


1. Introduction 

I t  has been realized in the last years [1,2,3,4] that one of the  novel properties of D = 2 and 
D = 3 dimensional quantum field theories is the  transmutation of statistics of elementary 
particles, i.e., under nontrivial interaction bosons become fermions and vice versa. Recently 
Polyakov [Z] has suggested that in a three-dimensional gauge CP' -model with the Chern- 
Simons form for the  kinetic term of the  gauge field fermi-boson transmutation occurs. 
To carry out the  proof, Polyakov [Z] has supposed that the propagator of the free Dirac 
electron in D = 3 Euclidean space-time may be represented as a bosonic path integral that 
turns out  to coincide with the  dressed soliton propagator in the gauge CP1-model in the 
limit of low momenta. 

Do similar phenomena exist in higher dimensions? There were attempts [5 ]  t o  answer 
the question in the  case D = 4. The present paper is devoted to one aspect of this problem. 
Namely, only the  fermionic part of the  problem is analyzed and the  final goal of the paper 
is t o  obtain the bosonic path integral representation for the  correlation functions of Dirac 
fermions in D-dimensional Euclidean space-time. 

It was Feynman 161 who first noted the  possibility of the  bosonic path integral represen- 
tation for two-dimensional Dirac fermions. Later the bosonic path integral forn~alism was 
used in different problems: for solution of the  D = 2 Ising model (71; the spin correlation 
functions were expressed [a] as a sum over all paths on the sphere S'; the  bosonic path in- 
tegral representation for the propagator of the  thret-dimensional Dirac electron was found 
[2,3,5,91. 

In the present paper, the formalism of the  bosonic path integrals is developed for 
interacting Dirac fermions in D-dimensional Euclidean space- l~me.  

2. Dirac fermions in D-dimensional Euclidean space- 
time 

Let us consider, in D-dimensional Euclidean space-time, Dirac fermions with mass M 
interacting with a nonabelian gauge field A, = A:Ta where T" are some generators of the 
gauge (or "color") group whose explicit fo rn~  is not essential for our purposes. We define 
the effective action and propagator of interacting fermions as follows: 

S ( r , y ;  A )  = ( 2  l (D + M I - '  I Y) 

where D = y"(8, - igA,), Tr  refers to  color indices of the  gauge field and spinor indices of 
Dirac matrices 7" in D-dimensional Euclidean space-time, p, = i8,, [z,,p,] = -ig,, and 
(I: 1 y) = J D ( r  - y),  ( p  1 k) = 6D(p - k), (Z I p) = ( 2 ~ ) - ~ / ' e x p  -i(pk) 

Using the identity A-' = !,OD dT exp(-TA) one gets the expressions: 

where the function V ( z ,  y; T )  is equal to  [lo] 



Let us treat this function as a matrix element of the evolution operator of a particle with 
the hamiltonian H = iD. Then the function U(z,y; T )  is an amplitude for a particle to go 
from point y to  point z in the proper time T. Following Feynman [6] one can represent 
(Z ( eiTE I y) as a path integral over the phase space of a particle [10,11]: 

where integration is performed over all z-paths between the points z,(O) = y, and z,(T) = 
z, and the functional integral over all unrestricted momentum paths is factorized 

~ ~ [ i ]  = /vPv exp (-i dT dtp(t)z(t)) P ~ X P  ( idTdt f i ( t ) )  

M D  does not depend on a gauge field and the fermion mass M. It accumulates all spinor 
structure of the evolution operator and is called the spinor functional. 

3. Spinor functional 

The spinor functional in eq.(3) is ill-defined and i t  must be properly regularized for large 
values of momenta. One of the regularization prescriptions proposed in [ l l ]  is the insertion 
of the cut-off factor 

~ X P  (- lT dt e(t)&) , e - 0 

into the right-hand side of (3). To calculate the regularised spinor functional, we split the 
interval [O,T] into N equal pieces r = 5 and define M o [ i ]  to  be given by the following 
limiting procedure 

where a simple but tiresome calculation yields 

M,.,(z) = /dDk exp(-i(kz) + i k r  - elklr) 

