

объСдиненный ИНСТИТУТ
 ядерных исследований

G.V.Efimov, S.N.Nedel’º

ON A REGULARIZATION OF THE SU(N)-YANG-MILLS MODEL BY CUTOFF OF THE PROPER-TIME INTEGRALS

Submitted to "International Journal of Modern Physics A"

Ефимов Г.В., Неделько С.Н. по собственному времени в $\operatorname{SU}(\mathrm{N})$-модели Янга-Миллса

B рамках метода фонового поля рассматривается $S U(N)$-модель Янга-Миллса. Предлагается регуляризация производящего функционала для функций Грина, которая сохраняет инвариант ность относительно калибровочных преобразований фонового поля. Перенормировка может быть осуществлена калибровочно инвариантньм образом. На уровне диаграмм Фейнмана предлагаемая регуляризация сводится к известному методу обрезания интегралов по собственному времени.

Работа выполнена в Лаборатории теоретической физики оияи.

Препринт Объединенного института ядерных исследований. Дубна 1989

Efimov G.V., Nedel'ko S.N.
E2-89-478 On a Regularization of the $\mathrm{SU}(\mathrm{N})$-Yang-Mills Model by Cutoff of the Proper-Time Integrals

SU(N)-Yang-Mills model is considered within the background field method. U1traviolet regularization of the generating functional for Green functions, maintaining invariance under gauge transformations of the background field, is proposed. Gauge-invariant renormalization can be realized. In terms of Feynman diagrams the regularization reduces to the known method of cutoff of the proper-time integrals.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

In this paper we shall propose a new formulation of the known method of ultraviolet regularization. We shall. investigate the pure SU(N)-Yang-Mills (Y-M) model within the baokground-field method $/ 1-3 /$ following the standard Euolidean path-integral approaoh.

The proper-time integrals appear naturally within the backgroundfield oalculations (see, e.g. ref. $/ 4-6 /$). Cutoff of the proper-time integrals (CPTI) at the lower limit is frequently used for regularization of Feymman diagrams $/ 5,6 /$ (mainly in the one-loop oalculations).

The gauge invariance to hold is the prinoipal demand upon the regularization of a non-Abelian theory.

Our problem can be formulated as follows: does the CPTI-regulariaation break the gauge invarianoe of the initial nonregularized theory? We shall investigate the invariance properties of CPIT within the background-field method. For this purpose we shall introduce the regularization which is realized in terms of the path-integral representation of the generating functional for Green functions. At the level of Feynman diagrams this regularization is equivalent to CPII. That is the reason for oonsidering it as a generalized CPTI-regularization (GCPT).

The 1dea of baokground-field method can be formulated in the following way. The field in the classical Lagrangian is represented as a sum of quantum (Q_{μ}^{a}) and olassical ($\left.B_{\mu}^{a}\right)$ fields. Then the gauge-fixing condition invariant under gauge transformations of B and isotopic rotations of Q ($B-$ invariance) is chosen. At the same time the Faddeov - Popor quantization ensures the invariance of the integrand in the generating functional $Z[J, B]$ under the gauge transformation of Q, until $J=O$ (Q-invariance).

Thus, the gauge invariance of $Z[J, B]$ has a double meaning within the background-field method.

Q-invariance of $Z[J, B]$ is broken when $J \neq 0$. That is the reason why the problem of construotion of the gauge-inveriant effeotive action $[[B]$ is not jet solved oompletely. $[[B]$ is invariant under the gauge transformations of B but it depends on the funotional form of the gauge-fixing oondition (because $J \neq 0$) /1-3/.

GCPT maintains the B-invariance but breaks the Q-invarianoe. It is sufficient for ensuring the gauge-invariant tensor struoture of the regularized effeotive aotion $\Gamma_{\lambda}[B]$. $\Gamma_{\lambda}[B]$ depends on the

form of gauge condition because $J \neq 0$ (as usual) and through the regularization.

