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The bosonic path integral formalism is developed for Di
rac fermions interacting with a nonabelian gauge field in 
the D-dimensional Euclidean space-time. The representation 
for the effective action and correlat•ion functions of in
teracting fermions as sums over all bo~on\c paths on the 
complex projective space CP2d- 1, .d = zl 0121 - 1 is derived 
where all spinor structure is absorbed by the one dimensi
onal Wess-Zumino term. It is the Wess-Zumino term that en
sures all necessary properties of Dirac fermions under 
quantization, i.e., quantized values of spin, Dirac equa
tion, Fermi statistics. 
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1. Introduction 
It wu realized in the laat year■ (1,2,3,4] that one of the novel propertie■ of D = 2 and D = 3 
dimen■ional quantum field theorie■ i■ the han1mutation of atati1tic1 of elementa~y particle,, i.e., 
under nontrivial interaction bo1on1 become fermion, and vice ver■a. Recently Polyakov (2] hu 
auggeated that in a three-dimen■ional gauge OP1-model with 1he Chern-Simon■ form for the 
kinetic term of the gauge field fermi-bo■on tran■mutation occur■, The original bo■on excitation, 
are dre11ed by the gauge field to tran■form into free Dirac fermion,. Earlier, ■imilar theorie■ 
with the Chern-Simon■ action were atudied (5] and tho appearance of the ■oliton vortice■ (6] with 
anomalou■ apin wa■ noticed. Unlike the well-known two-dimenaional nonabelian boaonization [l] 
the equivalence between three-dimen■ional interacting bo1on1 and free Dirac fermion■ i ■ not exact 
and it hold■ only in the limit of low momenta [2,4]. . 

To carry out the proof Polyakov (2] hu 1upp,01ed that tJie propagator of the free Dirac electron 
in D = 3 Euclidean ■pace-time may be repre1ented u a bo1onic path integral (it ■ explicit Corm 
ia given below in ■ect.1.3.2) that turn• out to coincide with tho dreued aoliton propagator in the 
gauge OP1-model in tho limit oC low momenta. · 

Do 1i111ilar phenomena oxiat in higher di111cn1ion1? There were attempt■ (7,8] to an1wer the 
quealion in the cue D "'4. The pre1ent paper la devoted lo ono upect oC thi■ problem,-N11mely, 
only tho Cormlonlc part of the problem I ■ a1111ly1od and the final goal oC tho papo'r 11 to obl11in 
the bo1onic pa.th integral repre1ei1tation for the correlation function• of Dirac fermion• in D
dimen■ional Euclidean ■pace-timo. 

We recall tha.t in the 1t11nd1rd f111hion (9,10] to de1cribe the Dirac fermion,, bo1onic a■ well u 
Oramnann variable■ have to be introduced to form tho path integral• in a 1uper■p1ce corre1pond
ing to the ■pinning particle. Thi■ representation i ■ very u1eful when the Neveu-Schwarz-Ra.mond 
■tring (11] ia formulated u a ■tring analogue of Dirac fermion■ (12] but it i ■ not 10 when the 
correspondence· with the interacting bo1on1 i■ eatabli1hed. Therefore one would like to gel rid 
of the Oru1m11.nn v11.ri11.ble1 in the de■cription of the Dirac fermion■ 11.nd to repla.ce them by the 
bo ■onic degrees of freedom of a ,pinning particle. 

It wu Feynman (13] who firat noted the pouibility of the bo■onic path integral representation 
for two-dimen1ional Dirac fermion■. Later the u1e of the bo■onic path integral formalism for two
dimensional Majorana fermion■ made it po11ible to ■olve the D = 2 laing model (14]. The ■pin 
correlation function■ were exprca■cd (15,16] a■ a ■um over all path• on the 1phere S2• U■ing the 
geometric quantization approach (or the coherent elate method) (17] the boaonic pa.th integral 
representation for the propaga.\or o{ the three-dimenaional Dirac electron wu found [2,3,8,18,19]. 
In all the1e cue■ the boaonic path integral■ for the fermionic correlation {unction, contain the 
■ame additional term. Thia term ia a geometric characteristic of path, [2] and it i ■ well-known u a 
one-dimenaional We11-Zumino term obtained by Witten and Novikov [1,20]. It ia a Weas-Zumino 
term that en1ure1 all nece11ary propertiea of Di'rac fermion■ under canonical quantization of the 
action of a ,pinning particle (2,16,21,22,23],i.e, Dirac equation, Fermi ■tatiatica, quantized valuea 
of 1pin and 10 on. Note that ~oth approache1 (the Grusmann and bosonic path integrals) give 
equivalent descriptions of a spinning particle and correspondence between them wu established 
(22]. 

In the present paper, the formalism of the bosonic path integral■ ia developed for interacting 
Dirac fermions in D-dimensional Euclidean ■pace-time. The paper i ■ organized u follow■: All 
nece11ary definition■ and a brief review of existing result■ on tho aubject are given in the remaining 
part of 1ect. l. Here tho repreaentation for the effective action and propagator of fermioni a■ a 1um 
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over all paths in z-space is derived where the spinor functional is the only unknown quantity. The 
spinor functional is analyzed in sect.2 after a proper regularization and approximation. It turns 
out that two space-time dimensions D = 2, 3 play a special role and the corresponding spinor 
functionals are found in sect.3. 

In the case D ;c: 4 the direct calculation of the spinor functional is reduced to the evaluation 
of an infinite product of Dirac matrices. To overcome the problem, the additional transformation 
of the spinor functional called dimensional extension is performed in ref.(24]. The space-time 
dimension is changed from D to the dimension of the au(2d), ( d = 2[D/2l-1 ) Lie algebra with Dirac 
matrices being ·its elements. Using som_e well-known properties of semisimple Lie algebras (25] 
it is·possible to represent the spinor functional as a sum over all bosonic paths on the complex 
projective space CP24- 1 • In ref.(24] the transformation of the spinor functional inverse to the 
dimensional extension is done and the final bosonic path integral representation for the effective 
action and propagator of interacting Dirac fermions in D-dimensional Euclidean space-time is 
derived. 