= ( ~ ~ ) ~ I ' ( Y ) [ C T  + i ( r  + i)] (z2 - T' + 2 i ~ r ' ) - 9  + h . ~ .  ( 5 )  

and r - 0, z, = r i ( r i )  - 0 in the limit N - oo and i, =fixed. Now we perform the 
limit c + 0 in the regularized expression (5) and note that as z2  # r2 :  M,.,(z) a e * 0 

but for z2 = rZ and D # 4 2  + 3: M,.,(z) a (1 + %)cc?. This means that M..,(z) has 
a &function singularity at  2 2  = r' or i' = 1 and after i t  substitution into eq.(4) one gets 
the following expression for the spinor functional in the limit N - m 

where for an arbitrary D-dimensional vector n,(l), t E [O,T] we denote 

The right-hand side of this equation is an infinite product of matrices of order 21D/21 whose 
calculation is quite nontrivial. Substituting eqs.(6), (2) into (1) we derive 

S(z ,  Y; A) = dm d'I'e-IM / 'Dip 6 ( r  - y - dT dt i) 6(1 - ic )  I[i] P exp (ig 1 dz,,~,,(z)) 

(8) 
and for the effective action analogously. This relation represents the propagator of inter- 
acting fermions as a sum over all paths in D-dimensional z-space between points z and y 
with T being the length of a path. 

4. Dimensional extension 

To evaluate the infinite product I[z]  of Dirac matrices in eq.(7), we perform the identical 
transformation of eq.(8) called the dimensional etlensron 

where a = 1 , .  . . ,4d2 - 1, P = D + 1, ..., 4d2 - 1, dots denote the integrand in eq.(8) and 
2d = 21D/21 is the dimension of the su(2d) Lie algebra. The expression i = i,,y entering 
into definition (7) of I[z]  may be replaced by i . ra ,  where traceless, hermitian matrices 
of order 2d: { r " )  = {T", i7G7Yl,. . . , in7[u7V.. . 7plj, a = 1, ..., 4d2 - 1 are elements of the 
su(2d) algebra 1121. 

It is well-known [12] that in the su(2d) algebra the orthogonal Cartan- Weyl basis con- 
sisting of operators {Hi, E,) may be chosen, where i = 1 , .  . ,2d - 1, a = {e; - ejll < 
i ,  j 5 2d) are roots and {e;) is the orthonormal basis in the space R Z d .  Then an arbitrary 
element 2.r" of su(2d) may be decomposed as follows 

where (u,  H) G xfz;' u;Hi is an element of the Cartan subalgebra H ,  u is a vector in the 
space RZd-' and the unitary matrix D(:) is given by: 

where the sum runs over all positive roots n = {e, - e,ll < i < j < 2d} 
Eq.(9) relates 4d2 - 1 variables z, to 26 - 1 variables u; and d(2d - 1) complex variables 

I,. This fact is expressed as: 
2, = i.(u, 2,) (11) 

To obtain this dependence more explicitly, one notes that r a ,  H,, E, are matrices of 
order 2d that act in the space of the a fundamental representation of the SU(2d) group 
with dimension 2d called the minimal fundamental representation [12]. The basis in the 
representation space consists of the highest weight state 11) and states 1%) obtained from 11) 
under the action of step operators E-, corresponding to the negative roots. All vectors li) 
are simultaneously the eigenstates of operators from the Cartan subalgebra: Hli)  = XiJi) ,  
i = 1,2, ..., 2d with vectors A. = e; - c!:, ej called weights. 



After substitution of the decomposition H = 1ffl Aili)(il into eq.(9) we get: 

