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1. Introduction

In the previous papers [1,2] the formalism of the bosonic path integrals was developed for interact-
ing Ditac fermions in D-dimensional Euclidean space-time. Representations (I.1.14) and (I.1.15)!
for the effective action and propagator of interacting D-dimensional Dirac fermions as sums over
all paths in the z-space were obtained

(2,4, A) = jn” dTeT™ j: Dz, Pexp (ig -/v. dz,A,.(a)) Mpla) (11)

and

WA} = /o = "—TTe-“‘ [ P2u8(2(0) - o(T) Tx Pexp (ig § dz,A,(a)) Trmplsl  (1.2)

and for the spinor functional A1 p[#| for arbitrary D relntion was found
Mg[:i:]=[D:’:.M“[:‘c], a=D+1, . 4d = 1 (1.3)

The expression for the spinor functional Mj,[(#) was obtained

. d \
Myg[z] = any(y)'Dp(Z) 11, 2(T)3(1, z{0)| exp (—5% j: dt ’Ey‘GS‘)(z):’:. +i[}r dty, — %Q(C])
im]

(1.4)
where all the spinor structure that appears in the original form (1.2.8) and (1.2.8) ns an infinite
product of Dirac matrices is accumulated by the one-dimensional Wess-Zumino term (11.2.62). To
this end the space-time dimension was changed from D to 24 and the dimensionally extended
spinoz functional M, (2] was calculated,

2. Dimensional reduction of the spinor functional

To evaluate the propagator and effective nction of fermions, one has to perform the inverse
transformation, called dimensional reduction, on the spinor functional Mjy[Z] with the use of
relation (1.3). We substitule (1.4) into eq.(1.3) and perforin integration over varinbles z,(t),
(a=D+1,...,4d" - 1)

3d
mofél = [ ouou(s)§ (35 3 wel(e)) 1T, 0)
H T 2d ) ) T :
X exp (--2]-/; dtgy‘chﬂ(z):.(t)-f- afu dty, — %Q{C]) (2.1)

to obtu.in‘)&functioul that imposc restriclions on the components of vecior k, or on the variables
¥ and 2}

3d
kg = 2—1& Sywellizy=0, a=D+1,.. . ,4d -1 {2.2)
jm1

YHenceforth eqa.{1.X.Y) and (11.X.Y) should be understood as equation {X.Y) of refs.[1] and [2], cespectively.



where functions e&"')(z) are related to zg'.) by equality (I1.2.30):
e)(z) = G, 2ITald, 2) = 292} Ta ul2) (23)

To simplify eq.(2.1) one has to solve equations (2.2) and reconstruct the integrand and integration
measure on the space of solutions.
We note that hereafter the space-time dimension is implied to have only odd values

D=2w+1, vek

since the spinor functional for even values of D is easily calculable with the use of eq.{I1.2.2).

2.1. Solution of the reduction equation

Let us find at first all the restrictions on y; following from ey.(2.2). Note that the identity:
(kD% = (k¥ =k 1=k 1= %Tr(k,r“)2

holds where p = 1,2,...,D. After substitution into it of decomposition (11.2.26) in the form
kT° = X, y;Pi(2) one gets:

R 2d ) 1 2d "
=3P = 53091
i=1 i=1

or
Ko=yl=y], vij
So, it follows from eq.(2.2) that
pomky, i#) (2.4

There is an ambiguity in the sign assignment restricted by the only condition:

2d
2.%;=0

=1

The ambignity disappears, however, when one recalls the definition (11.2.42) of the region  of
vector ¢ = (¥, .., Yaa) _
yel, 0=0CUCU---UCly (2.5)
and Weyl chambers C; are defined in eq.(I1.2.43}.
Combining eqs.(2.4) and (2.5) we conclude that components of the vector y being solutions of
eq.(2.2} assume one of the following values:

.

Cl: -yl=y2=...='y‘-:...:yd=—yd+1= :_yj="'=_y2d )
Ci: Ji=ya= - TP = TY= —Yap1 = = —Y; = = —Yad, ;.Sd (2_6)
Cit gi=Wa= == Y= Y1 == Y T = Yy i>d

and the first two expressions are identical. 5o, in the region @ eq.(2.2) has (d 4 1} solutions for
vector y. All these solutions lie at the boundary of the Weyl chambers, that is, on the hyperplanes



where, as shown in sect.2.2.2 of ref.[2], the residual gauge invariance of A pli] under transforma-
tions of the Weyl group appears and the gauge fixing additional to eq.(11.2.20) is required.
Let us substitute solutions (2.6) into the original eq.(2.2). For y € C;, (£ < d) we have

d 2d
T eéd(z)- 3 eN2)=0, a=D+1,... 48 -1
i=1 F=d+1

and using the property (IL.2.31a): T3, e(z) = 0 one gets

d
)+ ey =0, yec, i<d (2.7)

j=2

Fory€Cj; j= d+1eq.(2.7)is replaced by the analogous relation:

2d

M+ Y M) =0, yec;, izd+l (2.8)
k=d+1
k#j

Each of the functions eg")(z) depends for a fixed index 1 only on variables zg'.), i=12,...,2d. At
the same time eqs.(2.7) and {2.8) differ in upper indices of functions eli)(z), (i = 2). Therefore
the solutions of these equations may be obtained from one another by a mere redefinition of the
variables z,-' , # > 2. For this reason only eq.(2.7) is solved in the next section.