1.1. Dirac fermions in D-i:limensional Euclidean space-time 

Let us. consider, in D-dimensional Euclidean space-time, Dirac fermions with mass M interacting 
with a nonabelian gauge field A,.= A:T• where T• are some generators of the gauge (or "color") 
group ,whose.explicit form is not essential for our purposes. We define the effective action and 
propagator of interacting fermions as follows: 

W(A] = log det(D + M) = f dDz (z!Tr log(D + M)fz) (1.1) 

and 
S(z,y; A)= (zl(D + Mt1 1Y> = -i(zl(P + gA + iM)-1 fy) (1.2) 

where b =. D,.1'", D,. = 'a,. - igA,. is the covariant derivative, 1'" are Dirac matrices in D
dimensional Euclidean space-time, Tr refers to color indices of the gauge field and spinor indices 
of Dirac matrices, Pv = i8v, (z,.,pv] = -ig,.., and · 

(zly) = c5D(z - y), (plk) = c5D(p - k), (zip) = (211'rD'2e-•(I"") 

Using the identity A-1 = -i io dT exp(iTA) one transforms eqs.(1.1) and (1.2) to obtain two 
different expressions for the fermion propagator: 

S(z,y; A)= (zl(D + Mt1 ly) = (zl f' dT exp(iT(iD + iM))ly) 

and 

S(z,y; A) (zj(D- M)(D2 
- M2t 1 ly) 

i(zl fo 00 

dT(D- M)exp(iT(-D2 + M2 ))1y) 

i(zl fo
00 

dT(D - M)exp (iT(-D! + ~gF,..,o-,.v + M 2
)) IY) 

where F,.., = ;(D,., Dv] is the strength tensor of the gauge field and o-,.., = fh,.,1'v] . 

~-~.l.;•:C.-';J ~~~ 

~ ~r_,-, 
~ 
~ 

.i U· 
_ _..,.._••••yr.·-,. 

3 -'~"•~:~::,..;:·, . .. ,c~·,· 
,·.·u~~! 

-~ .,,,.,. 

(1.3a) 

(1.3b) 



Matrix elements entering into the right-hand side. of eqs.(1.3a) and (1.3b) have the ·form 
(zleiTHly} and may be treated as matrix elements of the evolution operator of a spinning particle 
with T and H being the proper time and hamiltonian of the particle, respectively. The hami!to
nian H has both spinor and color indices and, as a. result, the spinning pa.rtic!e has a. new quantum 
degree of freedom. Following Feynman (13] one can represent (zleiTHIY} as a. path integral over 
the phase space of a spinning particle. It is well-known (26] tha.t if one starts. from eq.(1.3b ), one 
finds in this way a representation for the fermion propagator as a sum over random paths in the 
superspace with even (or c-number) and odd (Grassman) coordinates (9,10]. We will demonstrate 
in this paper that it is just eq.(1.3a) that allows us to describe Dira.c fermions without the use of 
Grassman va.riables. 

1.2. Random walk in superspace 

For the sake of simplicity we assume in this section that the gauge field is Abe!ian and rewrite 
eq.(1.3b) as a path integral in superspace. 

Splitting the interval (0, T] into·N equal pieces and inserting the completeness relations 

1 = j d~plp}(p! = j dDz[z}{zl (1.4) 

in a proper manner one obtains from eq.(1.3b) that in the limit N-+ oo 

S(z,y,A) = ("" dTexp(iTM2
) [ vz,.vp,.(p(T)+ g.A(z)-iM) ,Jo II 

xPexp (it dt( - pi:+ (p+ gA(z))2+ ½g(Fu))) (1.5) 

where integration is performed over all :,:-space paths between the points z,.(O) = y,. and z,.(T) = 
z,. and all unrestricted p-space paths; P denotes the Dyson path ordering defined as 

P exp ( fT dt O(t)) = Jim e•O(N••l .. • e•0 <2·•le-r0 (1·•l, T = !_ (1.6) 

h -"" N 
for an a.rbitrary operator 0. The momentum pa.th integral in (1.5) is Gaussian and is easily 
calculated. The integrand of the resulting expression is a ma.trix. To get rid of the matrix 
structure we introduce additional Grassman variables ,t,,., ,f,6 and x and a. bosonic "einbein" field 

. e(t) [9,10] using identities like 

TrPexp (~g f dt(uF(t))) = j v,t,,.exp (f dt,t,,.-ef,,.-;g f dt,t,,.,t,vF,.v) (1.7) 

The final expression for the fermion propagator has the form (9,10] 

S(z,y; A)= j Vz,.V,f,,.VxVeV,pg exp (if dt(gx,.A,.(z) + ~geF,.v,f,,.,t,v)) 

x exp (if dt [~ - i,t,,.-ef,,. - i,f,g"ef>s + ~x,t,,.:i:,.- Mex,/,&+ M
2e]) 

It describes a random walk of a spinning particle in superspace with the action inva.riant under 
both local supersymmetric and general coordina.te transformations. 

Let us investigate a.nother representation, (1.3a), for the fermion propa.gator. 
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1.3. Evolution operator 

We try to express the effective action and propagator of interacting fermions as a sum over all 
paths in some space with c-number coordinates. Natural questions a.rise: what are the properties 
of this space and what kind of action corresponds to a spinning particle in this space? There are 
two examples that allow us to answer the above questions for two special values of the space-time 
dimension: D = 2 and D = 3. 

1.3.1. D = 2 Ising model 

The first example is related to the two-dimensional Ising model on a square lattice (27]. It is well
known (14] that in the vicinity of the phase transition point T = T, the Ising model is equivalent 
to the theory of free Majorana. fermions. As a result, we have two equivalent representations for 
the partition function of the model as T -+ T,: 

log Z2D rn(M) = _!Tr!og(8 + M) = - L exp(-ML(P))(-1t(PJ+1 (1.8) 
2 p 

where the sum is taken over all closed paths P on the la.ttice, L is the length of the path, v is 
the number qf self-intersections of P, Mis the mass parameter proportional to (T- T,). Eq.(1.8) 
means that in the lattice a.pproximation the effective action of free fermions is a sum over all loops 
in the :,:-space with an additional spinor factor. 

