with the
guantum rnumber 1 of the orbital momentum The masaes M and
the 'radial’ wave functions [k) were found mumerically by the

(24

"shooting” method and are shown in Figs. 3 and 4 . One can see

that the wvalues for the glueball masses are in the region expscted

up—t‘.cv—d,tﬂ:e:zsl



Fig.4. The "radial® wave

b2f 1=0 functions of glueballs with
2 . the orbital moments i =0, 1,
o1 7 '-:\ 2 (where k = (V N) ™'k
% ‘A T is the dimensionless rela~
) 13, in L * ol i
*. NS - tive momentum).
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4.3. The running coupling constant

A new perturbation theory in g2 has to be formulated in
terma of quasiparticles ( quarks and gluone with nonzerc structure
magses ). It is easy to see that the Green function of the

transversal gluon

D'?}d(ko "‘):(‘Sij‘kik;l)iz_—“”a‘z%k)_—ié ’ kiz]_llcfki (4.9)
vanishes in the region of a emall k and changes into the
standerd parton Green function for large momenta K k > 300 MeV ).

The asymptotical behaviour of (4.6) in the propagator of
(4.9) eliminates all infrared divergences and modifies the usual

formula of the asymptotic freedom in the region of small momenta.

16



To compare the modified formmla with the experimental data, it is

enough to estimate it with a one-locop diagram and propagator

¢

4.9). We substitute such one-loop diagram, or a modified

polarization operator

4@y = L [ d'a ™% ™%, ™ = a‘z]—i—e

- w ()
into eg. (.5} instead of lnl%: In this way we obtain the
infrared modified running coupling constant having a finite limit
mo 1 . 1
o d(0)=—-——-————ﬁc—v:)/3; = 0.2, # = 4qr -
AL+ nl—g—)1
r ~— T e ———+ , r T
[ \\ \\ -
s CLEO '\ \
0.3 N A E
Ut \\ \ QCO curves: second arcder MS 1
\Jeuse hN s [Q,A N
\\ N
L N ~ N 4
~ \ N
~ ~ \\

01}

-

¥\\\ ~ 400~ WelET
N .

1 == N T~ WOIET]

—
L o~ ~ . \“[__\\\zgg ~——i - =
peomE ~— 1007 TS Tf«'s’
F{‘EMC(E so/ T~ LT
A e e
wresms  Egg i
Avercge
TASSO“PLUTO'MARK‘
' 1 L Loa aad " x 1 | PR T |
1 ] 10 Q{Gev] S0 100

Fig 5. The dependence - of a_ on the momentum @ and parameter A.
Given are the experimental data and theoretical (dashed lines)
values obtained by the asymptotical freedom formula The solid

line corresponds to the modified formula with a:“(Q:O) = 0.24
whean = 0, Nc = 3 and A = 10 MeV.



This modified rumning constant Ot:.Od

smaller than a:'c’d ) < 0.2 , @snd therefore one can use the

(@) is in the whole region

perturbation theory for all tranefer momenta Qz { see Figh ).
In this approach, it seems better to work with the parameters
ct:’Od(O) and Vo rather than with the parameter A ( pince the

parameter A can be expressed through a:md((}) and VO )

5. Unification of the potential model with the effective chiral

ians

5.1. Bilocal Legrangians and the choice of the time-axis

In describing the guarkonia in the framework of QCDh one can
neglect the transversal fields (A;) in Hamiltonian (2.7) . As
a result, one gets the following effective action for the guark

n

sector in the color-singlet chamnel ( the color factor ?\':m (b)/4,
in this channel, equals (4/3 & _, J***%:
. . _ 1 _ n
8. = Id‘x{ qm[ Gg.: ]qm~ 5 Jd‘y 3. IE [x :x—y.] *
-t . n 2“:: qﬁz . qa‘ as\n:pzﬁz
x g 2q ‘Y)} * (51)
"%, |

"o

Here G:; = i ?/ -~ m is the Dirac operator for free guarks with
‘m

] o

the bare masses = ( m!,....mi) , a or el are the short
f

notation for the Dirac and flavour indices, K’ is the
instantanecus interaction (kernel) with the defined time-axis n“ .

ie.

