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1. Introduction

It was realized in the last years {1,2,3,4] that one of the novel properties of D = 2 and D = 23
dimensional quantum field theories is the transmutation of statistica of elementary particles, i.e.,
under nontrivial interaction bosons become fermions and vice versa.  Recently Polyakov [2] has
suggested that in a threo-dimensional gauge CP!.model with the Chern-Simons form for the
kinetic term of the gauge fleld fermi-boson transmutation occurs, The original boson excitations
ate dressed by the gauge fleld to transform into free Dirac fermions. Earlier, similar theories
with the Chern-Simons action were studied [5] and the appearance of the soliton vortices {6] with
anomalous spin was noticed. Unlike the well-known two-dimensional nonabelian bosonization [1]
the equivalence between threc-dimensional interacting bosons and free Dirac fermions is not exact
and it holds only in the limit of low momenta [2,4].

To carry out the proof Polyakov [2] has supposed that the propagator of the free Dirac electron
in D = 3 Euclidean space-time may be represented as a bosonic path integral (its explxcxt form
is given below in sect.1.3.2) that turns out to coincide with the dressed soliton propagator in the
gauge CP'-model in the limit of low momenta.

Do similar phenomena exist in higher ditnensionsa? There were attemnpts {7,8] to answer the
quention in the case D = 4. The present paper is devoted to one aspact of this problom..Namely,
only the fermlonic part of the problem Is analyzed and the final goal of the papor is to obtain
the bosonic path integral representation for the correlation functions of Dirac ferinions in- D-
dimensional Euclidean space-time, )

We recall that in the standard fashion [8,10] to describe the Dirac fermions, bosonic as well as
Grassmann variables have to be introduced to form the path integrals in a superspace correspond-
ing to the spinning particle. This representation i very useful when the Neveu-Schwarz-Ramond
string [11] is formulated as a string analogue of Dirac fermions [12] but it is not so when the
correspondence with the interacting bosons is established. Therefore one would like to get rid
of the Grassmann variables in the delcnptlon of the Dirac fenmonl and to replace them by the
bosonic degrees of freedom of a spinning particle.

It was Feynman [13] who firat noted the possibility of the bosonic path integral representation
for two-dimensional Dirac fermions. Later the use of the bosonic path integral formalism for two-
dimensional Majorana fermions made it pomsible to solve the D = 2 Ising model [14]. The spin
correlation functions were expressed (15,16 as & sum over all paths on the sphere 5. Using the
geometric quantization approach (or the coherent state method) [17] the bosonic path integral
representation for the propagator of the three-dimensional Dirac electron was found [2,3,8,18,19].
In all these cases the bosonic path integrals for the fermionic corzelation functions contain the
same additional term. This term is a geometric characteristic of paths [2] and it is well-known as a
one-dimensional Wess-Zumino tezm obtained by Witten and Novikov [1,20]. It is a Wess-Zumino
term that ensures all necessary properties of Dirac fermions under canonical quantization of the
action of a spinning particle [2,16,21,22,23],i.e. Dirac equation, Fermi statistics, quantized values
of spin and so on. Note that both approaches (the Grassmann and bosonic path integrals) give
[eqtiiva.lent descriptions of a spinning particle and coneupondence between them was established

22

In the present paper, the formalism of the bosonic path mtegra.h is developed for interacting
Dirac fermions in D-dimensional Euclidean space-time. The paper is organized as follows. All
necessary definitions and a brief review of existing results on the subject are given in the remaining
part of sect. 1. Ilere the representation for the effective action and propagator of fermions as a sum

over all paths in z-space is derived where the spinor functional is the only unknown quantity. The
spinor functional is analyzed in sect.2 after a proper regularization and approximation. It turns
out that two space-time dimensions D = 2,3 play a special role and the corresponding spinor
functionals are found in’sect.3.

In the case D > 4 the direct calculation of the spinor functional is reduced to the evaluation
of an infinite product of Dirac matrices. To overcome the problem, the additional transformation
of the spinor functional called dimensional extension is performed in ref.[24].” The space-time
dimension is changed from D to the dimension of the su(2d), (d = 2/°/%1-1) Lie algebra with Dirac
matrices being its elements. Using some well-known properties of semisimple Lie algebras [25]
it is'possible to represent the spinor functional as a sum over all bosonic paths on the complex
projective space CP¥~!, In ref.[24] the transformation of the spinor functional inverse to the
dimensional extension is done and the final bosonic path integral representation for the effective
action and propagator of interacting Dirac fermions in D-dimensional Euclidean space-time is
derived. |

1.1. Dirac fermions in D-dimensional Euclidean space-time

Let us_consider, in D-dimensional Euclidean space-time, Dirac fermions with mass M interacting
with a nonabelian gauge field A, = AST* where T° are some generators of the gauge (or “color”)
group ,whose explicit form is not essential for our purposes. We define the effective action and
propagator of interacting fermions as follows:

W(A] = log det(D + M) = / Pz (z|Tr log(D + M)|z) (1.1)

and
S(z,y; A) = (zI(D + M) |y) = ~iz|(p + gA + iM) |y (1.2)

where D = D,y*, D, = 8, — igA, is the covariant derivative, v* are Dirac matrices in D-
dimensional Euclidean space-time, Tr refers to color indices of the gauge field and spinor indices
of Dirac matrices, p, = i8,, [z, ] = —ig and