2d 2 6  

z,ra = x (u,  A;)D(z)li)(ilD-'(2) = x u; li, z)( i ,  Z I  
,=I i=l 

(12) 

where (u,  Xi) = (u, ei) = u, are coordinates of the vector u that lies in the subspace 
orthogonal to vector c::, e; and the introduced states 

are well-known as the coherent states for the SU(2d) group [13]. 
Using eq.(12) one finds the relation between variables z, and (u,  2,): 

where the orthogonality condition for l'" matrices: Tr ( r ' rb )  = 2d 6ab is taken into account 
and the following notation is introduced: 

where i = 1, ..., 2d and a = 1, .. ,4dZ - 1. As only u and z, are known, the vector z. is 
determined unalnbiguously froin eq.(14). But the reverse statement is wrong. There is the 
gauge ambiguity in the dependelice of u and z, on vector z, and the corresponding gauge 
group is the Weyl group 1121. Indeed for an arbitrary root P we may rewrite cq.(9) as 

where Sp = exp (:(.Ep - ~ _ p ) )  is an element of the Weyl group and it follows from com- 
mutation relations of the Cartan-Weyl basis that 

where variables r,p and the ( 2 d  1)-dimensional vector b both depend on I,, u and P. The 

linear operator uo(u) = u - 2pw is called the Weyl reflection. Acting on the vector 
( P ? P )  

u = (u,,  . . . , u ~ d ) ,  the operator up(u), P = e, - e, permutes coordinates u, and u;: 

Thus the Weyl group acts on the components of vector u as the permutation group. Com- 
paring eqs.(9) and (16) one concludes that dependence (14) is invariant under discrete 
transformations of variables u and z, 

1 2d 1 2d 

= 2 5 "1 e!'(z) = 5 ,=I x (u,(u). e.) et)(z,,  ) 

This relation is fulfilled for arbitrary values u and a. Therefore assuming a = el - el and 
with eq.(17) one compares coefficients of variables ui and finds the relations between the 
functions ebj)(z) : 

et)(z)  = ep)(z,; ), i 2 2 (19) 
where z,; = z ,,=,,-,, . 

Therefore for eq.(18) to have a unique solution, the gauge condition for the Weyl group 
must be fixed. I t  follows from eq.(17) that the gauge may be chosen as 

and it is in fact the definition of the fundamental Weyl chamber C1. Indeed, unless the 
vector u belongs to  the boundary of the Weyl chamber, the Weyl reflection u,(u) sends it 
from the region (20). To fix the gauge at the boundary of the fundamental Weyl chamber, 
one has to examine the action of the Weyl group on variables z, defined in eq.(lO) and then 
choose the gauge by imposing additional constraints on the variables z,. This program was 
completed in ref.[l4]. 

Let us express the integration measure over momenta PP-'i: in terms of the variables 
u, z, and 2,. Since the functions u = ~ ( i . ) ,  z, = z.(i.) and 1, = ~, (z , )  may be found 
by solving eq.(9) under gauge condition (20), the general structure of the measure is: 

where the 8-function takes into account the gauge condition. The explicit form of the 
measure dp(u, z) was derived in ref.[l4] but now it is sufficient to establish some properties 
of dp(u, z) .  

It follows from eq.(18) that vector i. is a gauge invariant quantity and it does not de- 
  end on the ex~l ic i t  form of the gauge condition. Hence the measure dp(u, z) is unchanged - - 
under transformations (18) of the Weyl group: 

for an arbitrary root a. 
Moreover it follows from eq.(9) that vector i. as well as the integration measures dz, 

and dp(u, z) are invariant under transformations of the Cartan subalgebra 

n : D(z) - D(z)exp(i(d(z), H ) )  
dp(u,z)  - ~ P ( u > z )  (23) 

where d(z)  is an arbitrary vector in the space RZd-'. 

5. One-dimensional Wess-Zumino term 

Let us consider one of the terms involved in definition (7) of the function I[z]  

where eqs.(12) and (19) are used. Then combining relations ( l l ) ,  (14), (21), (7) and (24) 
one gets the following representation for propagator (8) 

S ( z ,  y; A) = 1- d~ e-TY / ~ p ( u ,  z) 8(u t C,) 6(z.(u, z ) )  6(2d - u2) 



where we denote Let us perform the inverse Weyl transformation: 

in the i-th item of the sum and take into account the gauge invariance (18) and (22) of 
vector z. and the integration measure to derive, with the use of equality u,u, = 1, the 
following relation: 

x 6(2d - u2)  6 (. - y - lT dt i ( u ,  z)) P exp (ig [ dz, A,,(.)) 