The GCPT is realized in the following way . The part quadratic over quantum gluonic and ghost flelds of the exponent in the integrand of $Z[J, B]$ is modified by introducing form-factors. As a consequenoe, gluonio and ghost propagators turn out to be regularized. It makes the theory superrenormalizable. An additional regularization of the one-loop seotion should be done. The theory becomes finite when the regularization parameter is finite.

GCPT may be useful for the calculation of the effective potential of the $Y-M$ theory with the background oonstant field $/ 5,67$ specifioally, within the nonperturbative methods (e.g., variational evaluation of funotional integrals $7 /$).

We will not consider the problem of infrared divergences because it is a separate issue. -

1. FORMULAATION OF THE PROBLEM

The Euolidean generating functional of the YM theory with a baokground field B_{μ}^{a} has the form $/ 2 /$

$$
\begin{aligned}
Z[J, B]=N^{-1} & \int \delta Q d e t\left[\frac{\delta G^{a}}{\delta \omega^{B}}\right] \exp \left\{\int d ^ { 4 } x \left(\mathcal{L}_{Q+B}(x)-\right.\right. \\
& \left.\left.-\frac{1}{2 \xi}\left(G^{a}\right)^{2}+Q_{\mu}^{a}(x) J_{\mu}^{a}(x)\right)\right\}
\end{aligned}
$$

where \mathcal{Z}_{Q+B} is the $Y \mathcal{M}$ Lagrangian,

$$
G^{a}=\left(\delta^{a b} \partial_{\mu}+i g B_{\mu}^{a b}\right) Q_{\mu}^{b}
$$

is the baokground gauge-fixing term. $B_{\mu}=B_{\mu}^{a} T^{a}, T^{a}$ are the generators of $\operatorname{SU}(N)$ in the adjoint representation: $\left(T^{a}\right)^{b c}=$ if $f^{b a c}$.

The determinant in (1.1) is defined by the transformation

$$
\begin{aligned}
& B_{\mu} \rightarrow B_{\mu} \\
& Q_{\mu} \rightarrow U\left(Q_{\mu}+B_{\mu}\right) U^{+}-\frac{i}{g} U \partial_{\mu} U^{+}-B_{\mu} \\
& U=\exp \left\{-i \omega^{a}(x) T^{a}\right\}
\end{aligned}
$$

'If $J=0$, then the int egrand in (1.1) is invariant under the transformation

$$
\begin{equation*}
B_{\mu}+Q_{\mu} \rightarrow U\left(B_{\mu}+Q_{\mu}\right) U^{+}-\frac{i}{g} \nu \partial_{\mu} \nu^{+} \tag{1.3}
\end{equation*}
$$

whioh can be considered as (1.2), so as

$$
\begin{align*}
& B_{\mu} \rightarrow U B_{\mu} U^{+}-\frac{i}{g} \cup \partial_{\mu} U^{+} \tag{1.4}\\
& Q_{\mu} \rightarrow U Q_{\mu} U^{+} \tag{1.5}
\end{align*}
$$

The effeotive aotion is related to $Z[J, B]$ via the Legendre transform

$$
\begin{aligned}
& \Gamma[\tilde{Q}, B]=W[J, B] \cdot-\int d^{4} x \tilde{Q}_{\mu}^{a} J_{\mu}^{a} \\
& W[J, B]=\ln Z[J, B], \tilde{Q}_{\mu}^{a}=\frac{\delta W[J, B]}{\delta J_{\mu}^{a}}
\end{aligned}
$$

The functional $W[J, B]$ is invariant under (1.4) and

$$
\begin{equation*}
J_{\mu} \rightarrow U J_{\mu} U^{+} \tag{1.6}
\end{equation*}
$$

This fact leads to invarianoe of $\Gamma[\tilde{Q}, B]$ under (1.4) and

$$
\begin{equation*}
\tilde{Q}_{\mu} \rightarrow \tilde{U} \tilde{Q}_{\mu} U^{+} \tag{1,7}
\end{equation*}
$$

It is shown $/ 2 /$ that the background-field effective action $\Gamma[\tilde{Q}, B]$ is equivalent to the oonventional one $\bar{\Gamma}[\bar{Q}]$ calculated in a special gauge

$$
\begin{align*}
& \Gamma[\widetilde{Q}, B]=\bar{\Gamma}[\widetilde{Q}+B], \tag{1.8}\\
& \Gamma[O, B]=\Gamma[B]
\end{align*}
$$

Relationship (1.8) means that $\Gamma[O, B]$ contains the same information, as $F[Q]$. Explioit gauge invarianoe of $\Gamma[0, B]$ leads to the gauge-invariant renormalization 72,37 .