1.3.2. D = 3 free fermions 

The second example has been given by Polyakov [2) who has supposed that the propagator of a 
u;ee Dira.c electron in three-dimensional space-time is given in the la.ttice a.pproxima.tion by the 
following sum over paths between points y and z: 

S(z - y) ex L exp(-ML(Pz.)) exp (-~~(P2 .)) 

P,, 

where the spin factor is 

(L J.1 [ae 8e] ~(Pz.) = lo da O due. au X 8a 

and the interpolating field is introduced 

e(a,u) = { e(a) 
const. 

u=l 
u=O 

(1.9) 

with e(a) being the tangent field for path P2 •• In the continuum limit eq.(1.9) is expected to 
reduce to 

S(z-y) ex /o"" dL exp(-ML) j Ve8(e2 
- l)exp (-~~(e)) ,5 (x-y- f dae) 

where integra.tion is performed over all paths on the sphere S 2• An a.nalogous representation was 
suggested also in ref.(19). 

With these examples in mind we retufu to eqs.(1.1) and (1.2) for the effective action and 
propaga.tor of interacting fermions. 

5 



1.3.3. Evolution operator as a path integral 

Let us consider the function (28] 

U(z,Yi T) = (zleiT(i.O)IY} 

a.nd treat it a.s a. matrix element of the evolution opera.tor of a. particle with ha.rniltonian H = iD. 
The function U( z, Yi T) is an amplitude for a particle to go from point y to point z in proper time 
T. The effective action and propagator of the fermion a.re expressed in terms of the evolution 

operator a.s follows 
S(z,yiA) = 

0 
dTe U(z,y;T) (1.10) 1.

00 -TM 

and 

1.00 dT I (1.11) 

We note that in D-dimensional Euclidean space-time U(z, Yi T) is a spinor matrix of order 2ID/
2
l 

and, moreover, it ha.s color indices. 
Following ref.[28] let us obtain a representation for the evolution operator U(z, Yi T) a.s a path 

W[A] = 
0 

Te-TM dDzTrU(z,ziT) 

integral: 
U(z,yiT) = (zleiTH[y} = (zf(e•~"tly} = J~

00
(zi(e•~Pe'~gl(ly} 

where the Trotter identity limN-oo { exp(i) exp(J)) N = exp(A + B) is used. Now we insert the 

completeness relations (1.4) into the right-hand side of the la.st equation 

U(z,y;T.) = }j!;!
00

f dDz1 .· .. J dDZN-1 J dDPt . .. J dDPN (21rfDN 

x e•fiPN e-ipN(z-zN-1Je•fi,l(zN-1) ... e•iP1e-ip1(z1-11)ei~1A(11) 

In the limit N -+ oo this expression turns into the path integral 

U(z, Yi T) = [ Vz,..Vp,.. exp (-if dt p(t)i:(t)) P exp (if dt (p(t) + g.A(z(t)))) 

where integration is performed over all unrestricted momentum paths and all z-paths between the 

points z,..(O) = y,.. a.nd z,..(T) = z,.. 

[ Vz,.. = J Vz,.. c5(z(O) - y) c5(z(T) - z} 

and the P-exponential defined in eq.(1.6) orders color and Dirac matrices. Now we shift the 
momentum integration variable p,.. -+ p,.. - gA,.. to get the final expression for the evolution 

operator [28,29) 

U(z,yiT) = [ Vz,_.Pexp (ig { dti:,..(t)A,..(z)) MD[i:) 

where the momentum functional integral is factorized 

MD[i:) = J Vpvexp (-i { dtp(t)i:(t)) Pexp (i { dtp(t)) 

6 
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MD does not depend on a gauge field and fermion mass M. It. accumulates all spinor structure 
of the evolution operator and is called the spinor functional. 

The dependence of the evolution operator on the gauge field is contained completely in the 
path ordered exponential whose gauge transformation properties imply that 

A,..(z) -+ A;(z) = G(z)(A,..(z) + i.a,..)G-1(z) 
g 

U(z,yiT) -+ UG(z,yiT) = G(z}U(z,yiT)G-1{y) 

Finally, we substitute (1.12) into eqs.(1.10) a.nd {1.11) to derive the following representations 
[28,29,30]: 

S(z,yiA)= f dTe-TM [vz,..exp(ig[ dz,..A,..(z))MD(i:] (1.14) 

and 

W[A] = J.00 

~ e-TM J Vz,..c5(z(O)- z(T))TrPexp (ig f dz,..A,_.(z)) TrMD[i:] 

Thus the calculation of the spinor tunctional is a. final goal of the present paper. 

2. Spinor functional 

.(1.15) 

The spinor functional defined in eq.(1.13) has some unusual properties. Its formal calculation 
yields the matrix c5-function: c5(i:,..(t)--y,.) but this result has been shown (28] to be wrong. Unlike 
the analogous integral in (1.5) the momentum functional integral in {1.13) is ill-defined and it 
must be properly regularized for large values of momenta. One of the regularization prescriptions 
proposed in [29] is the insertion of the cut-off factor 

exp (- { dtf(t)yP!), f{t)-+ 0 

into the right-hand side of (1.13). Then the regularized spinor functional is 

MD[i:) = Jim M.,g[zj 
•C•)-o 

where 

M.,g[z] = j Vpvexp (-it dtp(t)i:(t)- t dt£(t)jp(t)1) Pexp (it dtp(t)) 

and jp(t)l2 = p,..(t)p,.(t). 