Comparing eqs.(25) and (26) one concludes that it  is the gauge invariance of the  vector 
z. that enables us to get rid of the sum of projection operators in the  integrand of (25). 
The final expression (26) for the  spinor functional contains only one projection operator 
onto the  state 11, z ) ,  defined in eq.(13) and the  sum of 0-functions is really the  sum over 
gauge conditions. At j > 2 vector u lies in the  region of the  space RZd-I, formed by 
(2d - 1) Weyl chambers Cj obtained from the fundamental Weyl chamber under reflection 
transformations u,, a = el - ej. Thus, eq.(26) determines the  following region: 

where the Weyl chambers Cj are defined as: 

and U2d = - ul - u2 - . . - - u ~ d - ~ .  Thus, the infinite product matrices occurring in eq.(7) 
is replaced in eq.(26) by the  scalar products: 

= 11, z (T) ) ( l ,  ~ ( 0 ) )  exp (28) 

where eq.(24) is used and C denotes the  path z ( t ) , t  E [O,TJ. We get from eq.(13) 

z = (22, 23,. . . , Z Z ~ )  is a point of the complex projective space CPZd-' and d0 = 2 i s g  dzih 

d f j ,  F ( z ,  i) = I n ( l +  f z )  is the closed G = SU(2d)-inmriant 2-form on the Kahler manifold 
SU(2d)/U(2d - 1) - CPM4 [13,15]. 

Eq.(31) coincides with the definition of the one-dimensional Wess-Zumino term 11,161 
but eq.(29) was rediscovered as the Berry phase (171. 

After substitution of eq.(28) into eq.(26) we get for the propagator 

where the  function .I[ul] is equal to 

6. Dimensional reduction 

Thus, the  first part of the problem is completed. The expression (33) for the propagator 
was obtained where all the spinor structure that appears in the original form (8) and (7) as 
an infinite product of Dirac matrices is accumulated by the  one-dimensional Wess-Zumino 
term (29)-(31). To this end the space-time dimension was changed from D to 2d in the 
integrand of (8). Now one has to  perform the inverse transformation, called the damensional 
reduction, viz, t o  explicitly solve (2d - D )  restrictions on the variables u, and zyl : 

imposed by 6-functions in eq.(33) and reconstruct the  integrand and integration measure 
in eq.(33) on the  space of solutions. 

Let us find a t  first all the  restrictions on u, following from eq.(35). Note that the 
identity 

i: = i a  = (ifilfi)' = (zor')2 = l ~ r ( ~ ~ r " ) ~  = 1 
2d 

holds where p = 1,2,  ..., D. After substitution into it  of decomposition (12) one gets 

So, it bllows from eq.(35) that  



There is an ambiguity in the sign assignment restricted by the only condition: c::, u, = 0. 
The ambiguity disappears, however, when one recalls the definition (27) of the region $2 of 
vector u. 

Combining eqs.(27) and (36) we conclude that components of the vector u being soh-  
tions of eq.(35) assume one of the following values: 

All these solutions lie on the boundary of the Weyl chambers, that is, on the hyperplanes 
where, as pointed out before, the residual gauge invariance of i. under transformations of 
the Wcyl group appears and the additional gauge fixing performed in ref.[l4] is required. 

It follows from eq.(34) that function J lul]  possesses one of the following values on the 
space of solutions (37)-(38) 

and therefore only the first solution, (37), contributes to eq.(33). Substituting it into 

eq.(35) and using the property: ~ j f ,  ehj)(z) = 0 one gets all restrictions on the variables 
z;, i = 2, .  . . ,2d in the form: 

d 

x e t ) ( z )  = 0, o = D + 1, ..., 4d2 - 1 (39) 
j=1 

The properties of solutions of this equation are discussed in detail in ref.[l4] but now we 
restrict ourselves to formulation of the main result. It follows from eq.(39) that 