The above-mentioned scheme of oonstruotion of the gauge-invariant effective aotion is a formal one. It is necessary to regularize the theory.

We shall consider the regularization, maintaining the invariance
under (1.3) oonsidered only as (1.4), (1.5), but not as (1.2). We shall give arguments for the possibility of the gauge-invariant renormalization.

It is oonvenient for our purpose to rewrite (1.1) in the following form
$Z[J, B]=N^{-1} \int \delta Q \delta C^{+} \delta C \exp \left\{\Gamma_{c e}\left[Q, C^{+}, C, B\right]+\int d^{4} x J_{\mu}^{a} Q_{\mu}^{a}\right\}$.
The eotion $\Gamma_{c e}$ has the struoture
$\Gamma_{c e}=\Gamma_{Q}[Q, B]+\Gamma_{c e}[B]+\Gamma_{g h}\left[C^{+}, C, B\right]+\Gamma_{i n t}\left[Q, C^{+}, C, B\right]$
in conformity with the Lagrangian

$$
\mathcal{L}(x)=\mathcal{Z}_{Q}(x)-\frac{1}{4} B_{\mu \nu}^{a}(x) B_{\mu \nu}^{a}(x)+\mathcal{L}_{g h}(x)+\mathcal{L}_{i n t}(x)
$$

$$
\chi_{Q}=-\frac{1}{2} Q_{\mu}^{a}(x) K_{\mu \nu}^{a b}(B, \xi / x) Q_{\nu}^{b}(x)
$$

$$
\begin{equation*}
\mathscr{K}_{\mu \nu}^{a b}(B, \xi / x)=\left[-\nabla^{2} \delta_{\mu \nu}-2 i g T^{c} B_{\mu \nu}^{c}+\left(1-\frac{1}{\xi}\right) \nabla_{\mu} \nabla_{\nu}\right]^{a b} \tag{1.9}
\end{equation*}
$$

$z_{g h}=c^{+a}(x) M^{a b}(B / x) c^{b}(x), M^{a b}(B / x)=\left(-\nabla^{2}\right)^{a b}$,
$\mathcal{Z}_{\text {int }}(x)$ is the interaction Leagrangian,
$\nabla_{\mu}=\partial_{\mu}+i g B_{\mu}(x), B_{\mu}(x)=T^{a} B_{\mu}^{a}(x)$,
$T^{a} B_{\mu \nu}^{a}(x)=\partial_{\mu} B_{\nu}(x)-\partial_{\nu} B_{\mu}(x)+i g\left[B_{\mu}(x), B_{\nu}(x)\right]$,
T^{a} are the generators in the adjoint representation, $\xi_{\text {is }}$ is the gauge parameter, $C(x)$ is the ghost field. The field B_{μ}^{C} obeys the olassioal equation of motion.

In a standard way, the funotional $Z[S, B]$ is represented as
$Z[J, B]=\left.\exp \left\{\Gamma_{i n t}\left[\frac{\delta}{\delta J}, \frac{\delta}{\delta q}, \frac{\delta}{\delta q^{+}}, B\right]\right\} Z^{0}\left[J, q^{+}, \eta, B\right]\right|_{\eta=\eta=0} ;$
$Z^{\circ}\left[J, r^{+},\{, B]=N^{-1} \exp \left\{r_{c e}[B]\right\} S \delta Q \delta C^{+} \delta C \times\right.$
$\operatorname{xexp}\left\{\Gamma_{Q}[Q, B]+\Gamma_{g h}\left[c^{+}, C, B\right]+\int d^{4} x\left(Q_{\mu}^{a} J_{\mu}^{a}+c^{t a} q^{a}+\eta^{+a} C^{a}\right)\right\}$.
Let us proceed to the construotion of the regularized generating funotional.
2. regularization of the propagators