2.1. Approximation of the spinor functional 

To calculate the spinor functional we split interval (0, T) into N equal pieces T = ~ and define 
MD[i:) to be given by the following limiting procedure 

MD[i:] = lim Jim M,,g{zN)·· ·M.,g{z2)M.,g{zi) 
e(t)-oN-oo • 

(2.la.) 
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where 
M •• ,(z)= f dDkexp(-i(kz)+ikT-£ik\T) (2.lb) 

and T-+ 0. ~; = Ti(Ti)-+ 0 in the limit N-+ oo and :i:,. = fixed. The relative order of factors 
in (2.la) is r-sscntial since M •• ,(z) is a matrix of order 2(D/

2
l. 

We rewrite eq.(2.lb) as 

M •• ,(z) = f dDkexp(-i(kz) - £1klT) [cos(lk\T) + i ! sin(lklT)] (2.2) 
. I I . 

The regularization cuts off large values -0f momenta in this expression: 

1 
ikl <;; 

but despite the small values of T the functions cos(lk\T) and sin(jkjT) are rapidly oscillating in 
this region and they cannot be approximated by a few first terms in the Taylor expansion. This 
is a reason for the discrepancy of results of refs.{8,18] and {2]. 

2.2. Erroneous results • 
In refs.lS,18) an attempt was made to calculate the spinor functional for two special values of 
space-time dimension: D = 3 and D = 4 based on the coherent state approach f17). In the case 
D = 3 three Dirac matrices -y,. coincide with Pauli matrices and they can be decomposed in the 

basis of coherent states for SU(2) group as follows 1 

f 
d3e • · /d3e . . tr.= 73e.Je)(ej5(e2 -l),. l';" 71e){et5(e

2
-l) 

After substitution of these relations into eq.(2.2) one gets 

M,,,(z) = f ~e je){el 5(e2 - 1) / d3ke-ib-•Jk[, (cos(lkjT) + 3i(t:i) sin(lklT)l 

f ~e je){el 5(e2 - 1) / d3k e-ib-•l•I, [l + 3i(ke)T + O(k
1
T

2
)) 

/ 
d3e I 7 le}(e) c5(e2 

- 1)(21r)35(x - 3eT), £-+ 0 

where the smallness of O(k2 T2) terms is assumed in the last expression proposed in refs.{8,18). But 
this assumption is wrong and therefore the results of refs.{8,18) do not upset Polyakov's results. 

2.3. Calculation of the spinor functional 

Let us transform eq.(2.2) identically 

M (z) = ! J dDke-ih-•l•I, [e'1•1, (1+ !.) + e-•l•I, (1 _ !.)] 
••• 2 Jkl !kl 

= ~ J dDk e-•1•1, (e-ikz+•l•I, + e•kz-•l•I'] ( 1 + 
1
!J 

1The detailed definitions and explicit form of the coherent stales will be given in secl.3.3.1. 
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and single out radial and angular parts of the vector k,. = Ae,. 

dDk=dAAD-,dDe5(e!-1), A2::0 

to derive the following relations in terms of variables A and e,.: 

M,,,(z) lo"° dAAD-le-•AT I dDe5(e2 -1) (ei>.,-i>.(ez) + e-ih+i>.(ez)) 1; e 

f dDe5(e2 - 1/ + e /"" dAjAID-le-•l>-ITei>.,-i>.(••l 
2 '-00 (2.3) 

To get rid of the modulus in the last equation one has to consider M •• ,( z) for two values of 
dimension: D = 2v and D = 2v + 1. It follows from (2.lb) that they are related to each other by 
a simple equation 

M,.e,(z1, z2, • · •, z2 .... ) = _!__ /dz2v+1 M,.e.o(Z1,Z2, · · · ,x2 .... ,Z211+1) 2,r 

where zµ = {z1,z2, ... ,z2..,)-
For D = 2v + 1 a simple but tiresome calculation yields 

M.,,(x) {"" dAAD-le-•l>-1,f .iDe5(e2 - 1)1 + e e'>.,-:i>.(ez) 
Loo 2 

!!.:.!. D+l . . 2 2 . 2 12il 
(4,r) • r(--)[u + i(T + z)](z - T + 2uT t • + h.c. 

2 

(2.4) 

(2.5) 

For D = 2v we substitute this expression into eq.(2.4) to find for M.,,(x) the result coinciding 
with eq.(2.5) if one analytically continues it to odd values of D. 

Now we perform the limit £ -+ 0 in the regularized expression (2.5) and note that as :i:2 I T2 

M,.,(z) ex:£-+ 0 (2.6a) 

but for x2 = T2 and D I 4Z + 3 

M.,,(z) ex: cllf' 
This means that M.,,(z) has a 5-function singularity at :i:2 = T2 or z! = 1. 

tion of the limit £ -+ 0 of eq.(2.5) gives 

(2.6b) 

A detailed examina-

M(z) = ~~M.,,(z) j dDkexp(-ikz + ikT) 

{"" dA AD-•e-•l>-1•/dDe5(e2 - 1) 1 + e ei>.,-i>.(,z) 
J_oo 2 

D J2il z (!!.:.!.) 
2 11' ' T(l + -) c5 ' (T2 

- :i:
2) 

T 

2D1rllf'T(l + ~) /"" dA (iA)'T1-ei>.(,'-z') 
T '-oo 2,r • 

where the last relation is in fact the definition of the derivative of the c5-function of noninteger 
order. The validity of these equations may be checked with the use of the following identity 

f dDze'FM(z)= 2D,..llf' / dDze•P•T(l + ~).s<¥>(T2 - :i:2 ) = (2,r)De;,;.-
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Thus, we calculated one of the terms entering into expression (2.la) for the spinor functional 

M(:z:) CI dDe6(e2 - 1/; e ,S(D-1)(1- (ez)), even D 

Cl~ i: ,S<¥>(1 - z!), arbitrary D (2.7) 

where C is a normalization factor. After its substitution into eq.(2.la) one gets the following 

expressions for the spinor functional in the limit N -+ oo 

Mv[:i:] f Ve,.c5(e2 -1),S<D-l)(l- e:i:)J[el, even D 

,S{D,1>(1- z!)J[:i:), arbitrary D 

where for an arbitrary D-dimensional vector n,.(t), t E [0, T] we denote 

J[n) = lim 1 + n(Nr) ... 1 + n(2r) 1 + n(r)' r = T/N 
N-oo 2 2 2 

(2.8a) 