Moreover, eq.(39) implies that variables z; defined in eq.(32) are restricted by n (D)  = 
2d - ( D  - 1) 21D/21 - D + 1 additional conditions p,(z, i) = 0, a = 1,2, ..., n(D) .  Under 
the decrease of the space-time dimension from odd to even values the total number n (D)  
of constraints is increased by unity and the additional constraint is 

e;i,(z) = 0, D = even 

Using eqs.(14), (37) and (40) we get 

and the explicit form (32) of the coherent state 1 1 , ~ )  enables one to  express vector 2, 
in terms of the variables zj. It turns out that the number of independent variables zj 
(with n ( D )  constraints taken into account) is much larger than the number of components 
of vector i,. The origin of this problem was stressed above. It is the residual gauge 
invariance of the vector i, under the Weyl group gauge transformations of variables 2,. 
Thus, to  eliminate the residual gauge ambiguity, 2(d - 1) constraints additional to  eq.(20) 

are imposed on the variables I,, I,. Then after simple calculations [14] we derive the final 
expression for the integration measure on the space of solutions of eq.(35) 

where 

is G-invariant measure on the manifold SU(2d)/U(2d - 1) [13,15]. 
After substitution of eqs.(41) and (42) into (33) the integral over ul  is easily computed 

and we get the following bosonic path representation of the propagator 

n(D) 
( z y  A) = l p d ~ e - T 1 ( / ~ p ~ ( z )  n 6(v,(z, i)) 6 (2 - y - lTd te ( l ) (z ) )  

a=l 

where the integration contour of the P-exponential is defined as 

t = , + t z ZJT) = z, 

For the effective action we have the analogous relation 

Recall that for even values of the space-time dimension the final representations for the 
propagator and effective action differ from eqs.(43) and (44) by the factor 6(egiI(z)). 

7. Conclusion 

Eqs.(43) and (44) express the propagator and effective action of D-dimensional interacting 
fermions as sums over all paths on the complex projective space CPZd-I. 

Note that for D = 2,3 due to the isomorphism CP' - S' the summation in eq.(44) may 
run over all the paths on the sphere SZ with function e t ) ( z )  being the tangent field i.(t) 
for a closed path C = {z( t ) , t  E [O,T]lz(O) = z(T) ) .  Then O(C) is equal to the torsion of 
the curve C and eq.(44) coincides with the analogous relation proposed in ref.[2]: 

For D = 2 the additional condition e c )  = 0 means that curve C lies in the plane and 
therefore O(C) = 2 r N  = 2r (v  + 1) (mod 2) or 

exp --O(C) = ( - I ) ~ + '  ( ;  1 



where N is the number of total rotations of the tangent vector e c )  and v is the number of 
self-intersections of the path C. 

Comparing eqs.(43), (44) and (1) we conclude that all the spinor structure of the original 
expressions for the propagator and effective action is absorbed by the one-dimensional 
Wess-Zumino term and it is by no means accidental. 

First, there exists a classical mechanics [15] on the space CPZd-' = SU(Zd)/U(Zd - 1) 
with the action being equal to the spin factor 3 ( C ) .  The Poisson bracket for this mechanics 
is defined by the closed 2-form dB(z, I) and in terms of the local coordinates zj it is [18] 

where the metric g;;(z, Z) is inverse to the Kihler metric & &F(z, 2 ) .  As a result, under 

the geometrical quantization [9] the commutation relations for the variables ec)(z) repro- 
duce the commutation relations of the su(2d) Lie algebra and functions eF)(z) may be 
thought of as Dirac matrices 7,. 

Secondly, the expression (44) for the effective action contains the following term 

where C is a closed curve on the space CP2d-' Let us examine gauge invariant properties 
of the effective action (44) under the action of the Cartan subgroup H. It follows from 
eqs.(23) and (15) that under the action of H the integration measure and function e c )  are 
both invariant but the Wess-Znmino terrn changes as 

H : D(z) - D(r)exp(i(+,  H)) 

1 1 , ~ )  - 1 1 , ~ )  exp(i(4, XI)) 

*(C) - 0 ( C )  + 2(4(1), XI) - 2(4(0). A,) = o(C) + 4rk ,  k E Z 

since for closed paths C = {z(t),t  6 [O,l]\z(O) = z(1)) the relation \ l , z ( l ) )  = il,z(O)) 
implies exp(i(+(l), XI)) = exp(i(+(0), XI)). Therefore the phase exponential of the action 
exp(- iJ3(C))  is nonmanifestly gauge invariant provided that the quantized condition 2 5  E 
Z is fulfilled. Indeed eq.(44) implies that the spin J of the Dirac fermion is one half, J = f .  
Thus, we conclude that the consistency condition of the underlying quantized dynamics 
leads to the quantized values of the spin of particles. Moreover it was demonstrated [19] 
that elementary particles with the phase exponential of the action exp(-iJO(C)) possess 
the Bose statistics for integer J and the Fermi statistics for half-integer J. 

