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Kopuemckwuit I', 1, . E2-89-499
KBaHTOBasa reoMeTpHsa OHPAKOBCKHX ¢epMHOHOB
PasMepHoe pacmMpeHHe CHOHHOPDHOTO GYHKIHOHAala

IOna onMcaBHA OUPAKOBCKHX ()epMHOHOB, B3aUMOZeHC TBYOIHX
¢ HeabeJlleBbIM KanHOPOBOUYHBIM I1oJieM B D-MepHoM eBKJIIHUZOBOM
npocTpaHcTBe—BpeMeHH B paGoTe pas3BHBaeTca ¢opMmalusMm GO30H~
HBEIX HMHTerpalnoB no nyraM. llonydyeHnl npemcTaBlieHHd Onsa 3ddex—
THBHOTO HOEeHCTBHA H KOPPEeNAIHOHHBX GVHKUHI depMHOHOB B BHAeE
CYMMM no nyT B _KOMIUIEKCHOM NPOEKTHBHOM NPOCTPaHCTBE
Cp2d- (d ol D/ /2} - 1) B KOTOPHX BCH CIHHODHAs CTPYKTYpa
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MHHOBCKHif ulleH ofecneuHBaeT BCce HeoOGXoauMble CBOHCTBA (epMH-
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Quantum Geometry of the Dirac Fermions.
Dimensional Extension of the Spinor Functional

The bosonic path integral formalism is developed for
Dirac fermions interacting with ‘a nonabelian gauge field
in the D-dimensional Euclidean space-~time. The representa-
tion for the effective action and correlation functions of
interacting fermions as sums. over all oso 1c paths on the
complex projective space CP?e-!, d =2 —* 1is derived
where all spinor structure is absorbed by the one-dimen-—
sional Wess—=Zumino term. It is the Wess—Zumino term that
ensures all necessary properties of Dirac fermions under
quantization, i.e. quantized values of spin, Dirac equa-’
tion, Fermi statistics.

The investigation has been:performed at the Laboratory
of Theoretical Physics, JINR. '
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1. Introduction

In the previous papers [1,2] the formalism of the bosonic path integrals was developed for interact-
ing Dirac fermions in D-dimensional Euclidean space-time. Representations (1.1.14) and (1.1.16)!
for the effective action and propagator of interacting D-dimensional Dirac fermions as sums over
all paths in the z-1pace were obtained ,

S(:,y,A) / ch'“‘/ Dz, Pexp (1g/ dz, A ,.(:))Mp[z]
d ' '
" WA = / T -ru / Da, §(2(0) - (T)) Tt Pexp (:g f dz A,.(a)) Tr Mpli]

and for the spinor functrona.l M p|#] for arbitrary D expression (1.2.8) was derived. This expression
contains the function I[n] defined in eq.(1.2.9). It is equal to the infinite product of Dirac matrices
that was caléulated in sect.3 of ref.[1] only for two values of the space-time dimension D = 2,3.
The purpose of this peper is to generalize the above result: we will calculate the spinor func-
* tional for arbltrury values of the space-time dimension.

2. Dimensional extension of the spinor functional voe

To evaluate Mp[é] for D > 4, let us consider the orxgmn.l expremon (1.1.13) for, the spinor
functional in D-dimensional ‘Euclidean space-time

Mol = [opexp (~i [ ept)it) Pese (i [ aity)

" and perform on it & transformation called the dimensional eztension.
The 4, matrices are traceless, hermitian matrices of order 2d:

24 =201,

(those propemel are formulated in the Appendix of ref.[2]). In particular, matrices ['* = {v,,7.0,..

, @ = 1,..,4d? = 1 are clements of the su(2d) Lie algebra [3}. Let us transform eq.(11.13) to
complete the exponent to an atbitrary element of this a.lgebru k,I'%, where k, is some (4d? - 1)-
dimensional vector. To this end the dimensional extension is performed We introduce the addi-
tional coordinates k4, Tay @ = D + 1,...,4d* ~ 1 end identically transform eq.(1.1.13) as follows:

Mp[i]=/‘Di.M“[i], a=D+1,...,4d -1 (1)
where

Madé] = / Dk, exp (-i / T k.é.) Pexp (i / Tat k,p-) . a= 1,' bl -1

The components z,(7) are the Lagrange multipliers in eq.(2.1). The mtegrntron is performed
over all paths in the k-space. At D=3 (ord = 1) the dimensional extension is unnecessary since

YHenceforth equ.(I.X.Y) and (IL.X.Y) should be understood as equatlon (X.Y) of refs.[1] and {3], respectively.
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the dimension of the su(2) Lie algebra coincides with the space-time dimension. Moreover, the
relation analogous to (2.1):

“ Moli) = [ Dipy Mol E (2:2)

allows us to restrict further consideration to the case of odd values of D. Thus we will determine
the spinor functional Mg[2] and then'using eqs.(2. 1) and (2.2) one w1ll be able to ﬁnd Mp[z]
for 0dd and even D.

" We define Mj4z] as the {ollowmg Yimit:

Myglz] = nl'l_x.ll, Mag(z(N7)) - Mag(2z(27))M2a(2(7)), T=T(IN l(2.3a)
where t : 4
Mad(z(t) = / Pk exp(~ikoza(t) + ikaI®r),  za(t) = 2o(t)r (2.3b)

The intégrand of Mjy(z(t)) is an element of the SU(2d) group. To deal with it, the well- known
properties of the .m(2d) Lre algebra are formulated in sect.2.1.