=82z -y), Gk =6"(—k), (zlp)=(2r) "/ 2e7C")

Using the identity A~! = —i [;° dT exp(iT A) one transforms eqs.(1.1) and (1.2} to obtain two
different expressions for the fermion propagator:

S(2,3:4) = (=l(D + M)y) = (el [ dT exp(iT (D +iM))iy) (1.33)

and

S(z,y: A) (|(D - M)(D* — M*)y)

iz| /o T dT (D - M)exp(iT(-D* + M)y

1l

i(z| /ow dT (D — M)exp (iT(——D: + %gF,,,o',,., + M’))[y) (1.3b)

where F,, = f[D,,, D,} is the strength tensor of the gauge field and g, = i[v,,7.] .

g ,“:
'm"fYT

108




Matrix elements entering into the right-hand side of eqs.(1.3a) and (1.3b) have the -form
(z|eTH|y) and may be treated as matrix elements of the evolution operator of a spinning particle
with T and H being the proper time and hamiltonian of the particle, respectively. The hamilto-
nian H has both spinor and color indices and, as a result, the spinning particle has a new quantum
degree of freedom. Following Feynman {13] one can represent (z[e7#y) as a path integral over
the phase space of a spinning particle. It is well-known [26] that if one starts. from eq.(1.3b), one
finds in this way a representation for the fermion propagator as a sum over random paths in the
superspace with even (or c-number) and odd (Grassman) coordinates [9,10]. We will demonstrate
in this paper that it is just eq.(1.3a) that allows us to describe Dirac fermions without the use of

Grassman variables.

1.2. Random walk in supérspace

For the sake of simplicity we assume in this section that the gauge field is Abelian and rewrite
~ €q.(1.3b) as a path integral in superspace.
Splitting the interval [0, T} into N equal pieces and inserting the completeness relations

1= [&pippl = [Pz |2)ai ()
in a proper manner one obtains from eq.(1.3b) that in the limit N — oo
S(z,y, A) = /a * 4T exp(iTM?) / "Dz, Dpu (HT) + gA(z) ~ iM)
, v
T - 1.
x P exp (i/o dt( —pz+(p+9A(z))* + Eg(Fa))) (1.5)

where integration is performed over all z-space paths between the points z,(0) = y,, and z,(T) =
z, and all unrestricted p-space paths; P denotes the Dyson path ordering defined as

T i T
Pexp (/o dt O(t)) = lim e O .. grolamerolin) - v (18)

for an arbitrary operator O. The momentum path integral in (1.5) is Gaussian and is easily
calculated. The integrand of the resulting expression is a matrix. To get rid of the matrix
structure we introduce additional Grassman variables v, Y5 and x and a bosonic “einbein” field
_e(t) [9,10] using identities like - :

o fi T T .1 4T
- = - t W F 1.
Tr Pexp (2g / dt(aF(t))) [Pvuexe ( [ @ttt 39 [ deviF ) (L)
The final expression for the fermion propagator has the form [9,10]
.t . i
S(z,y; A) = /‘Dz“‘Dtll,,’Dx'De'DllJ; exp (z/; dt(gz,,A,,(z) + Eger¢“¢,))
N E R S | . N

xexp (i [ dt |5~ b — vt + Sx¥uds — Mexys + Me

It describes a random walk of ‘a spinning particle in superspace with the action invariant under

both local supersymmetric and general coordinate transformations.
Let us investigate another representation, (1.3a), for the fermion propagator.

1.3. Evolution operator

We h).' to express the effective action and propagator of interacting fermions as a sum over all
paths.» In some space with c-number coordinates. Natural questions arise: what are the properties
of this space and what kind of action corresponds to 2 spinning particle in this space? There are

h.vo exa'mplm that allow us to answer the above questions for two special values of the space-time
dimension: D =2 and D = 3.

1.3.1. D =2 Ising model

The first examp]_e is re]at:efi to the two-dimensional Ising model on a square lattice {27]. Tt is well-
known [14] that in the vicinity of the phase transition point T = T, the Ising model is equivalent
to the tl.le.ory of free Majorana fermions. As a result, we have two equivalent representations for
the partition function of the model as T — T.:

108 Zap 134(M) = _%T: log(8+ M) = — 3 exp(~ ML(P)) (- 1P+ (1.8)
P

where the sum is taken over all closed paths Pon the lattice, L is the length of the péth vis
the number of self-intersections of P, M is the mass parameter proportional to (T-T.). Eq.'(l 8)
means that in the lattice approximation the effective action of free fermions is a sum o:er all loo.ps
in the z-space with an additional spinor factor.

1.3.2. D =3 free fermions
The second example has been given by Polyakov [2] who has supposed that the propagator of a

free D.irac electron in three-dimensional space-time is given in the lattice approximation by the
following sum over paths between points y and z:

S(z—y) ; exp(~ML(P.,)) exp (-%Q(P,,)) (1.9)

where the spin factor is ’
L 1
$(P.,) = /0 ds /o due-

and the interpolating field is introduced

e(.,,u)={e(~’) , u=1

& Be
Buxaa

const. , u=20

wi;h e(ts) being the tangent field for path Fry. In the continuum limit eq.(1.9) is expected to
reduce to

S(z-y)x /nm dL exp(—ML)/'Deé‘(ez —1)exp (—;—‘Q('e)) § (x— ¥y~ /oLkd.; e)

where integration is performed over all paths on the sphere $2. An analogous representation was
suggested also in ref.[19].