Thus, it is the Wess-Zumino term that ensures all necessary properties of Dirac fermions 
in the bosonic path integral representations (43) and (44) for the effective action and 
propagator of interacting fermions. 
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n n ~  OnHcaHMR AHPaKOBCKHX $ ~ ~ Y H O H O B ,  B3aHMOflefi~~Bym~H~ 
C ~ea6eneeblt.4 K ~ ~ U ~ P O B O ~ H ~ I M  IIOneM B D - ~ e p ~ l o M  eBKJIH,E(OBOM 
nP0CTpaHCTBe-BpeMeHU B p a 6 o ~ e  pa3BHBaeTCR $OpMaJlPi3~ 60- 
3 0 r l H b I X  HHTerPanOB no nYTRM. fl0JIyqeHbl r1peACTaBneHHR AnR 
~ @ # I ~ K T U B H O ~ O  A ~ ~ ~ C T B U R  H KOPPeJIRIpiOHHbIX $ Y H K U U ~  $ ~ P M H O F I O B  

B BHAe CYMMbl no IIYTRM B KOMIIJleKCFIOM LIPOeKTUBHOM IIpOCTpaH- 
CTBe C P ~ ~ - ~  ( d = 2  [ '21-1 ) , B K O T O P b l X  B C R  CnUHOrjFIaR 
CTpyKTypa IIOrnOUaeTCR OAHOMepHblM ZlJIeHOM B e c c a - ~ ~ M H H O  .Mr--~c>tr-. 
HO B ~ C C - ~ Y M U H O B C K U ~ ~  qneH 0 6 e c n e ~ n s a e ~  BCe H ~ O ~ X O , E ( U M ~ I ~  C B O ~  

CTBa $ ~ P M H o H O B  I IPH KBaHTOBaHHM: KBaHTOBaltHble 3HaYeHHR CnU- 
Ha, YpaBHeHHe n u p a ~ a ,  @ ~ ~ M H - c I ' ~ T H c T H K ~  H T . 0 .  

-- 

Korchemsky G.P. E2-89-575 
Quantum Geometry of  t h e  D i r a c  Fermions 

The boson ic  p a t h  i n t e g r a l  formal ism i s  developed f o r  
Di rac  fe rmions  i n t e r a c t i n g  w i t h  a  n o n a b e l i a n  gauge f i e l d  
i n  t h e  D-dimensional E u c l i d e a n  space-t ime. The r e p r e s e n -  
t a t i o n  f o r  t h e  e f f e c t i v e  a c t i o n  and c o r r e l a t i o n  f u n c t i o n s  
of i n t e r a c t i n g  fe rmions  a s  sums o v e r  a l l  boson ic  p a t h s  on 
t h e  complex p r o j e c t i v e  s p a c e  C P ~ ~ - ' ,  (2d = 2LD 2l ) i s  de- 
r i v e d  where a l l  t h e  s p i n o r  s t r u c t u r e  i s  avsorbed by t h e  
one-dimensional  Wess-Zumino term. I t  i s  t h e  Wess-Zumino 
t e rm t h a t  e n s u r e s  a l l  n e c e s s a r y  p r o p e r t i e s  of  3 i r a c  f e r -  
mions under  q u a n t i z a t i o n , i . e . ,  q u a n t i z e d  v a l u e s  o f  t h e  
<-pin ,  D i r a c  e q u a t i o n ,  ~ e r m i  s t a t i s t i c s .  

The i n v e s t i g a t i o n  h a s  been performed a t  t h e  Labora to ry  
of  T h e o r e t i c a l  P h y s i c s ,  J I N R .  
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