2.2. The choise of ansatz
Using £q.(2.3) we rewrite eq.(2.7) in terms of harmonic coordinates as:

d
Y el Mauz)=0, a=D+1,...,4d" -1 (2.9)

=1

where T, denote all possible matrices of order 2d except for the unit matrix and Dirac matrices
¥, u=1,2,...,D. The general form of T, is

r,:(co' g) (g g) or (i g) (2.10a)

where ¢ means a traceless matrix of order d, A and B are » matrices of order d restricted by the
conditions:
At=B, Az1, Ax-#* {2.10b)
p=1,2,...,0 — 2 and 4* are Dirac mattices in the (D ~ 2)-dimensional Euclidean space.
Let us find the solutions of eq.(2.9} in the form:

. ()
u(z) = ( 'p(.-) ) (2.11a)
X
where . ] ) ]
P = N2 K0 = N.-z‘(,'ld, a=1,2,...,d {2.11b)



zéi} = 1 and N;N; = (I+2(i)z(‘))_l, 280 = T Eg'-)zg.i). Substituting this ansatz into
¢q-(11.2.51) one finds the restrictions on functions %0} and x® following from the properties
of harmonics:

2H PO =4, (2.12a)
TH, xOxE = 6. (2.120)

2 90xf =0 _ (2.12¢)
i (B9800 + x$) = & (2.12d)

where o, 5,1,7 = 1,2,...,4d.
Eqs.(2.9) and {2.10) lmply that ¥} and %) satisfy the system of equations:

i, #9ce =0 (2.13a)
Th xex =0 (2.13b)
Th, (94 +49Bx9) =0 (2.13¢)

Let us examine the properties of eqs.(2.12) and (2.13).

2.3. The properties of the system of equations

We decompose the traceless matrix € over the basis of matrices of order d defined in (A.4) and
obtain from eqgs.(2.13a,b):

d ]
E“z«;(‘] 'f’ =01 8,0, Z)_(L’) xg) =Gy bap

=1 i=t

where C) and €, aze some positive definite functions of variables z('] It follows from eq.(2.12d)
that
Cr+Cp=1, 0<C <1, 0sCy<1 (214)

Now we take eq.{2.13c) and in it set subsequently A = B = I, and then A = B = il , wheze
I, are all possible matrices of order ¢ except for the unit matrix and Dirac matrices 4. The two
resulting equations imply that %, §fey(d = 0 oz

4 R
YUY = Orfas — iCu (4)ap (2.15)
i=t

where @, = 1,2,...,d and Cy, €, ate some unknown functions. ¢ and C, may possess only

teal values. To prove it, one chooses two allowed values of matrices in eq.(2.13¢c):
A=-B=il: g, (90— g9 =0
A=B=4r:74, (i(i)‘f“ib(i) + v'}(i)ﬁ,ux(-')) =0

and after substitution of eq.(2.15)

Cf=0Cr, C. =0,



Thus the original system (2.13) may be rewritten as

Th, ¥9 '}"g}.= Ci18ag . (2.16a)
Th %y = Cabup (2.16b)
Th, 9% = Ctbap — iCu(3*)as (2.16c)

where all functions C; are real and obey eq.(2.14). The left-hand side of ¢qs.(2.16) containe the
sum of different harmonics (the sum over the harmonic index). Let us transform eq.(2.16) to the
form where the sum of harmonics is repiaced by the sum over components of a fixed harmonic
(with a fixed index of the harmonic).