18



n ~ W / z_ )
[K (m]afas.;azﬁz b 7aﬁ Vo o ?az'ez - e 62

14

and Viel+ is the sum of the Coulomb and oacillator potentials,

o2

wo =3 (-2 v, (r=|x] ). (5.3)

*

For the relativistic description of the mass spectrum of
meosons and their interactions the Markov-Yukawa principle should
be used ( as has been stated in Section 2 ), ie.

e . X =Laxep 5.4)

"o P= X

s b

[>-1-]

Action (51), rewritten shortly as

i

§= (6 -6 - g taw. K" @ |,
<

in terms of the Legendre transformation can lead to the }nearized

( on gq )} form

s=(a@ - em]+F [ mmT N
whers Mx,v) is the bilocal field *%*" After quantization over
the quark flelds we get the following effective action**"
s, M=8fLlmE"*y-tTclnr-6" ¥ 3 (6.5)
off - Vel 2 ;o b -

where Tr means both the integration over contimaous variables
ardl the trace over discrete indices.
Extremum condition for action (5.5)," 55, f5M = 0,

coincides with the Schwinger—Dyson equation for the guark mass
oporator £ (when M=ZX )

ITx-y = ;105‘€X—Y' + i Kn‘x"Y’ %‘X‘Y’ ! o (5.9

19



(£ 3]

where G;:‘ﬂx—y? = i r;/cﬁ x-yp - =Zxx—y . This equation defines
the spectrum of guarks and, in particular, the spontaneocus
generation of the dynamical quark mass.

Expansion of action {5.5) around the classical solution
(5.6) over fluctuations, M = M — £ , gives the free part of the

action

5o 0= { K" e | . D

froe
and the term describing the interaction of the bilocal fields has
the form

o
5 IMT=i)s e =1)2s3%=)u”, 5.8)

int
n=3 n=3 n=

where the field 2
P = Fx.y = j d'=z Goex,® Mzy

is introduced for convenience , and Tr is to be understood as

T 8" = tr | d‘x‘d'xz.__d“xn Fox, ,x Wex, xp Ex LX) . (5.9)

Variation of (5.7) over M - leads to the homogeneous
Bethe-Salpeter equation in the ladder approximation to the vertex

function T <x,¥: of the bound state

<ab

T . _
T iapy Ty ="K «ny':J.d z,d 7,6 02, LI LR T e & (5.10)

that must be considered with equation (5.6).

5.2.Constituent guark masses

[y

Let us consider the Schwinger-Dyson equation (5.6) for a

quark inthe momentum space

+
r e w0n s (280 voe-ahy/Gte . (510

[ %]
* tar

20



where

Yk )= are ™ vix) s, Gz<q)=dee‘i‘*" &G p=ap, -

Separating the integration variable in (511) in
longitudinal and transversal components qp:{gp,ql—) and carrying

out the integration over qP with

" 2
i'dg :id(gn! d gl

« 2m> (2 2 * (5.12)

one can easily see that the mass operator depends only on the

transversal momentum (kb)

Z, 0kt 87 eLR Oty sfw(k#yexp{-k;’ tom > % ]} (513)
- 1
K TR R

S(kt) is the transformation matrix of the Foldy Wouthuysen type.
Equation BV after integration over the longitudinal

component. (gn) aplits into twe eguations for ¢‘ as L} and E‘m(k-‘-)

(G

tas 2] «2n> )

Tql
B o, (E)sing  (kb)= o - lJ- 4.9, Y(kJ- -qt) sing
(5.14)

. - 1 - -
E(n} (k—L)cow‘ a) (k)= |kl-|+ %J-%B Y(kl‘ —qJ—)(k-Lq*-)coﬂqb{n) (ah).

In the rest frame, where TJF:(LO,O,O), these equations

coincide with the onea of ref'® In that work, the pumerical

solutions, in the case of the osacillator potential and m = [s] ,

vielding the spontaneous gquark mass have been obtained. Equations
(514). for the oscillator potential with 1:10# o} have been solved
vumerically in ref = where it is ohown that the effect of the
spontanecus breakdown vanishes when 1;10;; (4/3 vo):/s: 300 MeV (mee
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Fig6. The numerical solution,
E(p), to the Schwinger-Dyson
equation ((519), (5.20))

for different bare guark

A3

masses w’, in umits of (4v_ /3]

300 MeV. Here E (o) = @ + @’ /)™

a~
~

Fig.6). {(Note that the Coulomb potential should vieid
renormalization of the bare nass, 1;10) It should be noted that the
chiral symmetry breakdown has been essentially substantiated in
ref”’ where the authors have discovered this phenomenon instead
of the confinement suggested due +0 an increasing

potential (Remember that QCDh hasg another confinement mechaniem)