Let us modify the quadratic part of the Lagrangian substituting

$$
\begin{aligned}
& \mathcal{Z}_{Q}^{\lambda}=-\frac{1}{2} Q_{\mu}^{a}(x) K_{\mu \nu}^{a b}(B, \xi, \lambda / x) Q_{\nu}^{b}(x), \\
& \mathcal{Z}_{g h}^{\lambda}=c^{+a}(x) M^{a b}(B, \lambda / x) C^{b}(x)
\end{aligned}
$$

for $\mathscr{Z}_{Q}, \mathcal{Z}_{g h}(1.9),(1.16)$, where

$$
\begin{align*}
& K_{\mu \nu}^{a b}(B, \xi, \lambda / X)=\left[\Phi\left(\frac{K(B, 1 / x)}{2 \lambda^{2}}\right) K(B, \xi / X) \Phi\left(\frac{K(B, 1 / x)}{2 \lambda^{2}}\right)\right]_{\mu \nu}^{a b}, \\
& M^{a b}(B, \lambda / x)=\left[\phi\left(\frac{M(B / x)}{\lambda^{2}}\right) M(B / x)\right]^{a b} \\
& K_{\mu \nu}^{a b}(B, 1 / x)=-\left(\nabla^{2} \delta_{\mu \nu}+2 i g T^{c} B_{\mu \nu}^{c}\right)^{a b} \\
& \phi_{(\mu \nu)}^{a b}(\cdot)=\left[\exp \{\cdot]_{(\mu \nu)}^{a b}\right. \tag{2.3}
\end{align*}
$$

The substitution does not break the invariance of $\alpha(x)$ under the transformations (1.4), (1.5), since $X(B, / / X), M(B / X)$ and, consequently, $\phi\left(\frac{1}{2 \lambda^{2}} K(B, 1 / X)\right) \quad, \phi\left(\frac{1}{\lambda^{2}} M(B / X)\right.$ are transformed oovariantly.
\mathcal{Z}^{λ} The expression for $\tilde{Z}_{\lambda}^{0}\left[J, \eta^{+}, \eta, B\right]$ corresponding to $\mathcal{Z}_{Q}^{\lambda}$, $Z_{g h}$, takes the following form after the standard integration gh.,$~$
over,C^{+}

$$
\begin{align*}
& \left.\tilde{Z}_{\lambda}^{0}\left[J, \eta^{+},\right\}, B\right]=N^{-1} \operatorname{det}[M(B, \lambda / \cdot)] d d^{-\frac{1}{2}}[K(B, \xi, \lambda / \cdot)] \times \\
& \times \exp \left\{G_{c e}[B]-\iint d^{4} X d^{4} y\left(\cdot \frac{1}{2} J_{\mu}^{a}(x) G_{\mu \nu}^{a b}(B, \xi, \lambda / x, y) J_{\nu}^{b}(y)+\right.\right. \\
& \left.\left.+\left\{^{+a}(x) D^{a b}(B, \lambda / x, y)\right\}^{b}(y)\right)\right\} \tag{2.4}
\end{align*}
$$

The functions $G_{\mu \nu}^{a b}(B, \xi, \lambda / x, y)$ and $D^{a b}(B, \lambda / x, y)$ are the gluonic and ghost propagators in the external field \mathcal{B}_{μ}^{a}, obeying

$$
\begin{align*}
& \text { the equations } \tag{2.5}\\
& {[K(B, \xi, \lambda / x) G(B, \xi, \lambda / x, y)]_{\mu \nu}^{a b}=\delta^{a b} \delta_{\mu \nu} \delta(x-y),} \tag{2.6}\\
& {[M(B, \lambda / x) D(B, \lambda / x, y)]^{a b}=\delta^{a b} \delta(x-y)}
\end{align*}
$$