The fanction ${} may represented as

W = /o, @lelh

and it follows from £q.(2.16a) that G is a unitary operator G Gl = 1. Hence, GtG =1 or

d
YD) = 87 (2.17a)

a=1
In an analogous manner one has from eq.(2.16b)
d Pl ;! v
Y. 2Ox = cp 67 (2.17h)
a=1

Now we multiply the two last relations by j‘(s’j and 1,{:("), respectively, and sum over repeated
indices with the use of eq.(2.16):

Ca ) = Crxl) — iCu (*)ap x5 (2.18a)
and ' » .
€ X8 = Cr ¥ +iC, (¥)ap V5 (2.18b)

The quantities Cy, Cs, Cy, C, are new additional variables in the system (2.16). The functions C,
and ; may be determined from eqs.(2.17) but the functions Cy and C,, are found from eq.(2.18a):

20;6‘.’. = i(‘)#,(}') + .J,(")x(j)
20,87 O — Jlgea ) (2.19)

Recalling definition (2.11) of ¥ and ¥ we conclude that C,, Ci, Cr, C, as functions of the
coordinates of harmonics do not depend on the index of harmonics:

Gg = C';(zu}} = C;(Z(n) == C.'(Z(m), i= 1,2, I and B (220)
It turns out that there are some relations between the functions Ci. The simplest one follows
from eq.(2.18a):
i (F) = (61 + €. (D)
or with the use of eqs.(2.17)
C,C, =CF +C.2

:



Together with eq.(2.20) the last relation is one of the constraints on the coordinates z % of harmon-
ics. The total number of the constraints is found from eq.(2.18a). At a fixed index ¢ of harmonics
and & = 1,2,...,d we have 2d real equations {2.18s) for (D — 1) variables Cr, C,, (C1, C; are
given by eqs.(2.17)). After their elimination

n(MN=2d-(D-1)=20"2_p41 (2.21)
equations remain that are constraints on variables zp.
dimension the number of constraints is:

For different values of the space-time

n(Dy=0fx D <5 a(D=7)=2 n(D=9)=8... (2.22)
Their explicit form may be obtained from eq.(2.18a). For instance, at D = 7 we have two
cons{raints: one of them

z&i)zg") - zg‘)zg") + zg‘}zgi) - z&‘)zgi) =0, (z(('.] =1) (2.23)

and its complex conjugate.

2.4. Properties of the solutions

Let us assume in this section that all the solutions of €q.(2.7) ate known and one tries to calculate
the integrand of eg.(2.1) on the space of solutions.

All the dependence of the integrand in €q.(2.1) on the variables y; and zg'.) is contained in the
components of the vector k,:

1 24 d
— S = B[S - 3 0] =BT
§=1 =1 j=d+1
where egs.(2.6) and (I1.2.31a) are applied. With eqs.(2.3) and (2.11) and the explicit form {A.6)
of the Dirac mattices «, we get for the function ef:

c(')(z) = (el (i) eg) . e(,;',)) = (,ﬁ(i(")ﬁc,},(") - .&(‘).?ax(i))’ ()Z(i)‘il’(i) + .J,(!')x(“})' (&E(’.)ﬂ'{"} — i(f)x(iJ))

where & = 1,2,..., 0 — 2. The components of ¢! are easily identified with the right-hand side of
€qs.(2.17) and (2.19) and )
ez} = (2Ca, 201, C1 — )

The dependence of eg) on the index { of harmonics disappears in this relation and therefore:

&Ny =ez), ii=12,....4 (2.24)
and for the vector k, we get
k. = melll(2) = n(2C,, 201, €1 - &2) (2-25)

Thus on the space of solutions the components of k, are proportional to the variables C; that
appear in eq.(2.16) and all one needs now is to calculate C; in terms of the variables zj(-'}. The
expressions for C; are given by eqs.(2.17) and (2.19). According to eq.(2.20) C; do not depend



on the index of harmonic and they may be chosen to depend only on the components z?) of the
harmonic u(!.

As a result, one concludes from eqs.(2.25) and (2.20) that on the space of solutions of eq.(2.7)
the vector k, and the integrand in eq.(2.1) are both functions only of the variables z?):

ko= Ry ), w20 (2.262)

where the gange condition (11.2.43) and eq.(2.6) are used.

Eq.(2.26a) means that for the calculation of the integrand in (2.1} it is not necessary to solve
eq{2.2). It is sufficient to use some propertics of the system (2.13). Nevertheless, a comment is
in order. We have noticed in sect.2.3 that eqgs.(2.18) implies that variables zgl) are restricted by
n(D) additional conditions. Therefore determining vector k, with the use of eq.(2.26a) one has
to keep in mind n(?) constraints

pal#, 5 =0, a=1,2,...,n(D) (2.26b)

following from eqs.(2.18).

All the above considerations were related to eq.(2.7) that was one of the solutions of eq.(2.2).
Let us turn to eq.(2.8). It was pointed out at the end of sect.2.1 that the solutions of egs.(2.7)
and (2.8) ate related to one another by the mere redefinition of the coordinates z_(f"), i > 2of
harmonics. However the solution (2.26) does not depend on the variables z_g'.), i > 2 and the above

transformation does not change its form. So on the space of solutions of eq.(2.8) we have finally
the relations:

kn = ku(ylv z?)). Y1 S 0
ea(z B =0, a=12,...,0(D) (2.27)

differing from (2.26) only by the replacement of the gauge condition on y;.