With these' examples in mind we retufn to eqs.(1.1) and (1.2) for the effective action and
propagator of interacting fermions.



1.3.3. Evolution operator as a path integral
Let us consider the function [28]
Uz, 5 T) = (zleTOly)

and treat it as a matrix element of the evolution operator of a putl‘cle with lu'umlt?man He: titme
The function U(z,y; T) is an amplitude for a particle to go from point y'to point = mhprop : time
T. The effective ,ac,tion and propagator of the fermion are expressed in terms of the evoluti

operator as follows

S(z,y; A) = / ® AT ™ Uz, 5; T) - (1.10)
- 0 . N
d &0
- W{A]:/ ge‘TM/dDzﬁU(z,z;T) (1.11)
; 1D/2]

We note that in D-dimensional Euclidean space-time U(z,y; T) is a spinor matrix of order 2

d, moreover, it has color indices. ) .
> i‘:lllowing r’ef.[28] let us obtain a representation for the evolution operator U(z,y;T) as a path

integral: - ) : iTs ize\N
U(::,y; T) - (z|e‘TH|y) - (Z[(e'%H)N[y) = A}ﬂo(zl(c 5’5 Fe ) Iy)

v N i insert the
where the Trotter identity limy e (exp(ﬁ,) exp(%)) =exp(A+ B)'ls used. Now we inser
completeness relations (1.4) into the right-hand side of the last equation

U(z,y;T) =)Ji_{1:°/dpz, ..../dDzN-I/dDﬁl.../deg (Z;r)'DN‘

. ‘Tod 1Y PR o) i ed(y)
T c A Yy 2L G S AL in(e1—v) i oAl

_In the limit N — oo this expression turns into the path integral
T T -
* [ atye0) Peso (s [ (30 + 9dte()
o) = [ Deyomers (i [ ants) pece (s [ (50 + 94

where integration is performed over all unrestricted momentum paths and all z-paths between the
points z,(0) = y, and z,(T) = 2z,
/ "Dz, = / Dz, §(2(0) - ¥) §(=(T) - 2)
v

and the P-exponential defined in eq.(1.6) orders color and Dirac matricc.s. Now we Shlft t1..he
momentum integration variable p, — pu — g4 to get the final expression for the evolution
operator [28,29]

Uz,y;T) = / Dz, P exp (ig /o " at :E,,(t)A,,(z)) Mplé) (1.12)

where the momentum functional integral is factorized

Molé] = / Dp, exp (—.' /0 T & p(t)z’:(t)) Pexp (i /o . dt;s(t)) (113)

Mp does not depend on a gauge field and fermion mass M. It accumulates all spinor structure
of the evolution operator and is called the spinor functional.

The dependence of the evolution operator on the gauge field is contained completely in the
path ordered exponential whose gauge transformation properties imply that

Auz) — A=) = G(Z)(A,.(z)+§a,.)c-‘(z)
Uz T) - USzyT)=G(=)U(2,4:T)C(y)

Finally, we substitute (1.12) into eqs.(1.10) and (1.11) to derive the following representations
[28,29,30]:

5(z,y; 4) = /:o dT ™ /: Dz, exp (ig /: dz“A,,(z)) Mpl[z] (114)
and

wia] = /;m gq-q“—e—TM/Dzuﬂz(O) —z(T)) Tr Pexp (igfdz",q“(z)) Tx Mpl#) (1.15)

Thus the calculation of the spinor functional is a final goal of the present paper.

2. Spinor functional

The spinor functional defined in eq.(1.13) has some unusual properties. Its formal calculation
yields the matrix &-function: 8(%,(t)~,) but this result has been shown [28} to be wrong. Unlike
the analogous integral in (1.5) the momentum functional integral in (1.13) is ill-defined and it

must be properly regularized for large values of momenta. One of the regularization prescriptions
proposed in [29] is the insertion of the cut-off factor o

T N

exp (_ /0 dte(t)\/;g) , )= 0

into the right-hand side of (1.13). Then the regularized spinor functional is
Mplz] ="(12)T0M,.,[z]
where .
- . T « T 3 T a
Mogglz] = /‘Dp., exp (—:/; dtp(t)z(t) — /; dt 5(t)|p(t)[) Pexp (1[) dt j(t)

and {p(t)* = pu(t)pu(t).

2.1. Approximation of the spinor functional

To calculate the spinor functional we split interval [0,T] into N equal pieces 7 = % and define
M plZ] to be given by the following limiting procedure

Mpl#] = ¢(]il)m lim Mieg(2n)- ;-M,,,(z,)M,.,,(z,) (2.1a)

—0 N—oo



where

Mueg(z) = f Pk exp(~i(k) + ik ~ elkr) (2.1b)

and T — 0. 7; = 72(ri) — 0 in the limit N — oo and #, = fixed. The relative order of factors
in (2.1a) is csscntial since M eg(2) is a matrix of order 2P/%,
We rewrite eq.(2.1b) as

. k. 2.2
M,,,(z) = /deexp(—z(kz) — elk|7) [cos(lklr) + tlkl sxln(|k|r)] (2.2)
The regularization cuts off large values of momenta in this expression:
-1
M<zr

but despite the sxhall values of 7 the functions cos(]k|7) and sin(].klr) are rapidly osci}lating i.n
this region and they cannot be approximated by a few first terms in the Taylor expansion. This
is a reason for the discrepancy of results of refs.(8,18] and [2].

