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I. Iantroduction

Considerable progress has recently achlieved in iovestigation
of the string dynamics in background fields corresponding to the

first levels of the string speotrum 1-6

+ In this approach one
gets a new insight into the properties of the string itself, and
some information on the local fields generated by the interaoting

strings in the low energy limit can be odtained,

The background fields corresponding to massless states
in the string spectrum are of special interest in the string
approach to the particle physics 1-5 . It is these states that
should be compared with the elementary pérticles observed in the
energy range avallable in the experiment now 7,8 « The
Abelian gauge vector field (electromagnetic field) corresponds
to the masaless state in the spectrum of open strings x) . This
field does not act on the fermionic variables of the string1 ’
and as a consequence we can confine ourselves to the considera—
tion of a bosonic part of the string spectrum.

A constant homogeneous eledtromagnetic field in the D-di-
' mensional space-time can be of two types, non-isotropic and
isotropic. This corresponds to two canonical forms of the
strength tensor %;u .
time the non-isotropic electromagnetic field can be cast by a

In the case of the four-dimensional space~

appropriate Lorentz transformation into the parallel electric
and magnetic fields. An isotropic electromagnetic field in an
arbitrary reference frame describes electric ahdvmagnetic fields
which are equal and perpendicular to each other.

The dynamics of open strings has been investigated in a
non-isotropic electromagnetic field 1-3 | e string dynamics

x) To introduce into the string theory the non—Abelian gauge
symmetry, one should to use the Chan- Paton mechanism 9 o

o
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turns out to be stable only if a constralnt on the invariants

of the tensor /L;” 1s satisfied. In a special reference frame
this requirement reduces to the oonstraint on the absolute value
of the electrio field. This result is a direct indication that the

vector Abelian gauge field generated by interacting strings ia
the low energy limit should be described by a nonlinear Llagran-—

gian instead of the Maxwell Lagrangian (for example, by the
Born - Infeld lagrangian 2,10 4,

In Ref. 1 it has been shown that for the isotropic configura-
tion of an external electromagnetic field such a restriction is
absent. This conclusion was based on the analysis of the boundary
condi tions without using the solution of the equations of motion,

In the present paper, the investigation of the string
dynamics in a background non-isotropic electromagnetic field
carried out in Ref. 1 is extended to the case of an isotropic
external field. Two types of open strings are considered, neutral
strings and strings with a net charge. The generalized light-like
gauge 1s introduced, the general solution of the equations of
motion are constructed and the string mass spectrum is anal ysed.
On the basis of the obtained results one can conclude that the
string dynamics in a background isotropic electromagnetic field
1s stable at an arbltrary value of the extemal field strength.

The rest of this paper is arranged in the following way.

In the seocond section, the action of an open string in an exter~
nal electromagnetic field is introduoced and the equations of mo-
tion and beundary conditi ons are obtained. Here the ocanoniocal

for .he isotropioc electromag-

form of the strenth tensor /L;V

netio field is given too.
In the third seotion, the dynamios of the neutral strings in
the isotropio field is investigated. We introduce the light-like

gauge oomditions that can be used both for neutral and charged
2

strings moving in an isotropic external field. The independent

. dynamical variables are separated and the general solutions for

them are conatructed. On this basis the strinmg speotrum is

investipgated. In the forth section, the same is done for a
charged open string in an isotropic background electromagnetic

field. In conclusion the obtained results are shortly discussed.

2, Action functional and equations of motion

The dynamics of an open bosonic string with charges 9
Fa
and (_2/ at 1ts ends placed in an external electromagnetic field

/4 (J() 15 defined by the action
(el
7, 7

S= J({d]/? -2 9 Jd‘ZI/J(‘Z,é )A (Jl‘) (2.1)

o~

where T is the string tension, I (1,6), /M D=7
a/ez‘ ||dx’"d.r I

z"_./'=0' /:‘ (_/)1=é‘) 62:-5:;" I dr X = j‘r - In the

enveloping space-time the metric with signature ("' » v T, Ty )

T
1

'
are the string cocrdinates, T= l/ 6= U,

is used,

In the orthonormal gauge -

. 2
’
rrx’) =0 (2.2
the string is described by the equations of motion
[ // 0 (
= 2.3)
/“ /“

and boundary conditions

71‘ +q/‘x =0, 6=0

2

Txg 10 6=%

> > - (2.4)
£ =8A -
£0A04,.
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Further we suppose that /CV does not depend on £ and
consider the 1sotropic background field when matrix /—/u
has the following block-diagonal form

/-'=l’205, (2.5)
where 4 is a (4x4) matrix of the form
0 F 00 (2.6)
A= £ 0 0 F
- |l 0 0 0
0 -F 0 0O

ang D 13 the block-diagonal (D—4)x(D—4) matrix

—linn
A 6240/\52,53,_.,,5(”/2)_,). (2.7

are (2x2) matrices

Here 80(; X=2,3,... (2/2)-1
0 ~H
8= " 0°< (2.8

We assume for definiteness that D is an even number.