2.5. Calculation of the integration measure

The integration measure in eq.(2.1) may be written as
2d
dPk = &k §{k,) = duly) du(z) § (2% Ey,-eg‘)(z)) , a=D+1,..,4d -1  (2.28)
=3

where the measures dp(y) and du{z) bave been obtained eatlier in eqs.(I1.2.70) and (IL.2.71. If
one tries to climinate some integration variables with the use of the §-functions, then with a formal
substitution of solutions (2.6) of eq.(2.2) into eq.(2.28) the equality du(y) = 0 will be obtained. We
will demonstrate in this section that this strange result is a consequence of the gange invariance
of the spinor functional under residual transformations (I1.2.21) of the Weyl group.

Consider metric (I1.2.66) on the space of solutions (2.6), (2.26) and (2.27):

ds? = dk,dk, = dy} 4 ¢} de()(z) dell)(2) (2.29)

where eq.(2.25) is used. Since all e{!)(z) depend only on variables 2, the above relation implies
for the integration measure
dPk = dy, yP dup(21) (2.30)



where the power of y, is fixed by dimensional counting. To find the integration measure dy (),
one has to resolve the following problem: the number of independent. variables 2(1) {with ={D)
constraints taken into account) is much larger than the number of components of vector k,. A
problem like that did not appear when one calculated the measure dp(y, z} in eq.(11.2.68). The
origin of this problem was stressed above. It is the residual gauge invariance of the metric under
gauge transformations of variables 21",

2.5.1. Residual gauge invariance

It is proved in sect.2.4 of ref.{2] that the spinor functional M,[#] is invatiant under gauge trans.
formations of the Weyl group and gauge condition (I1.2.20) has been fixed demanding for vector
¥ to lie in the fundamental Weyl chamber y € ;. Solution (2.6} implies that vector y lies at the
boundery of the Weyl chambers where, as pointed out in sect.2.2.2 of ref.[2] , the residual gauge
invariance exists. Indeed, some components of the vector y in eq.(2.6) are equal to each other
and, as a result, vector y is invariant under the following transformations of the Weyl group:

W: y—oouyl=y, yeC a=e-¢ d>i>2 (2.31a)
The action of the Weyl group on the harmonics is obtained from eqs.(11.2.60) and {IL.2.50)
W ugl)(z) - us-l)(z,a) = u_g'.)(z), a=e —¢ (2.31b)

that is the Weyl group acting on u(] replaces an upper index of a harmonic.

We conclude from eqs.(2.31} that the sets of variables (31, 2} it }} and (¥, z( )] are gauge equiva-
lent, that is, the solutions (2.26) and (2.27) and metric (2.29) are invariant under discrete trans-
formations (2 31). The validity of this important property may be easily checked with the use of
€q.(2.25). Namely, vector k, being a function (2.25) of variables C; (that do not depend on the
index of a harmonic according to eq.(2.20)) is invariant under transformations (2.31).

Thus, to eliminate the re51dual gauge ambiguity, we have to impose constraints additional to
eq.(2. 21) on variables z . Their pumber

(D)= 2d—1)

is twice as large as the number of different transformations (2.31). As s result, from 2(2d - 1)
variables z( ), "51), Jj = 2only

2(2d - 1) = n(D) - ne( D) =
variables are really independent and this is in accordance with the number of integration variables
in €q.(2.30). To derive the explicit form of n,{D) constraints and to evaluate the integration
measure in eq.(2.30), consider the special case D = 5.

2.5.2. Special caze: D =5

At D =5 (or d = 2) we denote the coordinates of a h‘armc.)nic u( by

1
m
enl Bl ( ﬁm ) (2.32)



where NN = (1 + E;z, + F22s + Zazz)™". After aubstitution of this expression into system {2.13)
one succeeds in solving the equations to derive an expression for a harmonic ul2:
-5
o= New]| {2.33)
I
z
where ¢ is an arbitzary function. Its appearance is connected with the fact that system (2.13) is
invariant for general D under the following transformation of harmonics:

n(')(z) — G'.-,-u(ﬂ(z)

where @ is a unitary matrix of order d. At D = 5 there are, in addition, two harmonics »! and
ul), We denote
N 1

u® = N (2.34)

t3

and notice that according to the orthogonality condition of harmonies (I1.2.51): #My® = B =
0 the variables #; satisfy the equations:

14 31t +Tafa+ 5ty =0, 11-'f1+23t3——2’1t310 (2.35)

The solutions of these equations imply, for instance, that t, and #; are functions of variables z;, %
and ¢;. The expression for a harmonic 4 s found with the use of relagions (11.2.52) and (2.35):
_f.l