2.1. su(N) Lie algebra for SU(N) group [3]

Traceless, unitary and unimodular matrices of order N form the SU(N) group. The drmensron of
this group is equal to
dim(SU(N))=N*-1

It is ‘well-known that in the su(N) Lie algebra corresponding to.the SU(N) group the orthogonal:
Cartarr—W_eyl basis consisting of operators {H, E,} may be chosen: . :

Tt(H.',Hj)=5.'j, TI‘(E‘,,Eﬂ)— _p, 'Tt(H",Eu)=0‘ :
and the following commufation relations are fulfilled:

[H" HJ] - 0! ivJ = 1r' N - 1

i Iy . | rz 1)
(Eay Ep] = uaE,.+grfa+ﬂe‘I>or01fa+ﬂ¢¢I> .
(Ea, B_a] = o H; -

The abelian subalgebra of su(N) generated by the operators H;is called the Cartan :ubalgebm H
and its dimension is the rank of the algebra: ;

dim(#) = rank(su(N)) =N -1

The real variables o' are collected to form vector a = (a,a?,...,a”~") in the space R¥?, called
the root. The operator E, corresponding to the root a is referred to as the step operator The
set of all roots of su(N) is denoted by & = {a}. & is a root system and it consists of N(N — 1)
roots. To describe the explicit form of the root system, one introduces the orthonormal basis in
(eie;) =85, (eda= 5-A, 3, A=1,2,...,N

The root system & of the su(N) Lie algebra is the set of the following vectors:

acd, a=e—e€j s;’:], ]—-12;..?1\/‘




v

that lie in the (N — 1)-dimensional subspace orthogonal to vector e:

N

e = Ee.-, " (ye)=0, a€cd
) i=1 .

The oot system & possesses the important symmetry property: i{ is invariant under trans{drma-

tions of the Weyl group. A more detailed definition of this group will be given below.

- In the root system & the subset A consisting of (N — 1) roots called simple roots may, be

.chosen:

A = {a;la; = €; —~ €i41, i=1, 2,... yN -1} ; (25)

the use of which enables one to represent an arbitrary root a € @ as:

a= Z a; n;, iwhere (ni>0 Vz) or (n, <0 vi) . T (2.6)

i=1

The sets of roots ‘I>;L and &_ ) : '
. b, ={a=e—e¢j, i<j}, P ={a=e~—e; i>j}
are called systems of positive and negative roots, respectively, and they are denoted by:
' a>0 if ae®; or a<0 if acd_ -
The step operators entering into eq.(2.4) may be chosen in the form:
(Eu)ap = 6iab;p,  fa=e—e; -, L (27

Once the definitions are given, we set N = 2d in all the above relations and consider an atbltrary
element (k,I°} of the su(2d) Lie algebra appearing in eq.(2.1).

2.2, The Weyl group as a gauge group

Let k, be some (4d* — 1)-dimensional vector. Then a powerful theorem of Lie algebra states
that an element k,I'* of su(2d) may be obtained by the gauge. transformation from the Cartan
subalgebra: 1

k0% = D(z)(y, H)D"(z) ' (2.8a)
where (y, H) = Y24, y:H; is an element of the Cartan subalgebra % and y is some vector in the
space R?9-1, The unitary matrix D(z) is given by:

D(z) = exp (E(z,E., - i,E_,,)) y Za=172, . (2.8b)
. a>0 .

where the sum runs over all positivé roots defined in (2.6), z, are complex variables whose number
(d(2d — 1)) is equal to half of the number of step operators The special case of eq.(2.8a) for the
SU(2) group was used early in eq.(1.3.16)..

Eq.(2.8) relates 4d? — 1 variables k, to 2d'— 1 variables y; and d(2d — 1) complex variables z,.
This fact is expressed as: .

’ . ka = ka(yn Z,_.,) ) ‘ : ‘ (29)

As only y and z, are known, the vector k, is determined unambiguously from eq.(2.8a). But the
reverse statement is wrong. There is the gauge amblgmty in the solutions of equatxons y =wy(ka),
Zq = z4(ka) and the correspondmg gauge group is the Weyl group-.

2.2.1. Definition of the Weyl group )
To prove the above statement, we rewrite eq.(2.8a):
ka* = (D(2)U) (U™ (v, H)U)(D(2)U) !
where U is a umtaty matnx of order 2d. Let it be chosen as:
U=Sp=cxp ( (B — E5)) (2.10)

It follows from commutation relations (2.4) that

S;% (v, H)Sp = (oa(y). H),  D(2)Ss = D(z,5) exp(i($, H)) (211)
where variables z,5 and the (2d — 1)- -dimensional vector ¢ both depend on z,, y and ﬂ The linear

operator op(-) is defined for an arbitrary vector y and root 3 as

o(s) =y - 2ﬂg’;f,’) (212)

It has a simple geometric meaning. Actingon vector y operator op(y) reflects it in the hyperplane
orthogona.l to root B. After substitution of eqs.(2.10) and (2.11) we have

kI® = D(zm)(vﬂ(y),H)D 1(2,5) (2.13)

for an arbitrary root 8. Comparing eqs.(2.8a) and (2.13) one concludes that dependence (2.9) is
invariant under discrete transformations of variables y and z,:

ko = bty 70) = Kal0p(®),(7arg), @Be® L (214)

These transformations form a finite group known as the Weyl group W [3}. Operator o4(-) is called
the Weyl reflection. The number of gauge invariant relations (2 14) is equal to the dimension of
the Weyl group and for the su(Zd) Lie algebra it is . .

dlm(W) =2d-1
‘Therefore for eq.(2.8a) to have a unique solution, the gauge condmon for the Weyl group must be
fixed. .
2.2.2. Gauge fixing for the Weyl group

To determine the allowed form of the gauge condmon, let us consider the action of the Weyl group
on an arbitrary vector y in the root space R-1;

Wi y—y=oly), acd (2.15)

.

It is convenient to decompose vector y over the basis in the space R

y= f:e.' % ‘ ' " (2.16)

i=1



where y; are coordinates of the vector. The vector y lies in.the subspace orthogonal to vector
T ¢; and therefore the coordinates are restricted by the condition:

(yyzea) = Z!l- =0 . (217)

i=t l—l

Since o4(y) is a linear operator, it is sufficient to find its action on the basis vectors e;. For root
a ='e; — ¢; € $ and basis vector e one gets:

ej N lfk =i
gaer)=4{ & , ifk=3j
ex , ifk#i,j

that is, the Weyl reflection acting on the basis interchanges vectors e; and e;. As a consequence,
for an arbitrary vector y operator o,(y) permutes coordinates y; and y;:

aﬂ(yl""ryiy'"lyj)”')yhi)=(yl:“',yji";';yil--'1!/24)1 a=e; — € 7 (218)

Thus the Weyl group acts on the components of vector y as the permutation group.