5_3.New three-dimensional_ relativistic equation for a

quarkon ium

The apectrum of a quarkonium ia described by the
Bethe—-Salpeter equation {510} that in the momentum space is

written as

T (k| Pt e e _ qiw/faier B ol Paga- By (5.15)
[ anfE )y &R Padal e Py
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—1
The one-particle Green function Gz(g}:[ g —Z (qJ-) ] can be

tal

represented in ther form of the expansion over the states with
positive and negative energies (an)
A" (aly AL (qh)

- . {a) {ar N
G (2= [zm;(ﬂ*)*(qn)-iﬂ e e ant-ie ] (5-16)

whare A‘m(qi-) are the projectors

A T@bE s@t) A70) S(aty ALTOEC 1+ B 'y (517)

The vertex function T(k|D an well as the mass operator Z(kel)
depend8 only on the transversal momentum (nF. The integral over
the longitudinal momentum is easily performed with the equality

np=yY ¥ .

We denote this integral by w Iqu—)

J‘d(n Py

v dab) Gelat ) (o, (al B G (o~ ) =
b

(518)

A( + 3 (qJ-)l:abigJ—] P)A( - (qJ-) A( - (gl)rub‘q‘Ll P)A( *2 (qL)
tar (b fa) (-3

E (at) -~/ F - e E(gh) + ¥ F - 4

where EI, is the smun of the energies of two guarks
Efah) = E _(a) + B, (@Y (519)
being the solutiona of Schwingar—Dyson equations for each quark,

Then equation (515) for the wave functiomn v P takos  the
form

[& (s # v an R/ 7 v @ = : (5.20)
- “J“’*stth sy ey g0t

LRI
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+
where w") are the components of the expansion of the function v

over the projectors
b} i
v @ = AT (@D v gat) AL Pghy - (5.2)

According to eq. (518) « aatisfies the identities

H
o
i~
bl
N
N
8

AT @by v AT = A ) v A Mg =
which allow uva Lo define the expansion of ¥y o= w + w‘f’ over the
Lorentz structures

L5

v = s ke { v, byt e (r, oy LA OO

Ttab: {ab}
(5.23)
{ The eguations for tihe component.s L,=L* L N, =N * R, are
given in Appendix A ).
Equations (5.20)-(5.23) are the relativistic covariant

generalization of the Schrodinger eguation  with the rising
potential for guarkonium.

Up to the one particle energies and the projectors eguation
(5.20) coincides in the rest frame ( n = L0,0,0 ) with the
Galpster eguation' " ’got for the Coulomb potential In the latter
case the Schritdinger eguation is s good approximation

In our case of the =sum of the rising potential (oscillator)

and the Coulomb one the Schridinger equation is a pgood
approximation for heavy quarks with masses much larger than the

energy scale of the rising potential (Z 300 MeV) too.
PBut when the guark masses are grach omaller than the scale,
the solutions of eguations (56.20)-(5.23), differ not only from

the solutions of the Schrodinger agquation but also from those of
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the quasi-potential etiuationa[ 5“. ! In the latter case the

contribution from the negative energy states is absent mand one
does not take into account the Schwinger-Dyson eguation for the
one-particle energy. Just theee chapgea are very important for the
proof of the Goldstone theorem.

Let us show that equations (514) and {(5.20) describe the
purely relativistic effect, the Goldstone wmode which accompanies
the spontaneous chiral symmetry hreaking. The latter means that,
the nontrivial aoclution ( sing ) of equation {5.14) exists for
the zero current mass m =0.

Comparing eguation (514}  for m’= 0  with covariant

equation (5.20) we see that the same function

o - %— ( St_:.)y!lS::): ?’5 ) (5‘24)
(where F is a mass scale parameter) is a sclution of egquation
(5.20) with the eigenvalue ‘/*F =0 .

The proof of the Goldetone theorem in ref''? where the
Salpeter equation i conseidered only in the rest freme
n=1,0,0,#) is not correct as for the Goldstone mode a state in
the rest frame does not exist { in addition the Lorentz structures
Yy and ¥,¥, have been confused, therefore the massless pion has
been transformed into the fourth component of a vector particle )

Though there are inaccuracies in reof! , the conclusion
about the satrong masas splitting of #n- and e-mesons and a
qualitative structure of the light quark:?nia spectrum (for the
oscillator potential and o )““ are true and  are in fair
agreement with the sxperimental data.