1
_Ia

t:

uf¥ = Mg g gl = —N'e~v

At
The harmonics 1) and 43} are related to one another by th*:ugc transformation (2.31b)
of the Weyl group. With the use of eqs.(2.31),(2.32) and (2.33) we find the transformation law of
variables z; under this transformation:

W: N=-Ne¥s N_z,,=Ne¥ N, n,= —Ne¥zy N 23,, = Ne¥5
or
i 3 A

w Ty = T = _Z—l 23— I3, = ;‘:' I3 — Iy & _i_:l (235)
There is an analogous relation between harmonics u® and w*). To ehiminate the residual gauge
ambiguity (2.36) one has to impose ny(D = 5) =2 additional gauge conditions on wariahles z;, %;.
1t follows from eq.(2.36) that gauge conditions may be chosen as

7z =const,, % = const. (2.37)
Let ns express vector k, in terms of variables z; with the use of eq.(2.25):

ko = (v + 5,40 — 9), ~i(w — @), w + B, (1~ 405 — aww)'/?) (2-38)

10



where ¥ = v*, % = w" and

_ 2183 — Za w = 3+ 2
- = - - El - - - -
L4224 Zp25 + 2323 14 2125 + Zazy + Zaza

It may be easily venﬁed that @, w and k, are invariant under gauge tra.nsformahons (2.36). After
substitution of eq. (2 38) into relation (2. 29) the metric is given by:

. .
de® = dyf + ﬁ {d21dz (5222 + F3z3) + (dZadzp + dEadza}(1 + 212).

+ (—dz[dBa{m 7 — 23) + dE(21%0 + 22)] + c€)}
and Zz = Zz;. It is invatiant under (2.36). Now we fix gauge (2.37) and derive

2 14+ 5z

1 (—1—+E—Z)—2'(dfg d22 + rifg dz;;) (239)

ds® = dy? + 4y
Hence, the normalized integration measure in gauge (2.37) is

s 2
&k = 16ndyy 7 diy d7s dzs y? Lt 2171

W(Zﬂ')". =0 (2.40)

Let f(k) be an atbitraty even functlon and consider an integral (for odd fuction the integral
vanishes}

i
z= [ @i =160° [t [ GBI s P 0ne(2)

where eqs.(2.25) and (2.40) are used. In this relation variables %;, z, play a special role: they
fix gauge {2.37) and therefore they are arbitrary constant parameters. At the same time Z is
gauge invarisnt under transformations of the Weyl group (2.36) and does not depend on the
gauge condition (2.37), that is, on the vaziables 7, z:.. To prove this statement, the integration
vatiables Zi,z3,%y,73 are replaced in Z by the variables #3,t2,85,25 defined in ¢q.(2.34) and with
£qs.(2.24),(2.25) and (I1.2.31a) taken into account:

1 ) S N
k, = yleg‘)(z) = -iyl(esp(z) + ef')(z)) = —Eyl(cf)(t) + ef,‘)(t)} = —y.cff)(t) = —yleg)(t)

The integral Z is replaced by the expression

di; dt, di; dis

m(l + ity )zf(_yle“)(t))

zZ= 16#’f0 dy v}

that differs from the original expression only by the replacement of z;, 2y by arbitrary parameters
f;, ;. Hence, Z does not depend on £, z;. To eliminate the dependence of Z on the gauge
condition, we apply a trick analogous to the Faddeev-Popov one [3]. Namely, let us multiply the
right-hand side of the last equation by unity:

j‘ d#dz 1 i
i 1+ 5P

11



and identify the integration variables z;, z; in this relation with the parameters z;, #; in integral
Z:
nd dz dndZadzy dfsd 2y
Z = 16x? f dy yt [ EPCRCECTCEET o 1)
Z = 16x A Wi (2miP(1 + z2) FlneM(2))

Thus, at D = 5 the integration measure (2.30) on the space of solutions of eq.{2.2} is:

d71dz dZadzadZadz;
(1+ 2121 + Z222 + Zazs)*

8
3

d%k = 16xdy, 3} (2xi)° = —n dy: 41 dpo(2) (2.41)

and it is surprising that the measure dug(z) coincides with G-invariant measure (11.2.56) on the
manifold SU(4)/U(3) ~ CP%.

Let us compare expressions (IL2.77) and (2.41). We notice that at D = 5 on the space
of solutions of eq.(2.2) only one factor remains in eq.(I1.2.77) corresponding to the integration
measure over coordinates of a harmonic u{®. It is natural to expect that an analogous effect takes
place for arbitrary D. However, for D > 5 there are n{D) additional constraints on variables

2 and the integration measure is expected to be the product of the G-invariant measare on the
manifold SU(2d)/U{2d - 1) and corresponding é-functions:

D)
@k = const dy; yP " dpa(2™) JT 6 (walz™, 1)) (2.42)
a=1

We will prove this relation in the next section.