It follows from eq.(2:18) that the root space R?4-? is split into nonoverlapping regions called
the Weyl chambers C; under the action of the Weyl group [3]. The Weyl chamber for the su(2d)
Lie algebra is defined by the set of conditions: (y; > y;) or (v; < v;), (5,7 = 1,2,...,2d) and two
neighboring chambers have a common boundary. Their number is equal to (2d)! and

R¥!'=¢,0UC3U-- UCuay _— (2.19)

Let vector y lie in a Weyl chamber C;. Then the Weyl reﬂectxon a4(y) sends it from one
Weyl chamber to another. It is essential that. for any two Weyl chambers G and C; the gauge
transformation v

R yei;, y —_Ua(y) € C
is unique [3] unless vector y belongs to the boundary of the: Weyl chamber. Hence, the gauge
invariance of egs.(2.14) and (2.15) may be fixed demanding vector y to lie within the Weyl cham-
ber:
vea (2.20a)

Let ¢, be the ﬁmdamental Weyl chamber in the last relation. Then the gauge condition (2.20) is,
in fact, the definition of the fundamental Weyl chamber [3):
(y,i)20, a;€eA : (2.20b)
or . V
N2Y 2. 2¥a= Y- Y2~ Y (2-20¢)

where a; are simple roots defined in eq.(2.5). With this choice of the gauge condition, vector y
belong to its own Weyl chamber in each of the gauge-equivalent sets (2.14).

Nevertheless, there are problems with gauge (2.20). Condition (2.20) does not fix the gauge
at the boundary of the fundamental Weyl chamber:

(aw)=0 or ywm=win (2:21a)

ot

R
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because in that case vector y is invariant under transformations

WD y=y=ol)=y - (221b)

and therefore there is a residual gauge ambiguity in eqs.(2.14) and (2.15) analogous to the Gribov

copies [4}. To overcome the problem, one has to examine the action of the Weyl group on variables

2, defined in eq.(2.8b) and then fix the gauge at the boundary of the fundamental Weyl chamber

by imposing additional constraints on the variables z,.  This program will be completed in ref.[2].
For the special case D = 3 one easily derives from eq.(2.20) that the gauge condition is:

mey=-yn o yux0 (222)

and 1t is really fulfilled in eq.(1.2.3) due to the positive definiteness of the radial part of the vector.

2.3. Decomposition over the projecti'on.operators

In the previous section an arbitrary element of the su(2d) Lie algebra was decomposed, in eq.(2.8),
in the Cartan-Weyl basis and the coridition was found under which it is unique. At the same time
I'=; H;, E, are matrices of order 2d that act in the space of the fundamental representation of the ~
S U (2d) group with dimension 2d called the minimal fundamental representation.

2.3.1. Minimal fundamental representation[3}
There exists a lughest weight state in the representation space defined as:

CHGA) = () [/\1), E;I\) =0, " va>0

where ); is a vector in the root space called the highest welght In our case the hlghest weightisa
fundamental weight, that is the one obeying the equation: 2()\;, a;)/(a:, @;) = 61;. The basis in the

representation space consists of the highest weight state [A;) and states |A;) = E_aE_g--- E_,|A})
obtained from [;) under the action of step operators corresponding to the negative roots:
I’\Z) = —GIIAI)l IA:!) E—a; —a:l’\l): i"\ld) —a. fe —au_l[xl) (2 23)

where a, € A are simple roots. All vectors M) are slmultaneously the elgenstates oi operators
from the Cartan subalgebra:

HA) =Ny, i=1,2..2d (2.24)
with vectors ); called weights. For the minimal fundamental representation weights A; are related
to one another by equations: A; = ,\._1 —a; and they may be represented as:

Ai=¢e—- 2d Z e; v (2.25)
where {e;} is the basis in the space R*. Weights };, ({ = 1,...,2d) have the following properties:
2d 1
(M e) =0, () =(Ne5) =8~ o7
i=1 ' »

One concludes from eq.(2.24) that operators irom the Cartan subalgebra may be decomposed as:

‘ H= ZA DI
where i) = ;).



2.3.2. Decomposition of the spinor functional

After substitution of the last relation into €q.(2.8a) with the use of €qs.(2.16) and (2.25) we get:

kI

Z(y; X )u(z)mmu-'(z)

I

Ey.P (Z)

0-.1

Ey.[z 2, 7 o ) " {2.26)

i=1
where states
fihn) = D(2)i), i=1,2,.;2d S (227)
and projection operators onto these states Py(z) =1i,2)(, 2|

P(2)Pi(z) = ;P (z) . B %)

are mtroduced Tt follows from eq.(2.26) that |3, z) is the eigenstate of operator kI corresponding

to an eigenvalue equal to the coordinate of vector vit

(ka I“')I: z) = y.[t z) ’

In all the a‘bove equations we denoted through (z) the dependence of the corresponding quantities
on the variables (z,, z,) entering into eq. (2.8b).
" Using eq.(2.26) one ﬁnds the relation between va.nables k, and (v, za):

ko= o Ey,.eg-‘)(z)" ‘ " (229)

" where the orthogona.hty condition for I'* matrices: Tr(l‘ 'I‘b) = 2d&* is taken into account and
the followmg notation is introduced: ’

e(z) = G, 2P}, 2) = Te(RB(2)C?) | (230)

wherei=1,...,2danda = 1,...,4d—1. The functions e,(,i)(z) thus defined possess the properties:

2d

) § e(z)=TeT. =0 | | (2.31a)
a1 . ) )

,F;': eN)eP(z)=2d67 -1 - ! (2.31b)

P((2) = o = (14 e02)0) = R(2) (2.31¢)

where for an arbitrary vector k, we denote "P(k,) = 45T o prove the last two relations, the
Fierz identity (11.A.5) is used.