The matrix A defined in (2.6) maintains its form in an
arbitrary reference frame. The rest part of the temsor /Cy can
be transformed to the form (2.7), (2.8) by an appropriate rotation
of the last (D—4) space-like coordimates,

3. Neutral string

In this section we investigate the dynamios of the neutral

string (9/-‘-’ ‘92 = g)

magnetic field. In the case under consideration the total

in an isotropio background eleotro-

canonioal momentum of the sString

V2
_

ro)=r QK _ o s !
/0/((,6)——&1-7—7_:1' +?/L/“ry (3.2)

is conserved and the light-—like gauge can be introduced in the
folliwing way

/ .
7/7/1""+¢/z’"f_ x%=0

. (3.3)

A
where /7 is a constant isotropic vector /7 2—-—-0 « It is
convenient to choose the components of this vector so that the

gauge conditions (3.3) do not depend on the external field,
Putting

n'=(r0010,.. ) (.0

we obtain from (2.5)-(2.8) ana (3.3)

/
Ve '=0’ JZ; ,0 (3.5)

?

!/ Je
where VEOI=Q oi'aj.

The boundary conditions (2.4) with allowance for (3.5) take

the form (6=0, %)

/. ’ .
X =0, ‘I+*VE7[<I - g, (3.6)

e f =0 20 fG DA o
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< .
g _ Ao( § O(= 0, 50;'I2d+£x2d+1)

h =(q/T)H

The light-like gauge (3.3) enables one to split the string

(3.8)
X=2,3,..., (D/Z)— 7,

9 M
coordinates X (7, 4) into dependent and independedt ones. As
usual, we shall treat as 1ndependent va.ria.bles the transverse
-7
string coordinates x.L {-1' .X .1' x 2 esr e },

and light-cone variables xQ-‘—‘(f hoV e )/VT will

be considered as dependent ones.

From the orthomormal gauge oonditions (2.2) using (3.5)

we obtain
2
y /\/L b4 —rL ,’+ >
== (x,+7 )y X 7% T (3.9)
2P 0

Thus, equations (3.5) and (3.9) express the dependent variab-
les in terms of the independent ones. It is easy to be convinced
that eqs. (3.5) and (3.9) are consistent with the equations of
motion (2.3) and boundary oonditions (3.6)=(3.8) in the follow-
ing sense: 4f the transverse variables ECT, 6) obey eguations
of motion (2.3) and boundary oonditions (3 7,(3.8), then de~
penlent string coordinates x* andx expressed in terms of
.Z'_L and x_‘_ aooording to (3.5) and (3.9) satisfy Eqs. (2.3)
and their boundary comditioms (3.6).

The imdependent string ooordinates are represented in the

form

n/
Z g —OL'COS né,
nto 7

2

2 2 ,02 nT
X(T.6)=Q — > =2 cosné,
16)=Q + =1 ',ﬂrmé’ o
(3.10)
2 2o +1
+ip

gtre=Q™ (7+<h €)%

F7T(1+h%)

- tn7
y——goé’ g"(comé +é senns), «=2,3,..,(b/2)1

The momentum variables (3.2) can also be divided into the
dependent

—_— - arnd
07=7" *f@/cﬂf pP=/lx (3.11)

/

and indepencent ones

A
a _ -in? A
/r;to
2 +1

/Zd=/oed+ z‘/o T(% “A § ) (3.12)

20+ 1 -in7 x
=j—,/(,D +t/~7 )+ (/+A )}/—ZE §”605/76)

Vel 2%
x=2,3,...,(D/2)-1.