2.5.3. Integration measure for arbitrary D

It was the explicit form (2.33) of solutions of eq.(2.2} that enabled us to derive eq.(2.41) and fix
gauge (2.37) at D = 5. At arbitrary D the solutions of eq.(2.2) are unknown. Nevertheless, the
measure dCk can be found in that case.
For arbitrary D the additional n;(D} = 2(d — 1) gauge conditions for variables z}l) ,’.(,-1) are
chosen in the form:
z‘(;] = const., ff,l) =const.,, F=2,...,d (2.43a)

or
{1+ 5(1)2(1])1i1¢§1)(2) =const., (l+ i(l)z(l))’ﬁﬁg)(z) =const.,, B=2,...,d (2.43b)

At D =5 €qs.(2.37) and (2.43) are identical. Now we have to prove that conditions (2.43) really
fix gauge ambiguity (2.31). Under residual gauge transformations (2.31) we have:

wi $§E) - () =92, a=e-g
The gauge (2.43) implies that
{1+ F O = (14 225N 2,) = (1+ 20D 2900:), a=ea-¢

but this relation contradicts the orthogonality condition (II.2.51) of harmonics:

d
3w z) = 640, 1> 0
A=l

12



Thus, gauge (2.43) unambiguously fixes gauge transformations in eqs.(2.31). Then expression
(2.29) for the metric looks like

ds? = dy? + 4y2(dC} + dC2 4 dCT) {2.44)
where

C1 = dFp()) = d(FOO+ 21+ L))
PUHOL + #0041 4+ -2

Using eq.{2.18b) one gets
d{(1+ 5300 = (dCy bup +1dCu (3)as) (1 + F Ay
or
dC} +dC3 = (1+ 20y (FWythd ((1 + z(uzu))—xfz,—(g)) d ((1 + 5(1)z(t)}—1fzxg))
Hence, after a simple calculation metric (2.44) is given by:

14 20,0

d.i = riy, + 4‘yl m d'f:l)dzg} (2.45)

where i =2,...,danda=4+1,...,2d.

At D = 5 eqs.(2.39) and (2.45) coincide. To find the measure using £q.(2.45), one has to resolve
n{ D)) constraints on variables zg-l) and single out (D — 1) independent integration variables. The
general form of constraints follows from eqs.(2.17a},(2.18), (2.18b):

?u(z{l)n 5(1)) - 2({,(1)¢(1))x21) _ (2(1)¢(!) + ’Z’(l)x(l))'ﬁ"’&l)
~(FO3x D — g0 aptf) = (2462)
¢a+n(D}jl(z(1)pz(I)) = (99&(2(1)1 Z(l)))‘
and o = 1,...,n(D)/2. This is a system of n{D) real linear equations for variables K, 2. At
D =17 the last relation is replaced by eq.(2.23):

0 g _ 0= A0 5 00
B} = 1 4 2(2)z(1)

w1z =0 (2.46b)

and '
2a(ZV, 51 = (ipr(2M), 2))

With eqs.(2.45) and (2.46) the general expression for the integration measure is:

i d-n(D)/2 _ D)

(1 +20:) 3 g5 0da) (l)dz( ) _

{1+ Z0z0) I =20 T blwa=™, 20)

d%k = comst dy, y7~'g"/*( D)
a=D+1 a=1
(247)
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where

g(D) = det

8 . a
(1) H)y_ 2 (1) =(1)
azg)?’u(z 3 & )62‘9)’?5(1 ' & ) + (G - b)

andi=2,...,di f=d+1,...,2d; a,b=1,...,n(D).
We carry out the calculation of g(D) for two values of the space-time dimension: for I = 5
there are no conmstraints at all and
gD=5)=1
for I} = 7 using eq.{2.46b) we have

2
o ()
9D =T}= ((1 T 2Z)

Therefore for arbitrary D we assume that

y D)
(14 2056
{1+ 20z

g(D) = const. (

The arguments of §-functions in eq.(2.47) are the constraints invariant under transformations
of the Weyl group (2.31). In this equation the variables 2§1), z,m, (i = 2,...,d) ate arbitrary
constant parameters, and any integral of the form [dPk f(k) rewritten in terms of variables 3,
and z(!) is gauge invariant under the transformations (2.31) and therefore it does not depend on
the variables f,w, z";l), (i < d). The proof of this statement is analogous to the one of eq.(2.41).
Hence, multiplying the right-hand side of (2.47) by unity

4 gzl 1
2 2 —
(-0 f I (14 70y =1

i=1

we derive the final expression for the integration measure on the space of solutions of eq.(2.2)

dzdz 1
Dy D-1
R = const A T (11 200

(D)
H 6('190(2(1] + E(l)))
a=1

suggested in eq.(2.42).
Now we are completely prepared to calculate the apinor functional defined by eq.(2.1).