2.2. Erroneous results ) ’ ®

Tn refs.[8,18] an attempt was made to calculate the spinor functional for two special values of
space-time dimension: D =3 and D =4 based on the coherent state approach {17]. In thf’. case
D = 3 three Dirac matrices v, coincide with Pauli matrices and they can be decomposed in the
basis of coherent states for SU(2) group as follows 1

P - : : Pe 2
Ga= /—r—e Ze,je)e]b(e?—1), 1 (;,/—;m(ej Se*-1)
After substitution of these relations into eq.(2.2) ‘o’ne gets ‘

oy (ke
/d—:_e—]e)(el 5e* - 1) /d’k gike—eiklr [cos(]k[r) + 3:£]Tel)- sm(]k|r)]

I

Mun(z)

n

/ e | eytel s(e? - 1) [ (L4 3ike)r + O(K7)
T . ) B
# /fﬁ le)(el 8(e? — 1) (2x)°6(x — 3er), €0

n

where the smallness of O(k??) terms is assumed in the last expression proposed in refs.!8,18]. But
this assumption is wrong and therefore the results of refs.[8,18] do not upset Polyakov's results.

2.3. Calculation of the spinor functional

Let us transform eq.(2.2) identically

. . k —ilte k
%/dnk mika—elMr [e,m' (1+ ]_kI) 4 et (1 _ m)]

o k
1 elklr [ —ikzilklr o ike—ilkir] [ )
= E/JDke [e +e ]( +—|k|

Mees(2)

1The detailed definitions and explicit form of the coherent states will be given in sect.3.3.1.

and single out radial and angular parts of the vector k, = Ae,,
Pk = dA XD dPef(el 1), A0

to derive the following relations in terms of variables A and e,:

My(z) = /‘: d\ AD—le-clr/dDe 8(e? ~ 1) (eur-u(u) + e~ur+u(,,)) 1 -;- é »

D 1+é o =1 _—efAlr jiAr—il(ex
[ 8 ~1)=5= [ anap-remehingr-ie . (23)

To get rid of the modulus in the last equation one has to consider Mey(z) for two values of
dimension: D = 2v and D = 2v + 1. 1t follows from (2.1b) that they are related to each other by

a simple equation
1 .
Moeg(®1, 22, .., 23,) = b /d:zvﬂ Mueg(21,22,- -, Tawy T2v1) (29)
where z, = (21,23,...,22,)-
For D = 2v + 1 a simple but tiresome calculation yields
Meg(z) = [~ daxP-1emer [ @eg(er - IS gie-inen
—c0

D+1
2

(am) 5 1(

Il

Yer +i(r + £))(z® - 7 + 2ier?)"F + hec (2.5)

For D = 2v we substitute this expression into eq.(2.4) to find for M,.y(z) the result coinciding
with eq.(2.5) if one analytically continues it to odd values of D. . .
Now we perform the limit ¢ — 0 in the regularized expression (2.5) and note that as z? # 2

My(2) xe— 0 (2.6a)
but for z? =72 and D # 4Z + 3

Moeg(2) o ™4 |  (aeb)

This meaas that M.(z) has a §-function singularity at 2 = 7% or #2 = 1. A detailed examina-
tion of the limit ¢ — 0 of eq.(2.5) gives

i

M(z) = limMoy(z) = [ dPkexp(~ikz +ikr)

/an d\ AD—le—clllrdee 6(61 _ l)l + eeilr—il(u)
~o0 2

i

il

zn,rp-,ﬂ,-(l + ;)5("—,‘1)(1.2 ~z?)

i

D Rl 4 /’“ A e g
P T.(l+r) -up27r(“\) te
where the last relation is in fact the definition of the derivative of the §-function of noninteger
order. The validity of these equations may be checked with the use of the following identity

/dnz e M(z) = 2023 /dDz eor(1+ 2) 657 (72 — 2?) = (2n)Pe?
T N



Thus, we calculated one of the terms entering into expression (2.1a) for the spinor functional
y

M(2)

!

c /dne §(e* - 1)1_-;-_e §P-1)(1 — (ez)), even D
_ M- &), abitrary D 27)

where C is a normalization factor. After its substitution into eq.(2.1a) one gets the following
expressions for the spinor functional in the limit N — oo :

Mplz] = / De,b8(e* — 1) §P-1(1 — e) Ife], even D (2.8a)
851 — 22) I{z), arbitrary D ~(28b)

where for an arbitrary D-dimensional vector n,(t), t€ [0,T] we denote

14+#(Nt)  1+4(2r)1+#(r) 7.=T/>N (2.9)
2 2 2 :