The function $G_{\mu \nu}^{a l}(B, \xi, \lambda / x, y) \quad$ can be represented as (see Appendix A)

$$
\begin{equation*}
G_{m \nu}^{a b}(B, \xi, \lambda / x, y)=G_{\mu \nu}^{a b}(B, 1, \lambda \mid x, y)+(1-\xi) \int d^{4} z * \tag{2.7}
\end{equation*}
$$

$$
x\left[G_{\mu \alpha}(B, 1, \lambda \sqrt{2} / x, z) \nabla_{\alpha}^{z} \nabla_{\beta}^{z} G_{\beta \nu}(B, 1, \lambda \sqrt{2} / z, y)\right]^{a b}
$$

where $G_{\mu \nu}^{a b}(B, 1, \lambda / x, y)$ satisfies
$[K(B, 1, \lambda / x) G(B, 1, \lambda / x, y)]_{\mu v}^{a b}=\delta^{a b} \delta_{\mu \nu} \delta(x-y)$.

Thus, it is enough to solve (2.6), (2.8) in order to find the propagators.

Equation (2.8) can be rewriten as

$$
\begin{equation*}
\left[K(B, 1 / x) \exp \left\{\frac{K(B, 1 / x)}{\lambda^{2}}\right\} G(B, 1, \lambda / x, y)\right]_{\mu v}^{a b}=\delta^{a b} \delta_{\mu v} \delta(x-y) \tag{2.9}
\end{equation*}
$$

Formally, the solutions of (2.6), (2.9) has the integral representation $/ 6$

$$
\begin{equation*}
D^{a b}(B, \lambda / x, y)=\int_{\lambda^{-2}}^{\infty} d S\left[e^{-S M(B / x)} \delta(x-y)\right]^{a b} \tag{0}
\end{equation*}
$$

$$
\begin{equation*}
G_{\mu \nu}^{a b}(B, 1, \lambda / x, y)=\int_{\lambda^{-2}}^{\infty} d S\left[e^{-S K(B, 1 / x)} \delta(x-y)\right]_{\mu \nu}^{a b} \tag{2,11}
\end{equation*}
$$

Where S is the so-called proper time. It is just the exponential form-factor Φ that leads to out-off of the integrals at the lower limit.

The singularity of propagators when $x \rightarrow y$, showing itself in the proper-time representation as a pole of the integrand in (2.IO), (2.11) when $S \rightarrow O$ is the source of ultraviolet divergences. Sinoe the integrals are cut, the propagators turn out to be regularized.

Thus, we arrive at the superrenormalizable theory, as all multiIoop diagrams are ifinite, because only regularized propagators correspond to their internal lines.

Of course, formulars (2.10) and (2.11) will be useful practicalIy if it is possible to caloulate integrands explioitly. A speoial ohoice of B_{μ}^{a} makes this possible (e.g. $B_{\mu \nu}^{a}=$ const).
3. REGULARIZATION OF THE ONE-LOOP SECTION AND COMPLETELY REGULARIZED GENERATING FUNCTIONAL

Let us oonsider the one-loop seotion. It is defined by determinants in (2.4). Both gluonio and ghost determinants oontain ultraviolet divergences, that require an additional regularization.

According to (2.1), (2.2) we find that
$\operatorname{det}[K(B, \xi, \lambda \mid \cdot)]=\operatorname{det}\left[\phi\left(\frac{k(B, 1 \mid \cdot)}{\lambda^{2}}\right)\right] \operatorname{det}[K(B, \xi \mid \cdot)]$, $\operatorname{det}[M(B, \lambda \mid \cdot)]=\operatorname{det}\left[\phi\left(\frac{M(B / \cdot)}{\lambda^{2}}\right)\right] \operatorname{det}[M(B / \cdot)]$.

As it is shown in $/ 5 /$, $\operatorname{det}[K(B, \xi \mid \cdot)]$ is $\{$-independent up to the constant term.