3. Conclusions

We find the final expression for the spinor functional {2.1), for odd values of the space-time dimen-
sion, combining equatjons (2.28),(2.42) and {2.25) for the integration measure and momentum k,,
respectively, on the space of sclutions of the dimensional reduction equation (2.2):

(D)
Mold] = [ Du(w)vu(2) 1T Sealz DL AT, 2(0)

T r i
x exp (—if dt ()2, +:'j dty; - %Q(C)) (3.1
o o

14



where Duo(z) is the G-invariant measure on the manifold SU(2d)/U(2d — 1} and integration
measure Dp(y ) is defined as )

N r
[outsr= Jim T[T dnn @)™, 7=
The integration region in this relation:
—co <y <0
is the union of regions (2.26a} and (2.27). After integration of eq.(3.1) over y; one gets

n{D) i
Mpli} = j Dppa(z) [T &alz DL ATH, 2(0)] 8907 (1 - ef(2),) exp (—5@(0)) (3.2)

a=1

Let us compare this equation with the initial relation for the spinor functional (1.2.8a) derived
in sect.2.3 of ref.[1]. We note that all the transformations of the spinor functional described in
the previous sections are reduced to the following replacements of variables in eq.(1.2.8a)

e, — esll)(z)
I~ 1L, TH,0)iexp (-5 8(C)) (33)
(D) :
De b1 - ei). - /’D,uo(z) ]_:]:1 §{palz, £))

The dimension I of space-time in eq.(3.3} has to have only odd values.

Eq.(3.2) expresses the spinor functional as a sum over all paths on the complex projective space
CP*-1, To calculate this sum it is useful to return back to €q.(1.2.8b) where all the integrations
were made and perform in it transformations of the vatiables &, and I[#] analogous to eq.{3.3).
To this end we recall the relations (1.1) and (1.2) for the propagator and effective action and
consider the following expression involved in them:

j;' Dz, Mpli] Pexp (ig L - dz,,A,,(z))
[ s (z ~y- [ " at e)' Mpl#) Pexp (ig / T gt i,,A,(z(t)))
[ 3.6 (:1: —y- j: dt é) 55N (1 < 33) 1[2] Pexp (:’gjj dti,,A,,(z(t))) (3.4)

where &q.(1.2.8b) is used and the P-exponential depends on the function z,(f) expressed in terms
of integration variables

£
t) = wt [ draur), wll) ==,

The S-function in eg.(3.4) vanishes as @? # 1 but its action on (1 — £?} differs from zero. To

deal with this function we assume following tef.[4} that only terms with the maximum singularity

at #* = 1 contribute to the path integral (3.4). This means (as remarked in sect.2.4 of ref.[1]}
that the integrand of eq.(3.4) may be calculated under the additional condition z* = 1. After
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decomposition of the vector z,, onto radial and angular parts the functional integral over the radial
variables is easily calculated with the use of the S-function but the remaining integral over the
anglular variables is reduced after transformation (3.3) to the following relation

/; " Dz, Mpli] P exp (ig f, : dz‘_,A,_,(n:]) =/ Dun(z):iii: 8(palz, 2))6 (z -v- T it g(‘)(z])

x exp (—%@(C]) |1, 2(TY1, (O} P exp (ig f:dt es:‘)(z)A,, (y + j: dr e(l)(z))) (3.5)

Hence, for odd values of the space-time dimension we derive the following bosonic path integral
representation for the propagator of interacting fermions

S(z,9;4) = j; 4T exp(—TM) f ’Dpo(z)nii}&(lp,(z, )}é (z —y- fa . dtem(z))

x|1, 2(T)3(1, z(0)| exp (W%Q(C)) Pexp (t'g j: dz,‘A‘.(z)) (3.6)

where the integration contour of the P-exponential is defined as

t
e {t) =y + _/; d"re(l}{z), z(T) = 2,

For the effective action we have the relation (D = odd)

W4l = fo ® g exp(~TM) f Py j ‘D,uo(z)ﬂﬁ) B(alz, 7)) 8 ( jo Tdte(’)(z))

a=t
(L, #HOY1, 2(T) exp (- 58(0)) Te Pexp (ig f dm,(=)) (8.7)
where (1, z(0)|1, z2(T)) = ({1+z{n)x(1;i]!((ﬂ$g)x{:r)))'f=‘ We recall that {1, z} is & coherent state for the

3U(2d) group defined in sect.2.5 of ref.[2] . € is the path z = z(t), ¢ ¢ [0,T] on the complex
projective space OP?-1. &(C) is the one-dimensional Wess-Zumino term given by eq.(11.2.62).
Dpolz) is the G-invariant measure on the manifold SU(2d)/U(2d — 1) defined in eq.(I1.2.56).
Vector €{)(z) was inlroduced in €q.{2.3) and is equal to the matrix clement of the Dirac ma-
trix (1, z|v*/1, 2} . The functions ,(z,2), {& = 1,...,n(D)) ate constraints (2.46a) on complex
variables %, (i = 1,...,2d — 1) imposed by the dimensional reduction equation (2.2).