I[n) = Jim
N—ooo
. p . -
The right-hand side of this equation is an infinite product of matrices of order 2IP/2} whose calcu
A s ‘ables.
lation is quite nontrivial without the use of Gra.ssmfn} varial . ]
Had we had a lattice in the z-space, the definition of the spinor functional would be easy
_ because on the lattice the path

Py = {zu(t), te [0,T]|z(0) =y,2(T) =z} :
with T being the path length is formed by a finite number of links
| | 1+ ‘

MplP.,) = }H 2 (2.10a)

Here the product is taken along the path P,and {u,} are m{it vef:tors for.mi?g thc': patlil P,,! on
the lattice. It may be easily recognized that €q.(2.10a) does 1dentxca1‘ly coxnC}de with t euspu.lor
factor that appears when one represents the propagator for a free fermion particle as the following
sum over the paths on the lattice [31]

Sz-v)= ;exp(—ML(P.,,))MD[P;,] - (2.10b)

where L is the length of the path P, connecting the points y and z on the lattice.

2.4. Spinor functional as a path integral ip superspace

The function J{n} depends on the dimension of the Euclidean'spacc-time and its two value.s D : i
and D = 3 play a special role. In order to prove it we will transform eq.(2.9) assuming t8:
ni(t) = 1. This condition is fulfilled identically in eqs.(2.8a) and (2.10b). However eq.(2.8b)
vanishes as £ # 1 but its action on (&* — 1) differs from zero

(1 - #)8E( - 87) = -2 R - )

10

H

In other words, the strength of the singularity of (#2 — 1)M(z) at £? = 1 (or the power of ¢ in
€q.(2.6b)) is reduced by unity. Nevertheless following ref.[29] we suppose that after substitution
of €q.(2.7) into (2.1a) only terms with the maximum order of derivatives of §-functions give rise
to path integrals for the effective action and propagator of fermions. It means that to calculate
I[n], it is possible to set n*(t) = 1 and neglect O(n? — 1) terms.

The condition n?(¢) = 1 implies that

_ 14it)

nu(t)iu(t) = 0, .

1+a(t),
2 lb(t)

where 7,(t) = £n,(t). Using these properties one transforms the product of two neighbouring
terms in eq.(2.9) as ’

1+ ﬁ.(t-l'- T) 1+ ﬁ(t) _ 1+ ﬁ(t +T)ﬁ(t) 1 +fl(t) _ (1 + :ﬁ(t)ﬁ(t)) 1+ ﬁ.(t) n O(‘r’)
2 2 2 2 2 2
= (1 + %‘rn,,(t)iz,(t)a“") li;ﬂbr 0(r*) = exp (%rn,,(t)iz,,(t)a“") 1+—2"(t—) +0(r?)

The subsequent application of this relation leads to the following representation for I[n]* .

ex? (% /OT dt n,.(t)it.,(t)a“") }%(0) |
=1 +;"(T) exp (% /OT dt n,,(t)r't.,(t)a“") (211)

It will be demonstrated below that eq.(2.11) is exactly calculable for D = 2 and D = 3 but for
arbitrary odd values of D there is no other way to deal with P-exponentials than to introduce the
Grassman variables according to identity (1.7)

/ D, exp (AT dt 'l’;ﬂ&u "‘ ';‘ /OT dt ¢u¢v“’w)

8 1 12
]
where w,, = %(n,.il,, - nyi,) = nph,)

As a result, for odd D we derive the following expression for the spinor functional (2.8b)

I[n]

wen(s )
° .

4 1 V2 op
TrMplz] = [det (g“,E - 5:&[,,5,,1)] 5(_’_)(1 - :-:2)

Analogous representations were proposed in ref.[12].

*Note that the following relation holds

if7 V
exp (E/o diﬂu(‘)ﬁv(‘)a‘w) = I[n] + I[_"]

11



3. Spinor functional for D=2 and D =3

3.1. Special case: D=2
In the D = 2 case Dirac matrices coincide with Pauli matrices 0y, o; and
d
dtw,(t)o™ = dt oy
dt
where dp is an infinitesimal angle between the vectors n,(t) and n,(t + dt). Therefore we have

In] = exp (;;0'3/ dt %i:-) 1+Tﬁ(0) = (cos ﬂi_z",_()) + io3sin ‘P(%’O)) —1%(0)- (3.1)

where (T, 0) is the total rotation of the vector n,(T) with respect to vector n,(0). If n,(¢) is the
tangent field for a closed path: n,(t) = £,(t), z,(T) = 2,(0), then the above relation reduces to
[12,29] o ‘
Tr I[#] = cos L322 "’(T 0 _ (yph - (3.2)
~ where v is the total rotation of the tangent or the number of self-intersections of the path z,(t).

Hence, for D = 2 we obtain from eqs.(1.15),(2.8b) and (3.2) the expression for the effective action
of interacting fermions as a sum over paths in z-space [29]:

W{A] = /om % e ™™ /D:,, §(=(0) — =(T)) &1 - ) (-8 Tr.P exp (igfd:“A,,(:))

This equation may be thought of as a continuous limit of the lattice expression (1.8).