(2.8b) 

(2.9) 

The right-hand side of this equation is an infinite product of matrices of order 2ID/
2
l whose calcu

lation is quite nontrivial without the use of Grassman variables. 
Had we had a lattice in the :z:-space, the definition of the spinor functional would be easy 

,because on the lattice the path 

P.v = {:z:,.(t), t e [0,T]l:z:(0) = y,:z:(T).= :z:} 

with T being the path length is formed by a finite number of links 

l+u 
MvfPzv] = IT-2-P., 

(2.10a) 

Here the product is taken along the path P.vand { u,.} are unit vectors forming the path P.v on 
the lattice. It may be easily recognized that eq.(2.lOa) does identically coincide with the spinor 
factor that appears when one represents the propagator for a free fermion particle as the following 

sum over the paths on the lattice [31) 

S(:z: - y) = Eexp(-ML(P.v)) Mv[P,v) 
P., 

where L is the length of the path P.v connecting the points y and :z: on the lattice. 

2.4. Spinor functional as a path integral in superspace 

(2.10b) 

The function J[n] depends on the dimension of the Euclidean space-time and its two values D = 2 
and D = 3 play a special role. In order to prove it we will transform eq.(2.9) assuming that 
n!(t) = 1. This condition is fulfilled identically in eqs.(2.Sa) and (2.10b). However eq.(2.Sb) 

vanishes as z! "# 1 but its action on (:i:2 
- 1) differs from zero 

2 ,<=> 2 D - l cD-'> 2 (1- :i: )o' • (1 - :i: ) = ---6 ,- (1 - :i: ) 
2 
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In other words, the strength of the singularity of ( z 2 - 1 )M ( :z:) at z 2 = 1 ( or the power of c in 
eq.(2.6b)) is reduced by unity. Nevertheless following ref.[29] we suppose that after substitution 
of eq.(2.7) into (2.la) only terms with the maximum order of derivatives of c5-functions give rise 
to path integrals for the effective action and propagator of fermions. It means that to calculate 
J[n], it is possible to set n2(t) = 1 and neglect O(n2 - 1) terms. 

The condition n2(t) = 1 implies that 

n,.(t)n,.(t) = 0, 1 + n(t)n(t) = 1 + n(t) 
2 2 

where n,.(t) = f.n,.(t). Using these properties one transforms the product of two neighbouring 
terms in eq.(2.9) as · 

l+n(t+r)l+n(t) l+n(t+r)n(t)l+n(t) ( r;( ).( )) l+n(t) ( 2) 

2 
--

2
- = 

2 2 
= 1 + 2n t n t --

2
- + 0 r 

( 
i . ) 1 + n(t)· ( i . ) 1 + n(t) = 1 + 2rn,.(t)nv(t)u"" -

2
- + O(r2

) = exp 2rn,.(t)nv(t)o-"v -
2
- + O(r2) 

The subsequent application of this relation leads to the following representation for J[n] 2 

(
i IT . ) 1+n(o) 

J[n] = exp 2 /o dtn,.(t)nv(t)o-"v --
2

-

1+ .(T) (' T ) ~exp ~ L dtn,.(t)nv(t)o-"v (2.11) 

It will be demonstrated below that eq.(2.11) is exactly calculable for D = 2 and D = 3 but for 
arbitrary odd values of D there is no other way to deal with P-exponentials than to introduce the 
Grassman variables according to identity (1. 7) 

TrPexpU{dto-"vw,.v(t)) = jv,t,,.exp({dt,t,,.,i,,.-~{ dt,f,,.,f,vw,.v) 

[ ( 
8 I )] 

1
/

2 

det 9,.vai, - 2w,.v 

where Wµv = ½(n,.nv - nvn,.) = nri,nvJ• . 
As a result, for odd D we derive the following expression for the spinor functional (2.8b) 

Tr Mv[:i:] = [det (9,.vft- ~Z[i,Zv]) f'2 
,S{D,

1
>(1- :i:2) 

Analogous representations were proposed in ref.[12). 

2N ote that the following relation holds 

exp ( ~ { dtn.(t)n.(t)ul'V) = J[n] + J[-n) 

11 



3. Spinor functional for D = 2 and D = 3 

3.1. Special case: D = 2 

In the D = 2 case Dirac matrices coincide with Pauli matrices 0-1, o-2 and 

dcp 
dt w,.v( t )u'"' = dt dt<T3 

where dcp is an infinitesimal angle between the vectors n,.(t) and n,.(t + dt). Therefore we have 

I[ 1 (i J.T d dcp) 1 + n(o) ( cp(T, o) . . cp(T, o)) 1 + n(o) n = exp 2u3 
0 

t dt --
2

- = cos -
2
- + io-3 sm -

2
- --

2
- (3.1) 

where cp(T, 0) is the total rotation of the vector n,.(T) with respect to vector n,.(o). If n,.(t) is the 
tangent field for a closed path: n,.(t) = :i:,.(t), z,.(T) = z,.(0), then the above relation reduces to 
[12,29] 

TrJ[:i:] = cos cp(~,O) = (-1r1 (3.2) 

where v is the total rotation of the tangent or the number of self-intersections of the path z,.( t). 
Hence, for D = 2 we obtain from eqs.(1.15),(2.8b) and (3.2) the expression for the effective action 
of interacting fermions as a sum over paths in z-space [29]: 

W[A] = f' ~ e-TM f Vz,.S(z(0) - z(T))oW(1- :i:2)(-ltH Tr Pexp (ig f dz,,A,.(z)) 

This equation may be thought of as a continuous limit of the lattice expression (1.8). 