We conclude from eq.(2.29) ‘that the dependence of k. on the variables (z,, Z,) is contained
entirely in functions e{(z) and; hence, the number of independent components of e{)(z) is equal

‘

to the number of step operators: 2d(2d — 1). A part of constraints on el)(z) are expressed
in egs.(2.31) but the remaining ones may be easily found after substitution of eq.(2.31¢c) into
orthogonality conditions (2.28) of projection operators. The variables y; involved in eq.(2.29) are
restricted by eq.(2. 17) and the gauge condition (2.20). :

For the special case D =3 we get from eqs.(2.22) and (2 3la)

= —(yle(l)(z) + y,e(z)(z)) = y,e(l)(z) $n=>0 2 (2.32)

and t]:us expression is, in fact, the decomposxtlon of vector into radial and angular parts -
The substitution of expresslon (2.26) for vector k, in terms of variables y and e{)(z) into -

. €q.(2.3b) yields:

i=1

M/zd(:) = /d“‘ lkexp (——-Ey.e( (z)z..) EP(vz)e'""

.-

Z_;/d"""krexp (—5‘2 gy;eff)(Z)i- + ivﬂ') P(eW)(2)) , (2'33)

where eqs.(2.28) and (2.31c) are used. We recall that variables y; and e{)(z) are functions of k,
whose explicit form may be found by solving q.(2.82) with the additional gauge condition {2.20).

2.4. Gauge invariance of the spinor functional

At D = 3 we find from eq.(2:31a) that e{!)(z) = —el’}(z) and after substitution of eq.(2.32) into.
€q.(2.33) the resulting spinor functional coincides with eq.(1.2.3) obtained earlier. The integrand of
(1.2.3) contains only one projection operator, and it was the property that enabled us to calculate
the infinite product of factors in eq.(1.3.8).

For D > 4 we have the old problem stressed in sect.3.2 of ref.[1]: there is a sum of projection
operators in the integrand of eq.(2.33) that does not allow us to calculate the infinite product
(2.3a). In'this section it will be demonstrated that there is a simple relation between the projection
operators P(e?)(z)) in eq.(2.33) that enables us to transform the spinor functional to the desired
form when the integrand contains only one pro_,ectxon operator.

This relation is based on the gauge invariance of vector k, and spinor functional AM34(z) under
transformations of the Weyl group. '

With the use of eqs.(2.14) and (2.29) the achon of the Weyl group on the vector k, may be
representcd as:

ka Ey,e(‘)(z) =03 Z(da(y),e,)e( (z’a) ) | (2'34)

This relation is fulfilled for arbitrary values y and a. Therefore assuming a = ¢; ~ ¢; and with
©q.(2.18) one compates coefficients of variables y; and finds the relations between the functions
c(J)( z):

D) = Do)y (o) = ezg), de) = a), k# i

In parhcnlu, for a = e; — ¢; we have

e(')(z) = e(’)(z,,) i>2 (2.35)



where z,; = z,,_,,_.,. It is evident that the projection operators P(el)(z)) satisfy analogous
relations. Thus the expression for the spinor functional is: ‘ ’ :

24 i M . , . » .
Mile) = 3 [ 4 tkexp (g S wdiegen tinr) PEOe) (20

where e0)(z,)) = e)(z). - . :

Let us express the integration measure over momenta d*"~% in terms of the variables Y, Za
and Z,. Since the functions y = y(ka), za = za(k,) and z, = Za(k,) may be found by solving
€q.(2.8a) under gauge condition (2.20), the general structure of the measure is: i

&k < duy,2) TT O((wad) sy

; o€l

where a; are simple roots defined in eq.(2.5) and #-functions take into account the gauge condition.
Tl}e explicit form of the measure du(y,z) will be derived in sect.2.7 but now it is sufficient to
establish some properties of du(y, z).’ .

The spinor functional is a gauge invariant quantity and it does not depend on the explicit form
of the gauge condition. Hence the measure du(y, z) is unchanged under transformations (2.34) of
the Weyl group: P .
Wi duly,z) = dp(oa(y). (2.4)) (2.38)

for an arbitrary root a. With this property and expression (2.37) the spinor functional (2.36) is
given by: i . '

é

. W : T k ) ' " ' i -
May(z) = g./dy(y, z) HA.G((y,a,-)) exp (_ﬂ Z:!lieg)(z)% +z'y,'T) P(e(’)(z?j))
2 - .
= ¥ [duow),(5) T 8w, ) :
j=1 : o €A :
i . : . ‘
exp (— ﬁ‘;yieﬁ')(ﬂ% +i(5(y), e:)r) P(eM(z,)). s (2.39a)
where o ] '
oi(y) = {;‘”““"(”) Ny jif ‘ . (239b)

and the identity y; = (0;(y), &1) is used. Let us perform the inverse Weyl transformation:

w-l (oi(¥): 2,;) = (3,2)

in the j-th item of the sum and take into account the gauge invariance (2.34) of vector k, to ‘

derive, with the use of equality 0,0, = 1, the following relation:

i 2 . 24 k
Mai(z) = / dp(y, z) exp (—ﬁ Ey-'es')(Z)% +i(y, e1)1') P(e(2)) Y TI 6((os(y), ) (2.40)
i=1 . J=1a;€A

(?omparing €gs.(2.36) and (2.40) one concludes that it is the gauge invariance of the spinor func-
tional that enables us to get rid of the sum of projection operators in the integrand of (2.36). The

10
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final expression (2.40) for the spinor functional contains only one projection operator onto state
I1,z) , defined in eq.(2.27) and the sum of the products of §-functions is really the sum over gauge
conditions. Indeed, the sum may be rewritten as: ) o

2d : 2d

2 I 6(osw) ) = 3 I1 (o)) . (24)

Ji=la;€A j=laieA )
The first item at 7 = 1 is the definition of the gauge condition (2.20) that restricts vector y to
belong to the fundamental Weyl chamber C;, defined in eq.(2.20b). At j > 2 vector y lies in the
region of the space R?4!, formed by (2d — 1) Weyl chambers C; obtained from the fundamental
Weyl chamber under reflection transformations o,, (a = €; — €;). Thus eq.(2.41) determines the
following region: ’
: ’ Q=C1UC:UC;,U"'UC;J . (2.42)

where the Wey! chamber C; is defined as: )
¢ (y,0i(a)) 20, aed (2.43a)

or with the use of eqs.(2.18) and (2.39b):

G N2y 2y 2y
Ci: Y2y Zn22ya j220 (2.43b)
and ypg = —y; — ¥ — - - - — Y24-1- We note that region Q does not coincide with the space R?-?

formed by (2d)! Weyl chambers (2.19). However at D = 3 the region {1 is the unification of the
two Weyl chambers: S ‘

A=auC=nmz2n=-w)U@E:2n=-w)

and vector y = (31,¥2) can take any value in that case.
Thus we derive the following expression for the spinor functional:

[l

Mzd(?:) /du(y,z) exp (—-;—d izly;eg)(z)z. + iyl‘;') P(e(”(z)) (ye )

]

. .2
‘Ldp(y, z) exp (—2—:i- Ey.-ef)(z)z,, + iy,r) i1, z)(l, - (2.44)
i=1 o

After its substitution into eq.(2.3a) the inﬁm’te.product of matrices occurring in eq.(L3.4) is
replaced by the scalar products: : ’

S N
|1)z(T))(11 z(o)'hll—?:o g(lﬁz(il_v')llvz((' - l)l_v')) (2'45)

where index ¢ numbers different factors in eq.(2.32).