3.2. Outline of the approach to arbitrary D

Now we have two different representations for the function I[n] as an infinite product of matrices
(2.9) and as a path-ordered exponential (2.11). P-exponentials turn out to be exactly calculable
for D = 2 and D = 3. To understand the reason for this property, let us consider the initial
€q.(2.9) in D-dimensional Euclidean space-time and introduce the notation

P(n) = 1;’3, m=1 (33)

»
where n,, is an arbitrary D-dimensional unit vector and then
I[n] = Jim P(n(NT)).-- P(n(27))P(n(7)), 7=T/N (3.4)
The matrix P(n) possesses the following propgties . |
P(n)P(n) = P(n), Tt P(n) = 3Tr1 = 21171
from which it follows that P(n) is decomposed over 2!P/31~! orthogonal projection operators

P(n) = Y li,m)(i,nl,  Gynlimy = &j, & =1,2,...,20001 (35)

SR RSy T

The states involved in this equaticn are the eigenstates of operator n,v" correspondlng to the
degenerate eigenvalue (+1)

fili,n) = li,n), i=1,2,..,210/% (3.6)

The degree of degeneracy equals 2/°/21-1 and it differs from unity unless dimension D has two
special values D = 2 or D = 3. This means that for D = 2, 3 the right-hand side of (3.3)contains
only one projection operator

Poga(n) = T35 = [4,m)(H, @)

After substitution of eq.(3.7) into (3.4) the infinite product of matrices is replaced by the scalar
products

N .
I[a} = |+, m(T)+,m(0)) tim T+, n(in)i+,n((i-1)7), 7=T/N (3.8)

s =1 .

that can be easily calculated if the solutions of eq.(3.6) are known.

For D > 4 the function I[n] is a sum of projection operators whose substitution into eq.(3.4)
leads again to the infinite product of matrices. The main idea of the proposed approach to the
calculation of I[n] for arbitrary D is the following. Eq.(3.6) does not fix the set of states |i,n)
uniquely since any linear combination of these states satisfies the equation. Using the ambiguity
it is possible to choose such solutions of eq.(3.6) that the following gauge symmetry holds:

li,n(2) = 17, n9(2)) ' (39)

where n{i/)(t) is the D-dimensional vector obtained from n(t) by the orthogonal gauge transfor-

mation
a9(0) = A (e

The gauge group of these transformations is in fact the Weyl group acting in the root space of the
su(2[P/7) Lie algebra [25].
1t follows from eqs.(3.5) and (3.9) that
P(n) = Y11, n0 (1, a0, i =12, 2P/
If fu(n) is an arbitrary function of vector n, then due to the gauge symmetry (3.9) the integral

I(a) = [dPn fo(n)P(n) can be transformed to the form when the integrand contains only one
projection operator

Ia) = 5 [dPn fuln) 11,nD)(1,n60) = 5 [ dPnOf, () 1m0 1, n6D)

[n — (AGD)1g| = /an (L,n)1,0l Y f((ACD)'n)

As a result, in the infinite product of integrals [], I{a) the product of matrices is replaced by the
scalar products (1, n|1,n').
Let us begin to realize this program starting from the D = 3 case.

13



3.3. Calculation of the spinor functional for D =3

To calculate the spinor functional at D = 3 we have to solve eq.(3.6). and then find the scalar
products in eq.(3.8).
Let us consider eq.(3.6) for D =3

f|x,n) = % [+,n), (a)n’lﬂrn) = Yap» a,f=+- (310)

Its solutions are related by
|+,n) = |-, —n) (311)

This equa-tion is Avspecia] case of (3.9). If any state |+,n) is represented by a point on the
sphere S2, then the last relation means that points corresponding to states [+,n) and |—,n) are
antipodes. ) ]

To find the explicit form of states, one uses the parameterization of vector n, in terms of two

angles on the sphere
n, = (sinfcosp,sinfsinp,cos8), 0<O<m0<p<2n

. Solving equation (3.10) we obtain that up to a phase factor

'+ln) = ( cos;‘ )1 l_xn’) = ( _e_‘v?ng ) . (3‘12)

€% sin H cosy
In this notation the states cc;rresponding to the north pble N, =(0,0,1) are
[+, N) = I+), [-N)=1-)
where vectm;s |£) are the eigenstates of Pauli matrix o3
o3|x) = +[+)
In terms of the complex coordinates (z, z) of the stereographic projection

"] *

z=tan- €%, Z=12

the states |+,n) look like

1 1 1 -z
|+,n)=m(z), I—,")=(1+—zz)'ﬁ;( 1 ) (3.13)

We recall that the states (3.12) and (3.13) are defined by eq.(3.10) up to the phase factor. In the
next section some important properties of states |+,n) will be formulated.