3.2. Outline of the approach to arbitrary D 

Now we have two different representations for the function J[n] as an infinite product of matrices 
(2.9) and as a path-ordered exponential (2.11). P-exponentials turn out to be exactly calculable 
for D = 2 and D = 3. To understand the reason for this property, let us consider the initial 
eq.(2.9) in D-dimensional Euclidean space-time and.introduce the notation 

P(n) = 1 + n n2 = 1 
2 ' " 

(3.3) 

where n,. is an arbitrary D-dimensional unit vector and then 

J[n] = lim P(n(Nr)) ... P(n(2r))P(n(r)), T = T/N 
N-oo 

(3.4) 

The matrix P( n) possesses the following properties 

P(n)P(n) = P(n), Tr P(n) = ~Tr 1 = 2ID/2J-1 

from which it follows that P( n) is decomposed over 2(D/2J-l orthogonal projection operators 

P(n) = I;ii,n)(i,nl, (i,nlj,n) = S,;, i,j = l,2, ... ,2ID/2J-1 (3.5) 
i 
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·1·· 
. . 

j 

i 
,i/, 
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~ j\i 
r 

The states involved in this equation a.re the eigenstates of operator n,,y" corresponding to the 
degenerate eigenvalue ( + 1) • 

nli, n) = Ii, n), i = 1, 2, ... ,21D/2]-1 (3.6) 

The degree of degeneracy equals 2ID/2J-1 and it differs from unity unless dimension D has two 
special values D = 2 or D = 3. This means that for D = 2, 3 the right-hand side of (3.3) contains 
only one projection operator 

l+n 
Pn53(n) = -

2
- = l+,n){+,nl (3.7) 

After substitution of eq.(3.7) into (3.4) the infinite product of matrices is replaced by the scalar 
products 

N 

J[n] = l+,n(T)){+,n(0)I lim IT<+,n(iT)l+,n((i- l)r)), T = T/N (3.8) 
N-oo 1=1 

that can be easily calculated if the solutions of eq.(3.6) are known. 
For D ~ 4 the function J[n] is a sum of projection operators whose substitution into eq.(3.4) 

leads again to the infinite product of matrices. The·main idea of the proposed approach to the 
calculation of J[n] for arbitrary D is the following. Eq.(3.6) does not fix the set of states Ii, n) 
uniquely since any linear combination of these states satisfies the equation. Using the ambiguity 
it is possible to choose such solutions of eq.(3.6) that the following gauge symmetry holds: 

Ii, n(t)) = fj, nC•il(t)) (3.9) 

where n<•il(t) is the D-dimensional vector obtained from n(t) by the orthogonal gauge transfor
mation 

n<•iJ(t) = A<•1\t)n(t) 

The gauge group of these transformations is in fact the Wey! group acting in the root space of the 
~u(2ID/2l) Lie algebra (25]. 

It follows from eqs.(3.5) and (3.9) that 

P(n) = I:;11,n(i,l))(l,n<•,1>1, i = l,2, ... ,2ID/2J-1 

i 

If /.(n) is an arbitrary function of vector n,. then due to the gauge symmetry (3.9) the integral 
I( a) = J dDn J.( n )P( n) can be transformed to the form when the integrand contains only one 
projection operator 

I(a) I;/ dDnf.(n) 11, n<•,lJ}(l, n(i,1)1 ·=I;/ dDn(•,lJJ.(n) 11, n<•,1))(1, ~(•,1)1 . . 
In-+ (A(i,1))-lnl = / dDn 11, n)(l, nl ~/.((A(i,l)rln) 

As a result, in the infinite product of integrals TI. I( a) the product of matrices is replaced by the 
scalar products (1, nil, n'). 

Let us begin to realize this program starting from the D = 3 case. 

13 



3.3. Calculation of the spinor functional for D = 3 

To calculate the spinor functional at D = 3 we have to solve eq.(3.6) and then find the scalar 
products in eq.(3.8). 

Let us consider eq.(3.6) for D = 3 

nl±,n)=±i±,n), (a,nl,8,n)=5ari, a,,8=+,- (3.10) 

Its solutions are related by 
l+,n) = 1-,-n) (3.11) 

This equation is a special case of (3.9). If any state i±,n) is represented by a point on the 
sphere S 2, then the last relation means that points corresponding to states l+,n) and 1-,n) are 
antipodes. 

To find the explicit form of states, one uses the parameterization of vector n,. in terms of two 
angles on the sphere 

n,. = (sin /J cos cp, sin Dsin cp, cos /J), 0 :5 /J < 1r, 0 :5 cp :5 Z1r 

Solving equation (3.10) we _obtain that up to a phase factor 

( 
cos! ) 2' ' I+, n) = e'"' sin 

2 
1-,n) = (-e-'"'sin~) 

cos~ 

In this notation the states c~rresponding to the north pole N,. = (0, O, 1) are 

1+,N) = I+), 1-,N) = H 

where vectors I±) are the eigenstates of Pauli matrix u3 

<Tai±) = ±1±) 

In terms of the complex coordinates (z, z) of the stereographic projection 

8 . 
z = tan 2 e"tp

, Z = z• 

the states 1±, n) look like 

1 ( 1 ) 1 ( -z) 
I+, n) = (1 + zz)1/2 z ' I-, n) = (1 + zz)1/2 1 

(3.12) 

(3.13) 

We recall that the states (3.12) and (3.13) are defined by eq.(3.10) up to the phase factor. In the 
next section some important properties of states i±, n) will be formulated. 