The only undetermined quantities involved in expression (2.44) are the state [1,z) and inte-
gration measure du(y, z) defined in eqs.(2.27) and (2.37), respectively. In the next section the
properties of the state |1, z) are studied and the integration measure will be calculated in sect.2.7.
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2.5. The coherent states for the SU(2d) group

We recall the deﬁmhon of the state |i,z) : .
I5,2) = D(2)]3), i=1,2,...,2d" (2.46a)
where the.unitary matrix D(z) is: .
D(z) = exp (Z(za o — iaEru)) , Za=2) (2.46b)
a>0 . .

and li) is an exgenstate of operators from the Cartan subalgebra corresponding to the weight };.
Fori=1,2,...,2d the states |3, z) form an orthonormal basis in the representation space:

('1 zby Z) IJ ‘ (2460)
For a fixed i the state [i,z) is known as a coherent state for the group G = SU(2d) [5]. For
different values of i the states |i, z) form 2d systems of coherent states. It is well-known [5] that

all properties of these states depend on the structure of the stationary subgroup of the reference
state Ji) .

2.5.1. Stationary subgroup

The stationary subgroup of any weiglit vector |i) contains the Cartan subgroup U(1)oU(1)--- U(1)
(here U(1) enters (2d — 1)-times):

M: D(z) — Diz)exp(i(,H))

Ha) — i yexp(i($) (247)

Besxdes, the minimal fundamental representation of the SU{2d) group is _degenerate: the highest
weight A;, defined in eq.(2.25) is orthogonal to some of the roots and therefore the stationary
subgroup is larger [5]. For each of the weight vectors the stationary subgroup is H = U(2d ~ 1).
To prove this, one uses eq.(2.25) and notes that:

(/\,', a) =0 for a = €y — €5, k,j # i ’ . : (248)
The foots a, satisfying this equation lie in the subspace R?4-? orthogonal to vectors ¢; and Y32, e;.
Then it follows from commutation relations (2.4) and eq.(2.48) that
' (a, H) Eq li) = 2E, |i)

At the same time eq.(2.24) implies that the eigenvalues of operator (a, H) are (a, A; ) = +1 and
hence E,|i) is & null-vector:

E iy =E_,li)y =0 for a=e—e; kj#i - (2.49)

Thus thc stationary subgroup of the weight vector |i) is generated by (2d — 1) operators from the
Cartan subalgebra and (2d — 1)(2d — 2) step operators (2.49) and therefore H is

H=UQ)eSU(2d-1)=U@2d-1)
As a result, each coherent state is characterized by a point of the coset space [5]
G/H = SU(2d)/U(2d - 1) ~ CP*~!

where the complex projective space CP?*~1 ig obtained from the sphere S44-1 = (T34 |z.|’ =1}
by identifying the points: z ~ €z [6]. To find the explicit form of ‘the coherent states, we
_introduce the harmonic coordinates on the space SU(2d)/U(2d — 1).

12

2.5.2. Harmonic coordinates on the opace SU(2d)/U(2d - 1)[7]

The harmonic coordinates ug-'.) on the space SU(2d)/U(2d — 1) are defined as the following matrix
elements:

() = (i, 29 = GID(y = (Gl exp (E(z..E.. - z,E-a)) I£)
B a>0

Really the harmonics uﬁ-'-) are the weights of the expansion of the coherent state Ji, z) in the basis
of the weight vectors: : :

YR ' :
i 2) = 3 u(2)1) .. (2.50)
j=1

Using the unitarity and unimodularity-properties of the matrix D(z) one gets telations for har-
monics 1t and 8®) = (uM)*:
© 1) Unitarity: D(z)D'(z) = D¥(z)D(z) =1

©2d .’ -
S a2 )2) = 8,
=1

i a(2yu(z) = 5 : , (2.51)

i=1
- 2) Unimodularity: det D(z) =1

ALY ug)u?) N

134

or P Iy -

ﬁg:‘d) = i us:) uS:) us:::l‘) (2.52)

The last equation relates the components of harmonic 4 to the components of other harmonics.
For fixed i the harmonic u®)(z) is the row consisting of 2d elements that can be chosen as:

, £ .
. R S
: W) =N] 7 |, =1 © (253a)
)
where zg'.) are complex variables and Nj; is a normalization factor:

(1 £ (-)) i = (14 20,0)1 (2.53b)

J#i
According to eqs.(2.53) and (2;50) the complex variables

z(i) = (Zg“), 7'2'-) iR z(:.)h 521 L Zg.d)

are local coordinates of the point z(?) on the manifold SU(2d)/U(2d — 1) corresponding to the
coherent state |i,z) . Each system of coherent states is characterized by its own points 2(*) whose
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coordinates z() are not independent. The relatlons (2.51), (2.52) put severe restrictions on z()

and the number of the independent components z( " is equal to the number (2d(2d - 1)) of roots
& = 2024, 2),
The harmonic coordinates’ zgi) are very useful to study the properties of coherent states.