Thus equations (514)-(5.20) for the esum of the rising and
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Coulomb potentials gualitatively describe the spectroscopy of

light. and heavy guarkonia.

For calculations of matrix elements of meson interactions it
is neceesary to use the expansion of the bilocal fields Hix.¥)
over the orthonormalized set of solutions of equations

514)-(5.23) with eigenvalues S F = HH and energies w, =

-

4
Mle,y) = M@|X) - E J P I d 3_ o197,
(zm)? / ZwH(P) (2n)
o P rati ) o + e T ryat) agth } (5.25)

where H is a set of hadron quantum numbers

rat B = @ - vUEh v B e

_— . - (5.26)
Fgtat| B} B -Mp v @) + By v o(ah) -

The armihilation and creation operators for mesons with the

guantum numbers H satisfy the relations
- + _ ) * * .
[ egmreg@® | = oy "2-2 [ oo ] = o ®.27

The normalization of solutions of (5.21){5.23) in defined frowm

[17)

the free action (5.9) (Uke in the local case )

I I‘Zm L,(qL)L:(q*) + LML (ab) ] =1
{5.28)

N L * *
5 oy [ 1w, @] + ¥ @], ] -
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For the caloulation of (5.28) we use the expansion of (5.9
(B, M, )-LE tHUFAE +VF )J:“’ﬁ:(P,, - o) e

The Green function for the bilocal fields in terme of the

vertex function (5.28} has the form

r_(al| P, (pt] @
G (atpt | B@ = @m* s 2 e
[ t Z“ { (_po_«w"—ls) 20:“

TR AT e ]

(Fvo,ie) 2o,

5.5. Matrix elements -

Matrix elements for action. (5.8) can be written in terws of

the field operators & = G"'H i

#(x,y) = z J

[ o'Ph (at| Prafimy +

e PR (ali P tD ]
where

2 (et P

H

I

G (a+
%lfq.-

H

E, @-»

The matriz elements for the interaction W {5.8) between

the vacuum and stateas of n mesons is
n . 172

Hp Hp B W j0>=2m® & ‘2 n [z E“_] U5, B)
i=1 ;i:a i
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" a &2 ah 1
n _ i 3, 1 2
(Boooby=ghee [aa T 2e, "l 2, e - ——2B
{11} lf z
aa 2P *P 4P, o a 2P+ PR 4P (530
=3 a ‘(g z 1 ) P o)..3 ™ 1( e gl nIP‘ )
i, 2 l i, "1 . 2 i,

Expressiona {5.25)-(5_30) give the Foyrmon rules for the

guantum field theory in terms of bilocal fields.

5_6.Low—energy limit of bilocal action

As a next step let us consider the bilocal meson interaction
in the low-energy limit. At first we define the pien constant F,
of leptonic decays by the formmula

_ . 4 ' 0 M
|fr13_(2m TP, P})—--—M— F_ P IH(B' (5.31)

ﬂ

< |5

where 1’_‘ is the matriz element of the leptonic current.

The interaction of a meson with the leptonic current is
defined by the redefinition of the mass operatora { ;0 —>m -
i2)

- 7, }JP exED ) in the ection (51). Then the action S

in (5.31) takes the form

(2)

R R L o A (. M A VR
(6.32)
The subsatitution of expansion (5.25) into eqs. (5.31) and

(5.32) leads to the following expression for Fﬂ

J 4 9%, 1,(al) ain #(@") - (6.33)
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1¥ a pion corresponds to‘ the Goldstone mode (L’=B%.n¢) {see
{5.24) }, expression - (5.33) coincides with the normalization
condition for L1 and ['z , when the. equality Fan takes place.

We can aleo find the sclution of the equation (5.20) for

L ) which has the form

2

il
M, Ik(qi-ysmqlmpf( A Vit~ kL, Ge) (5.34)
up to the order O((mojz). If [.’:ai.rm /F’T , one can see that
the right-hand sido of eq. (5.34) is equal to ~ °  2m /K, {in

accordance with eq. (5.14) ). In this casme we get L, - om”/ F, om.

The substitution of the last expression- inte the definition

of Fn. {6.33) sl the conventional definition of the vacuum
expectation value- S
- a* at gl
<qg> = iN_ 2tr ——‘-2—3-;-4 Gol@)'= — 2N J.'TZ%S'Q sin ¢

gives the well-known low-energy theorem

-2 <gg> = w ¥ .