3.3.1. Coherent states for the SU(Z) group 

It may be easily verified that states 1±, n) have the ~orm 

i±,n) = D(n)I±) (3.14a) 

14 

where 

D(n)=expGll(m-u)), 0:5/J<1r (3.14b) 

and m,. = (sin cp, - cos cp, 0) is a unit vector orthogonal to vectors n,. and N,. = (0, 0, 1). With 
matrices E0 = ½(u1 + iu2) and E_0 = ½(u1 - iu2) one rewrites D(n) as 

- 8 . ) D(n) = exp({E0 - {E_0 ), { = - 2e-'"' (3.14c 

The states defined in this manner are well-known as coherent states for the SU(2) group [17). 
The sets of states l+,n) and 1-,n) form, for arbitrary vectors n,., two systems of coherent states 
and relation (3.11) sets up the correspondence between them. The coherent states (3.14a) are 
characterized by the ground states_ 1±), that is the eigenstates of Pauli matrix u3 • The stationary 
subgroup of states i±) is the Abelian U(l) group and it consists of elements e•u,,i,_ Therefore the 
coherent states (3.14a) may be parameterized by points of the coset space [17) 

G/H. = SU(2)/U(l)"" S 2
"" GP1 

that is by the angles ( IJ, cp) on the sphere S2 or by the complex variables z on the complex projective 
space GP'. · 

The action of the stationary subgroup on the coherent states is defined as 

D(n)-+ D(n)e•,/,(n)u,, 1±,n)-+ i±,n)e±i,/,(n) (3.15) 
' . . 

Now we briefly formulate the main properties of coherent states l+,n) (17): 
Lit follows from eqs.(3.14a) - (3.14c) that 

n = I+, n)(+, nl -1-, n)(-,nl = D(n)u3D-1(n) 

2. The system of coherent states I+, n) is overcomplete. • 
3. The coherent states are not orthogonal to each other 

(
i )(l+(n1•n2))½ l+z,z2 (+,n11+,n2) = exp --<Ji(N,n2,n1) 

2 
= ------ -- ----i: 

2 , _ ((1 + z1z1)(1 + z~z2))• 

where the expression 
1 + Z1Z2 

<Ji(N,n2,n1) = ilog I,+ Z2Z1 

(3.16) 

(3.17) 

is equal_ to the area of a triangle on the sphere S 2 sh~wn in fig.I with vertices. being placed at points 
N, n2 and n1. z1 and z2 stand for complex coordinates of points n1 and n2• For the infinitesimal 
form when n2 = n(t) and n1 = n(t + r) we get 

where 

( 
. d<Ji ) 

(+,n(t+r)l+,n(t))=exp -idtr +O(r2
) 

d<Ji ,;,(1 - cos /J) dt 

.iz- zzd 
i-- t 

I +zz 
. (~8f(z,z) .8f(z,z)) d 
i z---z-- t 

8z 8z ' 
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(3.18) 

(3.19a) 

(3.19b) 

(3:19c) 



i: 
I 

I 

·-

and /(z, z) = log(l + zz). These relations are easily verified with the use of eqs.(3.12) and (3.13). 
From eqs.(3.18) and (3.14a) we conclude that 

~! = -2i(+,nlftl+,n} = -2i(+JD"'1(n)ftD(n)I+) = -iTr (u3 D-1(n)ftD(n)) 

4. There is the completeness relation 

Tr 1 • / dµ 0 (n) I+, n)(+, nj = 1 

where the integration measure has in different coordinates the form 

dµo 
1 
-d3n6(n2 

- 1) 
2,r 
1 . 

-d9d'f' sin9 
4,r 
_!__ dzdz =_!__8

2
/(z,z)dzdz 

2i,r (l + zz)2 2i,r 8z 8z 

(3.19d) 

(3.20a) 

(3.20b) 

(3.20c) 

and the function f(z, z) was defined in (3.19c). The last expression has a deep meaning. It 
reflects the fact that the coset space 8U(2)/U(l) is the Kahler manifold with f(z,z) being the 
Kahler potential {17]. Eq.(3.20a)-(3.20c) is Ieally a G-invariant measure on this manifold. 

It is evident that analogous properties hold fot the second system I-, n} of coherent states. 

3.3.2. Calculation of the spinor functional 

We substitute the scalar product (3.18) into eq.(3.8) and searclt the limit N--+ oo or T = T/ N--+ 0 

( 
• T df) 

Iv=l{n]=l+,n(T)}(+,n(O)lexp -~lo dtdt 

The exponent of this expression has a simple geometric meaninf If vector n,.(t) walks from point 
n(O) to point n(T) on the sphere 8 2 along some path Ci, then J0 dtf is equal to the area enclosed 
by C1 and by two main circles ( that is, the ones lying in the meridian plane) connecting points 
n(O) and n(T) with the north pole and shown in fig.2a. To eliminate the dependence of J(n] on 
the special point on the sphere (the north pole in our case), the last equation is transformed to 

I+, n(T)}( +, n(O)I = I+, n(T)){ +, n(T)I+, n(O))(+, n(O)I ( (+, n(T)I+, n(O)} )-
1 

1 +:(T) 1 +:(O) exp Gt(N,n(O),n(T)) (1 +(n(~)-n(0)))-1/2 

where eq.(3.17) is used. Now f equals the area enclosed by the contour shown in fig.l. The 
function J(n] is given by 

J(n] = 1 + i(T) 1 + :(0) ( 1 + (n(~) . n(O)) )-1/2 exp ( ~f(N, n(O), n(T) - ~ f dt ~!) 

16 

~ 
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Fig.1:The function f(N, n 2, n1) is equal to the area of a shaded triangle on the sphere 8 2 with 
vertices being placed at the north pole N and points n2 and n1. 

,J 

52 

a. b 

Figure 2: (a) If a particle walks from point n(O) to point n(T) on the sphere 8 2 along some path 
C1 then J dt f is equal to the shaded area; (b) The function f(C) appearing in eqs.(3.21) and 
(3.22) equals the area 81 enclosed by contour C = C1 + C2• 
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or 
_ 1+ n(T) 1+ n(O) (1 + (n(T),n(O)))-i/

2 
exp (-~c}(C)) 

J[n]- 2 2 2 2 (3.21) 

where c}(C) is equal to the area 51 shown in fig.2b with boundary C = C1 + C2 and C2 being 
the main circle joining the end points of C1. We note that there are many different choices of C2 
when the end points of C1 are antipodes on the sphere 5 2. This ambiguity is compensated by the 
preexponential factor in eq.(3.21): i-;<01 l+;(o) = 0. For a closed path C1 the circle C2 is replaced 
by a point ·and we get 

1 + n(O) ( i ) J[n] = --
2
-exp - 2c}(C1) 

The explicit form of the function <}( C) will be given in the next section. 