2.5.3. The properties of coherent states[5] -

Let us consider the action of the group on coherent states. For G to be an arbitrary element of
the minimal fundamental representation of the SU(2d) group, the state

G: Gli, z) = Ii,za)e""(a")

is the coherent state of the same system. After substitution of eqs.(2.50) and (2.53) into this
relation one finds that the group acts on the space SU(2d)/U(2d — 1) as a group of projective
transformations:

Gai + Gaﬁ Zg)
)

G (s (.)) - .
Gii + Gipzg 25

20 e SU(2d)/U(2d - 1) (2.54)

It is well-known that the space SU(2d)/U(2d - 1) is a Kahler manifold. This means that it is a
" complex manifold and there exists a Riemann metric on it that can be written in terms of the
local coordinates z; = g , J # i as follows: :

8 F(z,z)

3 _ i, 5 A3 Gy 3y e A1 2] .
ds? = ¢"(z,2)dzidz;,  ¢7(2,%) = 9z 0z, (2.55a)
where the function 22 ’ i ) -
. F(z,z) =log (1 + 3 z,z,) log(1 + 2z} (2.55b)
i=1 :

is the Kihler potential. Metric (2.55a) is invariant under transformations (2.54) of S U(2d) since
G:  F(,59) - F(:9,29) = F(z,29) - log(Gis + Gyz]") — log(Gis + G2, )

The G-invariant measure on the manifold SU(2d)/U(2d - 1) normalized by the condltlon
1= fdpo(z) has the form?

2d-1 dz. dz; 1

duo(z) = (2d - 1)! ]:[1 “omi (T2 (2.56)

and »
G:  duo(z) — dpo(ze) = duo(2) ‘
Moreover, the closed G-invariant 2-form may be built on the manifold SUI (2d)/U(2d - 1):

O*F(z,

Wz, 7) = 225 z‘) dzi A dz; = db(z, 2) L )
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where
. 2d-1-

C . )
6(z,2) =1 (di; - dz, F(z,z)
. i=1 : a
and the sign A denotes the exterior product (dz A dz; = -—dz,- Adz).
Now we briefly formulate the main properties of the coherent states 1,2}, (i =1,2,...,2d).
L. The coherent states are not orthogonal to each other and according to eqs.(2. 50) and (2 53):

14294

@i,z li z3) = .
AT (a)(l + E(-) o) (2.58)
In tile infinitesimal form this relation reduces to
. . 14200200 . 300,
@i,z +dzli,z) = E-————‘——l o) '
= 1- _9(,(-) PO S (259)

where the 1-form § was defined in'eq. (2 57) and zdz'= T, z.dz. .
2. There is the completeness relation: :

Zd/dpo(z(')) [i,2)@3,2z] =1

where duo(z(") is G-invariant measure (2.56) on the manifold SU(Zd)/U(Zd -1).
3. The coherent states from different systems are related to one another by the trrmsformatlons
of the Weyl group:

fi,z) = uvzm)e'“'l")y aed (2.60)

where variables z,, are defined in eq.(2.11) and ¢ is a vector in the space R?-!. Indeed, due to
q.(2.23) the weight vector |i) may be represented as

1) = Bal) = exp ((Ea = Ba) 13 = Sali)
where a = e; — ¢;. Hence, one conclndes with the use of eqs.(2.11) and (2.27) that -
li,2) = D(2)Sa13) = D(z0) expli(d, H))i) = 11, 50) exp(i(#,3:))

We note also that the validity of relation (2.60) follows from eqs.(2.35) and (2.30).

2.6. One-dimensional Wess-Zumino term

Let us apply the properties of the coherent states to calculate the limit of the infinite product
(2.45) (t =T/N)

1, 5T, =(0) Jm, TTCL, 600, (G ~ 1)

1,10, s exp (- [ dct, 01510, 560)
1L AT, 2Ol exp (~38(C)) (2.1)
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that appears after substitution of eq.(2.44) into the definition of the spinor functional (2.3a). We
get from eqs.(2.46a),(2.50) and (2.59) . :

8(C) = -2 /:dt(l]b"(:)%DGNn . (262a)
= -2 /ordza(i)('z)j"zu(l)(z) o (2.62b)
- /:dt i’;: ’ (262¢)
= / 8(z, 7) Co - (262d)

where z = (z;l),zgl), S ,zg,)) is a point of the complex projective space CP*-1, The points z(t),

t € [0,T] form a curve on the complex projective space denoted by C in eqs..(2.61) and (2.62).
Eqs.(2.62) coincide with the definition of the one-dimensional Wess-Zumino term [8,9] whose
special case at D = 3 was obtained in eq.(13.22). o
Let us examine the transformation properties of the spin factor $(C) under the action of group
G = 5U(2d) on the space CP?¥~! defined in eqs.(2.47) and (2.54). One finds from eq.(2.62a) that
&(C) changes as .
G: D(z) — GD(2) o ‘
3(C) - #(CY = #(0) | e
and ‘
"M D(z) "= D(z)exp(i(é, H)) -
. r 4
3C) — HCY=2(C)+2 [ (KN '
= &(C) + 2(HT), M) = 2($(0), A1) (264)
Thus the spin factor is ;:hanged under the action.of the stationary subgroup. Analogously to

eq.(L1.3.23) this property leads to the quantization condition of the spin. of fermions. To prove it,
one transforms eq.(2.61) with the use of egs.(2.31c) and (2.58) as

[1,z(T);<1,z(T)|1,z(o))<i,z(0)| exp (—%Q(C)) ((l,z(T)]l,z(O)))— ‘

= P (e"(z(T))) P (e")(2(0))) exp (—%‘I’(C')) |<l.z(T)|l,z(6)>|"

o (14 DGETNE) (1+ £ =(0)T*) exp (-52(©)) 10, 200, 2T

where 1 + z2)(T)z()(0)

#(C) = ¥(C) +ilog 70y, 0(T)

Now C is a closed curve on the space CP24~!

& = (a(r)r € [0, 1];2(0) = (1)}
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Under the gauge transformations (2.64) the spin factor #(C) changes to ,

3(C) + 2e(1), ) — 2(4(0), M)
B(C) +4nk, keZ

n: #(C) - &(CY

"

since for closed paths eq.{2.47) implies

exp (H8(1), 1)) = esp (i9(0), })

Therefore the phase exponential of the action exp(—iJ&(C)) is nonmanifestly gauge invariant .
provided that the quantization condition :

2JeZ _ (2.65)

is fulfilled. Indeed €q.(2.61) ixﬁplies that the spin J of the Dirac fermions is one half, J = 1.