" 14

Thus, for light é_;uarkonha the elements of the chiral Lagrangisns
here arise which very slightly dépend on the form of the

potential
This independence of the bilocal fields of +he potential in

the low-energy region can eoasy be explained If we take into
account that the bilocal meson field M (=¥ is comnected with
the ‘normalh'sed wave function ‘l‘(r‘- - yl} by the relation

M=y - Vxh - wh) ¥l - D) S (nex-p) -

In the low-energy limit the wave function ¥ has a S-type
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asymptotice ¥ . &b - y!), which is equivalent to the local
approxipetion of the bilocal field

Hxy) . 5y

The spame limit arises in the case of a local potential or the
local Bethe-Salpeter kermel
Exy) ~ 6'-y2

Just such a potential for the four-ferwmion interaction was the
initial one in the original fomlation‘m of the spontaneocus
chiral symmetry breaking

Recently it has been shown in vef.  that a S—type
potential lsads to the phenomenological chiral Lagrangisns. In our
case this Lagrangian occurs due to the asymptotical behaviour of
the gquarkonjum wave function. Light mesones in the framework of our
approach in terms of action (51) but with a 5-type potential
were studied in ref - *’

6.Conclusion

We have shown that the S-matrix for atoms and hadrons (uniike
the S-matrix for asymptotical free elementary particles) depends
on a gauge as the elementary particles are off mass-shell in the
bourd states.

The S-matrizx for bound states should be constructed by the
projection of the Belinfante energy-momentue tensor on the Gaues
equation solution for the time component A°={nA) {(we call this a
"minimal guantization™. The minimal guantization leads to the
Feymman rules in the Coulomb gauge with the Heisenberg-Pauli

transformation group that changes the gauge for & new relativistic
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frame. In QCD this quantization can explain the confinement as
the destructive interference of phases of the topological
degeneration of the physichl variables conatructed by the explicit
salution of the Gaues equaticmt.‘m

The time component Au or the time-axis. of gquantization n
is chosen in according to the Markov-Yukawa description of the
nonlocal ob.jéct in the’ guantum field theory: the time-axis is an
eigenvector of the bound state total mumentum operator.

In QED the Lamb ghift calculation does. ;lnt contradict these
principles but rather confirms them.

We have shown that the @CD Hamiltonian determined in the
infrared region by the rising potential ansatz, besides the part';cm
model in the specific gauge, . containg the nonrelativistic
potential model for heavy quarkonia, the . chiral Lagrangtans for
light gquarkonia with their spectrum, the glueball rhysics and the
modified asymptotical freedom formula with the amall effective
coupling constant in the whole region of transversal momenta.

The QCDh can be applied to the description of decays of heavy

quarkonia into light mesons.
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Appendix A,
Let us consider the eguation (5.20) in the terms of (5.23) in

the rest frame n = (L0,0,0) , ¥ = (O.N" )
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ML, (&)= EL , () -

21 T 42

dsg'L 4z v v i i 1
_J' <2n>3v(k - )[A(a»A +C(o>C<t:)"'(_)Bnnf""tb)) ]Luza(Q-)

Ck

m“k (kJ.) - g R (kJ.) -

2(1 > T 1¢2)

L L L

3 1
- _‘f_z%gv(kﬂq*)[m( A, -C +(-)+(-)B

L kl
(GFB( b }6 +

o]

-SR] <ar th)

t

scd c ad C -0y ~(0)B B, BB+

tar bl tar o tar (b 3By

Li
N i&‘k l(c‘l.

3 L} L
ta:a(b>+ccb>ata} ) ]Nitzb(g )

where AB.C are defined with the help of the matrix (5.13)

s' a8, (") = A (x",a" B (x,q e O e ) Gy r )

{ad

R W ¢ e B o LIS Cob SN 5 e BTN 2 E O
B:N = B:ﬂ.) (k‘L’qJ') = q‘j‘ Bta}(gL)ctu)(kJ-} - k‘Il.- B(n)(k“.b(o) (qJ.)

&, =c, e = - K a8 x)e

1
tar tas 4 (q)

X ~ "o
(@' .3 =9¢-3

(a2
uw(q"") = sin(%am, (@), c“,,(q*) = cos{%a

{a)

[EE5]

In refse the following errors have been done : i) the
structures of ( N‘,Ll ) and Nz.L2 } are confused, 1ii) the
equation for N is true up to certain owmitted terms.

A2y

The aystems (Al) , describe the epectrum of bound states with

arbitrary potential s
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