3.3.3. One-dimensional Wess-Zumino term 

The contour C in eq.(3.21) is shown in fig.2b. We parameterize it as 

C = {e,.(t),O ~ t ~ 2irle,.(O) = n,.(O),e,.(ir) = n,.(T),e,.(O) = e,.(2ir)} 

Using eqs.(3.19) one gets the following relations 

<}(C) I'" lo dt 'f'(l - cos 8) 

/.

2"' .¼z - zz 
i dt---

o 1 +zz 
. ('" d (~8f(z,z) .8/(z, z)) 
i lo t z ~ - z ~ , f(z, z) = log(l + zz) 

-i [" dtTr (u3D-1(e)ftD(e)) 

(3.22a) 

(3.22b) 

(3.22c) 

(3.22d) 

where (8, cp) and (z, z) are different coordinates of points e,.(t). To express <}(C) in terms of e,.(t) 
we have to introduce the interpolating field e,.(t, u) 

{ 
e(t) , 

e(t,u) = const. 
u=l 
u=O 

and the boundary values are the points of contour C. The~ the function c}(C) being equal to the 
area 51 in fig.2b is expressed as 

{h fl 8 . 8 
<}(C) = lo dt lo dueµvpe,.(t,u)8uev(t,u)a?p(t,u) (3.22e) 

Eqs.(3.22) are well-known as different forms of the one-dimensional Wess-Zumino term (1,20]. 
One of the properties of this term is the quantization of the physical parameters as a consequence 
of a consistenty condition of underlying quantized dynamics. To clieck this property in our case, 
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we recall that there is a gauge ambiguity in the definition of the phase of coherent states. Under 
U(l) gauge transformations defined in eq.(3.15) the function c}(C) changes as 

D(e) -,~ D(e)e•~•J~, 

<}(C) --, -i J.2" dtTr [o-3 ( v-1(e)ftD(e) + it/,(e)o-3)] 

= <}(C) + 2[t/,(e(2ir))- t/,(e(O))J 

= c}(C) + 4irk, k E Z (3.23) 

since the boundary condition e(2ir) = e(O) implies that e•'P(•(2.-)J = e•,;(,(o))_ Therefore demanding 
invariance for the phase exponential of the action e-id(C) enforces a quantization of the parameter 
K. that governs the gauge variation 

21<. E Z (3.24} 

Eq.(3.21) implies that K. = ½ and the action <}(C) is ·nonmanifestly gauge invariant under gauge 
transformations (3.15). The physical reason of the quantization condition is the quantized value of 
spin of fermions. The case K. = ½ corresponds to spin ½ but for an arbitrary spin J the additional 
factor J appears in eq.(3.22) leading to K. = J (17f. 

The quantization condition has a simple geometric meaning. The function <}( C) equals the 
area enclosed by contour C on the sphere 5 2 shown in fig.2b. But there are two such areas in 
fig.2b: S1 and 52. The quantization condition (3.24) may be expressed as the independence of the 
particular choice of the area 

e-id(C) = e-,,.s, = e'"s,' 51 + 5, = 4,r 

There are different interpretations of the phase factor <}( C). For instance, the integrand of 
eq.(3.22a) is the to;sion of the curve C [2]. Eq.(3.22a) may be written as [32) . 

<}(C) = la dz,.A,.(z) 

_where A,.(z) is the Dirac potential of a magnetic monopole placed at the centre of the sphere 5 2. 
Eq.(3.22d) was rediscovered as Berry's phase [33}. Eq.(3.22b) was discussed in connection with 
the geometric quantization of spin (16). 

4. Summary 

Substituting eq.(3.21) into (2.8) we derive the final expressions for the spinor functional for D = 3: 

MD=3[:i:] / Vec5(e2 -1) 8"(1- (e. :i:))exp (-;c}(e)) 5(e(T),e(O)) 

c5'(1-:i:2)exp (-;c}(:c)) 5(:i:(T),:i:(O)) 

( 4.la) 

(4.lb) 

where 5(n,m)= 1¥1¥ (1+<;->rl/2 
The spinor functional Mv for D = 2 may be found as a special case of these relations. The 

dimensions of Dirac matrices coincide for D = 2 and D = 3 and therefore lv=2[n) is equal to 
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Iv;
3
{n] with path C = {n..(t)} restricted to lie in the equatorial plane n3 = 0. Then the path C 

is the equator and 
cli(C) = 21rN 

where N is the number of total rotations of the tangent vector n,.(t) = :i:,.(t), n(0) = n(T) or with 
the number II of self-intersections of the path z,.( t) 

N = 11 + 1 (mod 2) 

So we get 
lv;2{n]= l+;(O)(-lt+l 

and after the replacement ,p(T,0) = 21r(11 + 1) one obtains eq.(3.1). 
Now we have the desired representations {1.14) and (1.15) for the effective action and propa

gator of interacting fermions as integrals over all paths in the z-space and explicit expressions for 
spinor functionals for two special cases of the space-time dimension D = 2 and D = 3. Hence, at 
D = 3 we get 

and 

S(z,y; A)= f.00 

dTe-TM [ Vz,. 6'(1- :i:2)exp (-~cli(z)) 

xS(:i:(T),:i:(0))Pexp (ig [ dz,.A,.(z)) 

00 dT '(i) W[A] = J. Te-TM jvz,..i(z(O)- z(T).)6'(1- :i:2)exp - 2<li(:i:) 

(
1+ (:i:(T)- :i:(0))1/2 . 

2 
TrPexp(ig/ dz,.A,.(z)) 

(4.2) 

(4.3) 

It is interesting to note that in the lattice approximation the above-mentioned representations 
are reduced to 

S(z,y;A) oc fr.;exp(-ML{P,,))exp (-~cli(P.,)) Pexp (ig l., dz,.A,.(z)) 

and identically coincide (for A,.(z) = 0) with those in eqs.(1.8) and (1.9) proposed in refs.[2,31]. 
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