2.7.. .Integration measure in terms of harmonic coordinates

To complete the caleulation.of the spinor functional (2.44), one has to determine the integration
measure du(y, z), defined in eq.(2.37). The measure dp and vector k, depend on the variables y
and z;, Za. It turns out to be more useful to replace the variables Za, Z4 by the variables z}»'.), i;-'.),
i # j introduced in sect.2.5.2.To calculate the measure du(y, z) in terms of variables zg-i), we try
to represent the metric in the space R4¢'~1 in the form .

Cds? = °—2—12Tr (R T°) = g*Bde dts, AB=1,2,.. 48 —1 (2.66)

where £4 = £a(y, zgi) ) are independent curved coordinates and g4% is the metric ;n these coordi-
nates. Then the integration measure is expressed as . '

-

A=1 ¢ .

dld’—lk_ 1/:‘Jﬁld£ .
=9’ A

where g = det |gap]. - : :
After substitution of {2.8a) into eq.(2.66) one gets:

ds? = 513 (Te(dy, H)' - Te[iD"Y(2)dD(2), (v, H)]")
The Hermitian matrix iD~1(z)dD(z) is an element of the su(2d) Lie algebra and it may be
decomposed in the Cartan-Weyl basis as : o : :

iDY(2)dD(2) = Y. (daFa + dEaE-_a) + (dC, H)

a>0
With the last relation we have:
. ) ‘ a . T
ds* = — | (dy,dy) +2.Y (a,y) déa d&s (2.67)
. 2d a>0 -
17



Comparing eqs.(2.66) and (2.67) one concludes t.ha.t‘the curved coordinates are:

EA é(y;EGrEu)l a>0

The metric g48 has a block structure in these coordinates and the integmtionl measure is:

const (dy H(a,y)’) (})10 dt. ée:.) -

a>0

const dp(y)dp(z) ’ , - (2.68)

vk

i

The curved coordmates (398 Ea , (a = e; — ¢;) obey equatlons

d, Tr (1D (2)dD(z)Eq) = (jliD™(2)dD(z)}i)
déa Tr (zD’l(z)dD(z)E_a) = (tltD"(z)dD(z)[J) o (269)

where the exphcxt form (2.7) of the step opemtors

=i)j| fora=e;—e¢;
().
is taken into account. Eq (2. 69) sets up the connection between vanables £o, Exand coordmates z;
of the harmonics u,(') Before resolvmg this connectlon consxder the propertiés of the mtegratlon

measure.

2.7.1. The prupertles of the integration measure

There is an important-consequence of eq.(2.68): the measure dp(y, z) is a product of the integration
measures over variables y and z(') The measure dp(y) is expressed as:

du(y) = dy (e = d"‘y 5 ((y. b e.)) H(a,y)’ dyn dyag 6(y; .ot yu)g(y. - y,)
a>0 i=1 ) (2 70)

where the §-function takes into account that vector y lies in the subspace R?4-! orthogonal to the '

vector T34, e;. With €q.(2.69) we have for the measure dp(z):
du(z) = J] déadla = J[(i1iD"(2)dD(2)li) = [] & a{¥ du(’) S (2

. a>t i£i i#5

1t is important for us-that there is a group of transformations of variables y and z(') that
retains measures dp(y) and dp(z) unchanged. First of all, the measures are mva.nant under
transformations of the Weyl group according to eq.(2.38). This property may be ea.sxly verified
with the use of eqs.(2- 70) and (2.71).

Expression (2.70) is manifestly invariant under the permutatlon of vanables ¥ and Y5y and
with eq.(2.18) this means that: Lo : :

Wi duly) - du(oa(y)) = dply), a=ei—e; o (2-725)
The consideration of measure du(z) is similar: L
Wi - du(z) — du(z.a) = [[(G1S:"iD7(2)dD(2) Salj) = dp(z) (2.72b)
\ T

18

since at & = ¢; — ¢; an element of the Weyl group S, acting on the weight vectors permutes the
states [t) and [5) .

Besides the Weyl group there are two subgroups of transformations that leave the measure
dp(z) unchanged. The integration measure dy(z) is invariant under the gauge transformations of
the Cartan subgroup:

H: D(z) — D(s)exp(i(d(2), H)) :
du(z) — du(z) L (2.73)

where ¢(z) is an arbitrary vector in the space R“ 1, whose components depend on the variables
') We have from eq.(2.69):

H:  df.— de, = dbexp(i(¢,X; — X)), a=¢— €;
and dp(z) is invariant due to the measure being real-valued. ’
The integration measure dp(z) is invariant under the following transformations:
' ‘ G: D(z) — GD(z)
dulz) — dufz) (2714)

since curved coordmates £ are unchanged in that case.

2.7.2. Preliminary calculation of the measure

Had we had the expression for measure dpu(z) in terms of variables 2\, ). the invariance property

(2.74) and eq.(2.54) would imply that dp(z) as a function of z( Vis mvanant under the projective
transformations:

Gai + Gagzl)
Gi+ G.',slg )

dp(z) - dp(z@) =dp(z0), i=1,2,...,2d (2.75)
This is, in fact, the functional equa.tionvior dp(z(")) To solve it, one has to keep in mind relations

(2.51)-(2.53) among variables z( ). If these variables are mdependent the solution of eq.(2.75)
normalxzed by condition 1 = | dp(z(')) has the form:

G: 200 5 (zg))a =

du(z%) = I[ dpo(z) : - (2.76)

i=1
where djio is a G-invariant measure on the manifold SU(2d)/U(2d - 1), defined in eq.(2. 56) After
the resolution of constraints (2.51) and (2.52) the number of integration variables in eq.(2.76) is
reduced from 4d(2d — 1) to 2d(2d — 1). The same result may be achieved by the insertion of the
additional §-functions whose arguments are constramts into the right-hand side of eq.(2.76):

du(z1) = 1] d,;,.(z“’) 1] Sl (2.17)
i=1 T#i=1
There are no variables z?‘) in eq.(2.77) since it follows from eq.(2.52) that they are functions of
the remaining variables z(’), i<2d-1.
It may be verified that expression (2 77) obeys eqs.(2.73) and (2.74). We will prove in the next -
section that the integration measure is given by eq.(2.77).
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2.7.3. The proof of eq.(2.77)