Now we can luvestigate the string mass squared
o2 /l - —2
/\725’0 —'2/0/0_/01 (3.13)
By virtue of eqs. (3.9) and (3.11) we obtain for /0

2 7” jo/s( +5?’f)+yz’9/raja’dx'f O

2
Using expapsion (3.10) we can calculate M straightforwa.rdly

202)-1
2 () )z A ‘Zu -

;

Y /D/J) /
+7"YZ{ZO( O/ +Z(/~r/z ) § }
A r =
where ﬂo( '—(p ) (/029(*1) « The amplitudes :i

can be expressed 1n terms of the standard creation and annihila-—
tion operators as it is done in Ref.l. For this purpose, one has

to invert the expansions (3.10) and (3.12) representing QC

and §” in terms oz L (Z,6) a.nd/)(f,é) which have the usual |

commutator
[x¢ze), plwd)]= igzjg(é—és’ ©a2e
l.,‘/‘= 7,2, 4, 5-,_,., -7

Then eq. (3.15) veoomes

2 2 oaD’2 . .
~—— [
M =- +2570 2 ny At (3.17)
tr n=e i=y 7 77

where /\zr is a tachyonic contribution due to the motion of the

string as a whole 1n transverse directions

@)1 2 =2
_z(W)(/J) 7 ii
+ 4 (3.18)
[
The operators Q”‘. obey the usual commutation relations
. P Q’
[a,, Q" ] =OLJ‘ gnm . (3.19)

It 1s interesting to consider the string energy in a
speclal reference frame where the component /73 of the total
nomentum of the string vanishes. The transition to this reference
frame maintains the 1isotropic structure of the electromagnetic
strength tensor (2.5) and (2.6).

By virtue of (3.14) we obtain

2-0 gt =2z
£+ Z — vonr 2 ZnaTal)
a(Z A . A=t 5T

(3.20)
2 -2
In contrast to M tn (3.17), f is positive definite at

the classical level. In gquantum theory the zero point osoilla-
tions of the string give a techyonic contribution inte Bq.

.17 2 D=2
/‘70 ==7/ 72 (3.21)

and into Bq. (3.20)

-2 _ 2 _ -1
A:=_.777?[,+(F9;)] _ (3.22)
9



Thus the analysis of the maas and energy spectrum of the
open neutral String does not give any restriction on the
external isotropilc electromagnetic field. The same result has
been obtained in Ref, 1 by investigating only the boundary
conditions (2.4). Probably the string dynamics under consideration
is stable at arbitrary values of the field strngth F  1in Eq.
(2. 6), while in the case of a non-isotropilc dbackground electro-

magnetic field we have the constraint 1,3

(_';9_4 5)24 7 R CIE)

Nevertheless, it should be noted that if 1s absolutely unclear
what is the physical implication of the tachyonic coantribution
-/Wz‘r to the sguared mass of the string (3,17) caused by the
translation motion of the string as a whole in transverse direc—

tions.

4, Charged string in a background isotroplc electromagnetic field

As it was shown in Ref. 1, the light-like gauge cannot be
introduced in the theory of the open charged strings when the
external electrio field does not vanish, (See also Ref. 11 ).
Kowever, in the ocase of an isotropic baokground fileld the
light—like gauge (3.5) can be introduced for the open strings
with a net charge. Indeedin Bgs. (3.5) there is no dependence on
the extermal field and as a oonsequence these equations ocan be
in agreement with the boundary conditions. In additlon, the
projeotion of the total momentum of the string onto the constant
veotor ﬂ/‘ given by (3.4) is conserved. It 1s easy to show
1f one takes the electromagnetic potential /4/“ (X) in the

form

10

(x)=~LF 2% - . :
/4/41) S /iw const._ (4.1

Taking into account Eqs. (2.5) and (2.6) we obtain

(4.2)
o VS 7 - - 2 3
Alx)=-L x )=- L ‘)= .
==X, A) zX Ax)=0, 4(a)=~51’,_, .
The density of the momentum variables 1s given by
pliee)==5E = Tare 5 g Ala§i-a),
Xy @.3
6 =0, 6= 7
7 > 2
From Eqs. (4.2) and (4.3) it follows that
pTe)=T F¢7,6) (.0)

because of /4 -(‘2') =0.