3.3.1. Coherent states for the SU(2) group
It may be easily verified that states |+,n) have the form

I£,n) = D(n)i) (3.14a)

14

where . : .
Dn) = exp (36(m-a)), 0<b<x (3.14b)

and m,, = (sin, - cos ¢,0) is a unit vector orthogonal to vectors n, and N, = (0,0,1). With
matrices F, = }(o; +i0;) and E_, = 1oy — i0;) one rewrites D(n)as

D(n) = exp({Ea — £E_,), 5=—§e-‘v’ ; . (3.140)

The states defined in this manner are well-known as coherent states for the SU (2) group [17].
The sets of states |+,n) and |-, n) form, for arbitrary vectors n,, two systems of coherent states
and relation (3.11) sets up thé correspondence between them. The coherent states (3.142) are
characterized by the ground states |+), that is the eigenstates of Pauli matrix o3. The stationary
subgroup of states [+) is the Abelian U(1) group and it consists of elements 3%, Therefore the
coherent states (3.14a) may be parameterized by points of the coset space [17]

G/H.= SU(2)JU(1) = §* ~ CP*

that is by the angles (6, ¢) on the sphere S? or by the complex variables z on the complex projective
space CP!, ‘ ’
The action of the stationary subgroup on the coherent states is defined as
D(n)' = D(n) ™™ & n) o [+, n) e (3.15)

Now we briefly formulate the main properties of coherent statt_esy H,n) [17]:
LIt follows from eqs.(3.14a) - (3.14c) that

i = |+,n)(+,n| — |-, n){—,n|.= D(n)osD}(n) . (3.16)

2.The system of coherent states |+,n) is overcomplete. .
3.The coherent states are not orthogonal to each other

1
1+(n1-n2))" _ 14 %12a

(+_'""+'"’)=exp(_5¢(:N’"”"‘))( 2 T I

where the expression . )

1422,

1+ 222 . . .

is equal to the area of a triangle on the sphere S? shown in fig.1 with vextices'being placed at points
N, n; and n;. z, and z; stand for complex coordinates of points n; and n,. For the infinitesimal
form when n; = n(t) and n; = n(t + r) we get

P(N,ng,;ny) =1ilog

Conlt 7)o = exp (-5 527) +0(r) (3.18
where
d® = (1 -cosf)dt (3.19a)
= ZE Py (3.19b)
14 2z2
=i (é——af g;,z) (=3 gzz z)) dt, (3:19¢c)
15



and f(z,2) = log(1 + zz). These relations are easily verified with the use of €gs.(3.12) and (3.13).
From egs.(3.18) and (3.14a) we conclude that

= —2iCHnl 7

-j? H-,n) —2i(+|D” ’(n)d D(n)]+) =-=iTr (a’;D"‘(n)d D(n)) (3.19d)
4.Thereé is the completeness relation
Trl- /duo(n)l+,n)(+,n| =1
where the integration measure has in different coordinates the form

N 2 '
dpe = 21rd né(n?-1) (3.20a)

= Liodpsing (3.20b)
47
U dzdz 1 8 f(z, Z)"zdz

(3.20¢)

and the function f(z,Z) was defined in (3.19c). The last expression has a deep meaning. It
reflects the fact that the coset space SU(2)/U(1) is the Kihler manifold with f(z,z) being the
Kahler potential [17]. Eq.(3.20a)-(3.20c) is really a G-invariant measure on this manifold.

It is evident that analogous properties hold fot the second system |—,n) of coherent states.

3.3.2. Calculation of the spinor functional
We substitute the scalar product (3.18) into eq.(3.8) and search the limit N — oo or 7 = T/N — 0

C T g
Ipzaln] = {+,7(T))(+,n(0)} exp (—.-;-/o dtd_f)

The exponent of this expression has a simple geometric meani ; If vector n,(t) walks from point
- n(0) to point n(T) on the sphere S* along some path Ci, then f,
by C, and by two main circles (that is, the ones lying in the mendwn plane) connecting points
n(0) and n(T) with the north pole and shown in fig.2a. To eliminate the dependence of I[n] on
the special point on the sphere (the north pole in our case), the last equation is transformed to

1+, n(T)){+,n(0)}

i

TN AT OO (¢TI 0))

3 P i n(T)-n -1

where €q.(3.17) is used. Now & equals the area enclosed by the contour shown in fig.1. The
function In] is given by

_1+ﬁ(T)1+vﬁ(0) 1+ (n(T) - n(0))\ i i T dd
Iin] =~ . ( - ) exp (EQ(N,n(O),n(T)—E /o dt-gt-)

16

dt22 is equal to the area enclosed

Fig.1: The function - B(N,nz,n,) is equa.l to the area of a shaded tnangle on the sphere S? with
vertices being placed at the north pole N and points n; and n;.

Figure 2: (a) If a particle walks from point n(0) to point n(T) on the sphere st along some path
C) then [dt 4t is equal to the shaded ares; (b) The function $(C) appearing in egs.(3. 21) and
(3.22) equa.ls the area S) enclosed by contour C = C; + C;.
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or

~ a -1/2 1.
I} = 1 +;:(T) 1 +2n(0) (1 + (n(Z),n(O))) exp (_E‘I’(C)) (3.21)

where &(C) is equal to the area Sy shown in fig.2b with boundary C = Cl. +C; and.C; being
the main circle joining the end points of C;. We note that there are many 'dxﬂ'erent choices of C,
when the end points of C; are antipodes on the sphere S2. This ambiguity is cti)mpensa‘ted by the
preexponential factor in eq.(3.21): 1—'%(915%@ = 0. For a closed path C; the circle C; is replaced

by a point and we get X )
Y
I[n] = 1-i-Tﬂ()*exp (—%Q(Cl))

The explicit form of the function #(C) will be given in the next section.