Let us single out the following factor from the general expression (2.71) for measure du(z):

: 2d L - .
dpr(z) = ] dbacesme;dlazer-e; (2.78)
=2 ] ]

The variables d£, are found from eq.(2.69):

Brcey ey = iiP0ul) = iN 8 200, @ =2,3,...,2d

where eq.(2.53) is used. With this relation one can replace the integration variables ., £ in

€q.(2.78) by ), 1) to obtain for measure djy(z) the expression:
N i 2del T () 750) O )
di(z) = (MR I dz d2)) det g det |1y}
a=2 -

where the determinant is taken from the matrices whose elements are equal to ﬁg'), a,f>2and

u&”, 4,6 > 2, respectively. After simple transformations one has:

det [47) det [uf"] = det [8u{™)} = det |8as - ), B8 22

24 o '
=1- % @) = M, = (14 2:0)7

p=1 \
where eqs.(2.51) and (2.53) are taken into account. o
Thus the normalized factor dp;(z) entering into expression (2.71) for measure dp(z) is given
by: : .

< W

dp(z) =7(2d -1 H '2,"- ) 1+ 2‘(1)2(1))14 = dpo(z")

and it is identical with the G-invariant measure (2.56) on the manifold SU(2d)/U(2d - 1).

In an analogous manner the factor du;(z) may be calculated diﬂ'ering. from eq.(2.78) only by
the replacement of a = e; — ¢; and 20 by a = ¢; — ¢; and 29, rcs‘pectlvdy. We note that the
integration measure du(z) is not equal to the product 1247 dp(2) since

2d- 24-1 2 _\ [ _
i-Il dui(z) = h ﬁ d¢;; d; = ( f[ d&i; df;,-) (H d&i; dfij) (2.79)
i=1 i=1 i#j=1 jri=1 . i>j=1 ‘

where d¢;; = df,,:,;_,,. and there is an extra factor in the right-hand side of this relation. To get
rid of it, eq.(2.79) is multiplied by 2d(2d ~ 1) additional §-functions:

ap() =TT dusta) (h 66— &5 - e.-))

To understand the meaning of §-functions, one considers their arguments:

d(g; - &) = eV + ida®ul) = id (,—,(i)u(ﬂ)

20

and therefore ) : .
f,'j - E,‘; = iﬁ(‘)u(’) + coiist.
With an arbitrary constant chosen equal to zeto the arguments of the §-functions-coincide with
the orthogonality condition of harmonics (2.51) and then for the integration measure du(z) we get
expression (2.77).
. Now we substitute eqs.(2.70) and (2.77) into eq.(2.68) to obtain the final expression for the

integration measure d*¢’ -1k in terms of variables y and 'zf-"):

ko 5 0) T T a0 T 600 20

i=1 a>0 i=1" T ig=1

where dpo(z®)) is defined in eq.(2.56).
In the special case D = 3 (or d = 1) eq.(2.80) reduces to the well-known expression for
integration measure in terms of the coordinates of stereographic projection: ’
' o dzds dzdz 1

d’k = const dy, dya 6(3; +v2) (1 — yz)’m = 4x dy, yf-—E;(l—_l_;)?

3. " Summary

Now we have all necessary relations (2.44),(2.68) and (2.61) to evaluate the dimensionally extended
spinor functional (2.3a) '

Maglz] = /n Du(y) Pu(z) 11, 2(T)) (1, 2(0)} exp (‘; Eij /‘"T & f:yae.(."(z)i. +i /ordtyl ~ %@(C))
_ ) 7 o - o (3.1)

where the spinor factor $(C) is defined in eqs.(2.62) and the integration measure is
D(s) Du(z) = Jim T duu(6T/N)du(=TIN)
i=1 o

and measures du(y) and du(z) are given by eqs.(2.70) and (2.77). Eq.(3.1) expresses the spinor
functional AMz4[Z] as a sum over all y-paths on the region £ of the root space R?4-* and all z-paths
on the space CP*-1. At D = 3 the analogous telation (3.25a) has been obtained where due to
the isomorphism CP! = S? the summation is taken over all the l;aths on the sphere S%. - -

Let us examine gauge invariant properties of the spinor functional. Note that the transforma-
tion properties of the Wess-Zumino term and integration measures were found in egs.(2.63),(2.64),
(2.72),(2.73) and (2.74). It follows from eqs.(2.73),(2.47) and (2.30) that under the action of the
stationary subgroup the integration measures and functions e{’) are both invariant but the Wess-
Zumino term is nonmanifestly invariant provided that the spin of fermions has quantized values
(2.65). ‘At the same time the integration measures and the Wess-Zumino term are invariant but
function e{? is not invariant under action (2.63) of the group SU(2d). As a result, the integration
in (3.1) over complex variables simply extracts the singlet component of the integrand.

Comparing eqs.(2.3) and (3.1) we conclude that all the spinor structure of the original ex-
pression (2.3) for the spinor functional AMy4fZ] is absorbed by the one-dimensional Wess-Zumino
term. Moreover eq.(3.1) may be easily obtained from eq.(2.3) after replacement of momentum
k. and T',-matrices by expression (2.29) and the c-number functions e{’)(z) defined in eq.(2.30),
respectively, and addition of the one-dimensional Wess-Zumino term into the exponent of (2.3b).

There exists a classical mechanics on the space CP¥~! ~ SU(2d)/U(2d - 1) [6] with the action
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being equal to the spin factor $(C). The Poisson bracket for this mechanics is defined by the
closed 2-form (2.57) and in terms of the loca.l coordinates z( it is [10]

{ }PE = Zzg.,(z, z) (__—T"‘ _~_

where z = 20, z = 200 and metric g;;(z, Z) is inverse to the metric defined in eq.(2.55a). ‘As a
result, under the geometrical quantization [10] the commutation relations for the variables eM(z)
reproduce the commutation relations of the su(2d) Lie algebra of I'* matrices and the consistency
condition (2.65) of the underlying quantized dynamics leads to the quantized values for the spin
of fermions. Thus the appearance of the one-dimensional Wess-Zumino term in the exponent of
€q.(3.1) is by no means accidental and it is one of the effects of the quantum geometry of Dirac
fermions.
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