The boundary conditions in the case under consideration are
6=0 G =%
’ - 1 z. .
7Tx*+V2g FI =0, T=x"-vV2 g Fa2'=0,
- 3

- (4.
I’=0 J{‘,‘=0, 4.5 )

>
Fa 14
= 0 Z 2= 0,
T2 +VZ 9 Fi =0, Tz “VZg,FA=0.
The boundary oonditions for the remaining oomponents of J'ﬂ(7 é)
are the same as in the oase of the non-1sotropilo baockgroumd field

(see Bq. (5.2) 1n Ref. 1 ). With mllowanoe for the equations of
motion (2.3) and boundary oonditions (4.5) it may be verified that

11



the projection of the total string momentum ontc the vector nr
Te

/j—=0f/o'(2‘,5)0/6 = 7"/:2"'(7,6)0{5 (4.8
0

is conserved.
71
The boundary conditions for 4 in (4.5) are simplified

by virtue of the light-like gauge conditions (3.5)

— 1t £ pz = Siyg -
TxVEg 1 P10, 605 T Vi L 0 éa

As in the preced:l.ng section we treat the transverse
string coordinates .T {VT X, f ‘1 } as the indepen—
dent dynamical variables and the llght-cone coordinates
fI:(J o:cZ'jj/VZ as the dependent ones. One can easily
verify again that Eqs. (3.3) representing the dependent variables
in terms of the independent ones are in agreement with the equa-
tions of motion. (2.3) and boundary conditions (4.5) and (4.7).
Let us go now to the construction of the general solutian
for the independent string coordinates. For Iz(?: é) we have
obviously the same oxpansion as in (3.10), For the components
vrﬂ(z;é) ’ /( 34,5, +ss Del one can use the solution
obtained under consideration of the non-isotropic background
field (see Eqs. (5.13) and (5.16) in Ref. 1 ). 4 new solution
is for IICT, 6) . 1t oontains now additional terms proportio—
nal to Z'Z and 62
I Ce,8)= V'(q, 9)’5 PTE8%, fp-
7 7% 2
- ~inT o ! (3.8

-V2 @Yy > cosne
Qrm *y;rr,,%o‘e P

12

By virtue of (4.1)-(4.3) the density of the corresponding

canonical momentum is

/0/( ¢)=TF* (t, 6)+Zc2//4(x)g(6 é )

~int (4.9)
‘f(@"’ E—Q—JZ'PTQ-Q- Z@ OK,CM”é—

—

~ 12 2 /2 S

X2 90806-8,), &.< 25 62-».

The 1ntegmtion consta.nt a in the expansion (4.8) and
(4.9) can be written injterms of /0 (9), where

/J(fz)=f,o €7,6)dé. (4. 10)
: |

From (4.9) and (4.10) it follows that

7
o)
= Tz ) (4.11)

The general solution of the equations of motion enables
to obtain for the string mass squared the same formule as 1n
(3.17) with a new expression for M 2 . Only the first temm in
(3.18) should be modified. Now it cai’ depend on the evolution
parameter ((— exactly because the total energy-momentum vector
of the string /Uﬂ is not conserved in the case under consldera-—
tion, '

Henoe the structure of the mass spectrum of the charged
string in an isotroplc baokground electromagnetic field remains
the same as in the case of neutral string. Any oonstraiﬁts on the

external field do not appear.

13



7. M.B.Green, J.H.Schwarz and E.Witten. Superstring Theory,

5. Conclusion v's 1,2 (Cambridge University Press, Cambdridge, 19871,

The absence of the constraints on the external isotropic 8. B,M,Barbashov, V.V.Nesterenko, M (1n Russtan),
electromagnetic field in the open string theory can be inter- 150 (1986) 489, Sov. Pnys. Usp. 29, No 12 (1586) 1077.
preted at first sight as a contradiction with the conclusion that 9. H.M.Chan and J.Paton, Nucl. Phys. B40 (1969) 519.
the electromagnetic field generated by an interacting strings 10.E.S.Fradkin and A.4,Tseytlin, Phys. Lett. 158B (1985) s516.
should be describded by the nonlinear Born - lnfeld Lagra.ngia.nz’los 11.HKanasugi and H Okada, Progr. Theor. Phys. 79 (1988) 1197.

7/

%-Iz @fv[‘ H 8/:-# —7-?—’ /L;‘V[[> , (5.1

4As a matter of fact, it is not so. The constraint (3.23) for the
non-isetroplc electromagnetic field in the framework of the Born —
Infeld theory is a consequence of Positivity of the radicand in
(5.1). For the isotropic tenser /j: this expression equals 1,

and as a consequence, there are no constraints on / y

in this case,
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