3.3.3. One-dimensional Wess-Zumino term
The contour C in eq.(3.21) is shown in fig.2b. We parameterize it as
C = {e,(t),0 < t < 27]e,(0) = n,(0), eu(7) = n,(T), €,(0) = eu(27)}

Using eqs.(3.19) one gets the following relations

2c) = [ " gt (1 — cosf) (3.22)
= i / " élz;: ' (3.22b)
= i/:f dt (2?-'[5;2'—2) - z%{;a) ,  f(z,2) =log(1 + 22) (3.22¢)
- i A " atTx (03D°'(e)%D(e)) (3.22d)

where (6, @) and (z, z) are different coordinates of points e,(t). To express &(C) in terms of eu(t)
we have to introduce the interpolating field e,(t,u)

e(t,u):{e(t) , u=1

const. , wu=0

and the boundary values are the points of contour C. Then the function #(C) being equal to the
area S in fig.2b is expressed as

S 8., .8
8(C) = A dt /o dueympenlt,u) ety u) gyealty ) (3.22¢)

Eqs.(3.22) are well-known as different forms of the one-dimensional Wess-Zumino term [1,20}.
One of the properties of this term is the quantization of the physical parameters as a consequence
of a consistenty condition of underlying quantized dynamics. To check this property in our case,

18
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we recall that there is a gauge ambiguity in the definition of the phase of coherent states. Under
U(1) gauge transformations defined in €q.(3.15) the function $(C) changes as

f

D(e) -» D(e)e™e)
®(C) — —i'/ohdtTr [o-; (D“(e):—tD(e) + ;¢(e),3)]

= 8(C) +2[(e(27)) - ¥(e(0))) :
=&(C)+4rk, ke Z (3.23)

since the boundary condition e(2r) = €(0) implies that "¥(5(37)) = ¢¥(<(%)), Therefore demanding
invariance for the phase exponential of the action e=*#(°) enforces a quantization of the parameter
« that governs the gauge variation S . oo )

o 2x€Z (3.24)

Eq.(3.21) implies that x = 1 and the action $(C) is nonmanifestly gauge invariant under gauge
transformations (3.15). The physical reason of the quantization condition is the quantized value of
spin of fermions. The case x = % corresponds to spin } but for an arbitrary spin J the additional
factor J appears in eq.(3.22) leading to k.= J [17].

The quantization condition has a simple geometric meaning. The function ®(C) equals the
area enclosed by contour C on the sphere S? shown in fig.2b. But there are two such areas in
fig.2b: S; and S;. The quantization condition (3.24) may be expressed as the independence of the
particular choice of the area

e O = S L kS g L6 gy

There are d:iﬂ'e{ent interpretations of the phase factor $(C). For binstance, the integrand of
€q.(3.22a) is the torsion of the curve C [2]. Eq.(3.22a) may be written as [32}

®(C)= ¢ dz,A
©) = f dna(s)
where A,(z) is the Dirac potential of a magnetic monopole placed at the centre of the sphere S,

Eq.(3.22d) was rediscovered as Berry’s phase [33]. Eq.(3.22b) was discussed in connection with
the geometric quantization of spin [16]. : :

4. Summary
Substituting eq.(3.21) into (2.8) we derive the final expressions for the spinor functional for D = 3:
Mp=s[2] = /De 8(e* —1)6"(1 - (e- &) exp (—%Q(e)) S(e(T), e(0)) (4.1a)

§(1 - &%) exp (-%m)) S((T), (0)) © (41b)

where S(n,m) = L’;ﬁl_iim (H(;-m) -1/2
The spinor functional Mp for' D = 2 may be found as a special case of these relations. The
dimensions of Dirac matrices coincide for D = 2 and D = 3 and therefore Ip=,n] is equal to
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Ip-s[n] with path C = {n,(t)} restricted to lie in the equatorial plane n3 = 0. Then the path C

is th tor and
is the equator an 8(C) = 25N

where N is the number of total rotations of the tangent vector n,(t) = £,(t), n(0) = n(T’) or with
the number v of self-intersections of the path z,(t)

N=v+1 (mod?2)

So we get N
1+ n(0 .
Ip_an] = %(_1) 41

: = ins eq.(3.1). -
and after the replacement (T, 0) = 2x(v + 1) one obtains eq.( ) )
Now we have the desired representations (1.14) and (1.15) for the eﬂ'ectlve‘nf:tlon a.nd‘ propa-
gator of interacting fermions as integrals over all paths in the z-space and explicit expressions for
spinor functionals for two special cases of the space-time dimension D = 2 and D =3. Hence, at

D =3 we gel

S(e,yiA) = [ dTe™ /v " Dz, 5(1 - %) exp (f%Q(é))

x S(#(T), £(0)) P exp (ig /v : dz,,A,,(z)) (4.2)

and . )
wia = [~ ge-m [ Peusia(0) - (T8 (1 -5 exp (-%q»(e))
(li_(z_(?ﬂ) v Tr P exp (igfdz,,A“(z)) ’ (4.3)

It is interesting to note that in the lattice appfoximntion the above-mentioned representations

are reduced to
S(z,y; A) < Y exp(— ML{P.,)) exp ("’;"Q(Pﬂ)) Pexp (ig ]{," dz“A“(z))
Py

and identically coincide (for A,(z) = 0) with those in eqs.(1.8) and (1.9) proposed in refs.[2,31].
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