To evaluate the spinor functional for even values of the space-time dimension we note that
egs.(1.2.8b) and {3.4) are fulfilled for arbitrary D. At the same time to perform the transformation
(3.3) of eq.(3.4) for even D we identically transform eq.(3.4)

[ Pini Diu8(in0) 6 ( - dafc) Mpii) Pexp (ig [a z';.Aﬂ(z(t)))

where g = 1,...,D. Now the dimension {I? + 1) of the Z-space has odd value and the use of
the transformation (3.3) is justified. As a result, for even values of the space-time dimension
the final representations for spinor functional, spinor propagator and effective action differ from
eqs.(3.5),(3.6) and (3.7) by the following factor

8&ps1) — J(egll(z))
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Thus, for even D the summation in eqs.(3.5)-(3.7) is performed over all the paths on the compIex
projective space CP?*! for which (D +1)-dimensional vectors £1)(z) lie at the subspace €D+1(Z)
0.

At D = 2, 3 representations (3.6) and (3.7) coincide with expressions (2.26) and (2.27) pro-
posed earlier.

Thus in the present paper we derived the representations (3.6) and (3.7) for the effective action
and propagator of Dirac fermions interacting with a nonabelian gauge field in D-dimensional
Buclidean space-time as sums over all bosonic paths on the complex projective space CP?-?,
(d = 2P/8-%). Now several important questions are raised:

1) How the well-known renormalization properties of the effective action and propagator follow
from eqs.(3.6) and (3.7)?

2) The effective action of interacting fermions for odd D contains the Weyl anomaly. It is
interesting to reproduce this anomaly contribution starting with eq.(3.7).

3) What kind of bosonic theory leads to the same path integral representations (3.6) and (3.7)7
The answer to this question will allow us to establish the Bose-Fermi correspondence in higher
dimensions.

All these problems will be the subject of forthcoming papers.
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Appendix. Dirac matrices in D-dimensional Euclidean
space-time

Dirac matrices are defined as solutions of the matrix equation

P iy =297, pv=12,..,D (A1)
Let us introduce the matrices 7., ...
A ey i Vi) (A.2)

where |- - ] denotes antlsymmetnzatlon We briefly dwell on the properties of Dirac matrices:

1. The order of y-matrices is equal to 20/2,

2. Any two systems of y-matrices being solutions of eq.(A. 1) are related by the following
transformation

Vorpa-pem =

Y= T T
where T' is some nondegenerate matrix of order 2(2/3,

3. Solutions of eq.{A.1) may be chosen to be hermitian, unitary and traceless matrices

Tu = T 1:!#2'"]&1. = T papon
VT = Vinpizsim Yorpiaon = 1
Trye = Tevuppppn =0
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4. Under the change of the space-time dimension from D = 2v to D = 2» 4+ 1 the order of
7.-mattices s not changed but their total number is jncreased by unity and

(20-1),

Yavir =7 05 ¢ e 12 (A.3)

5. At v = [D/2] the system of (2% — 1) matrices
T = (Y Vasizr o+ o s Tinmzeowizn b H1 < B2 <00 < gy (A4)

is linearly independent and forms the basis of afl traceless matrices of order 2”. It means that any
traceless matrix of order 2” may be decomposed over the basis with the use of the Fierz identity

2¥-1

2 {T%) 45 (T*)ep = 288cban — Banben (A.5)

a=1l

6. An explicit form of 4, -matrices for arbitrary I? is determined by means of recursion relations:
At D = 2 the Dirac matrices coincide with the Pauli matrices

0 —i 01
Mm=a=1 . g y Tr=th = 10

At D = 3 the third matrix (A.3) is added

. 1 0
T2 =N =03 = 0 -1

At D = 2 we have dim~y" = 2* and 7,-1ratrices have the block structure

0 iy, (o1 3
‘Tp"'(i,}.p 0 ): 72»”(1 U), p=12..,2r-1 (Aﬁ)

where 7, are the Dirac matrices of order 2*~* in the I = 21— 1 dimensional Euclidean space-time.
At D = 2 + 1 one has to add the matrix (A.3}

o= (5 %) (a7

to matrices (A.6).
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