Thus, we can introduoe the regularization as
$\operatorname{det}_{\text {zeg }}\left[\frac{M(B \mid \cdot)}{M(O \mid \cdot)}\right]=\operatorname{det}\left[\frac{M(B / \cdot)}{M(0 / \cdot)} \frac{M(O / \cdot)+\lambda^{2}}{M(B / \cdot)+\lambda^{2}}\right]$,
$\operatorname{det}_{2 \text { eg }}\left[\frac{K(B, \xi \mid \cdot \cdot)}{K(0, \xi \cdot \cdot)}\right]=\operatorname{det}\left[\frac{K(B, 1 \mid \cdot)}{K(0,1 \mid \cdot)} \frac{K(0,1 / \cdot)+\lambda^{2}}{K(B, 1 / \cdot)+\lambda^{2}}\right]$.

The parameter λ is ohosen the same as in formulars (2.1), (2.2). Formulars (3.1) and (3.2) oorrespond to the Pauli-Fillars regularization.

Substitution of (3.1), (3.2) Into (2.4) gives the completely regularized Z_{λ}^{0}.

It is simple now to write down the expression for the regularized functionel $Z_{\lambda}[J, B]$

$$
\begin{aligned}
& Z_{d}\left[J_{1} B\right]=\pi^{-1} d e t^{-1}\left[\phi\left(\frac{M(B / \cdot)}{\lambda^{2}}\right)\right] \operatorname{det}^{2}\left[\phi\left(\frac{K(B, 1 / \cdot)}{\lambda^{2}}\right)\right] \times \\
& \times \operatorname{det}\left[\frac{M(0 \mid \cdot)+\lambda^{2}}{M(B \mid \cdot)+\lambda^{2}}\right] \operatorname{det} \frac{1}{2}\left[\frac{K(B, 1 / \cdot)+\lambda^{2}}{K(0,1 / \cdot)+\lambda^{2}}\right] \times \\
& \times \exp \left\{\Gamma_{c e}[B]\right\} \int \delta Q \delta C^{+} \delta C \exp \left\{\int d ^ { 4 } x \left(\alpha_{Q}^{2}(x)+\mathcal{L}_{g h}(x)+\right.\right. \\
& \left.\left.+\mathcal{Z}_{i n t}(x)+Q_{\mu}^{a} J_{\mu}^{a}\right)\right\}
\end{aligned}
$$

The regularized effective aotion is defined as

$$
\begin{align*}
& \Gamma_{\lambda}[\tilde{Q}, B]=W_{\lambda}[J, B]-\int d^{r} x \bar{Q}_{\mu}^{a} J_{\mu}^{a} \tag{3.4}\\
& W_{\lambda}[J, B]=\ln Z_{\lambda}[J, B], \tilde{Q}_{\mu}^{a}=\frac{\delta W_{\lambda}[J, B]}{\delta J_{\mu}^{a}} \tag{3.5}
\end{align*}
$$

Since $Z_{\lambda}[J, B]((3.3))$ is invariant under transformations (1.4) and (1.6), $\Gamma_{\lambda}[\widetilde{Q}, B]$ is invariant inder (1.4) and (1.7) (see Appendix B). Consequently, $\Gamma_{\lambda}[O, B]$ is invariant under the transformation (1.4).
$\Gamma_{\lambda}[0, B]$ is the regularized invariant effective action, derived within the Abbott $/ 2 /$ formulation of the background-field method.

We oonclude that the divergences (as $\lambda \rightarrow \infty$) of $\Gamma_{\lambda}[0, B]$ must have the gauge-invariant tensor structure and oan be only of the logarithmio type (as the dimensional analysis shows). So, the renormalization can be realized by means of gauge-invariant counterterms.

In conolusion we mention the two important items remaining out of our oonsideration: a detailed formulation of the renormalization Within the regularization, proposed in this paper, and the quostion about ξ-dependence of renormalization constants. (One can find the investigation of these questions in $13 /$ (C.F. Hert)).

Let us show that $G_{\mu \nu}^{a b}\left(B, \xi_{1} \lambda \mid x, y\right)$ represented by (2.7) obeys equation (2.5).

Substitution of (2.7) into (2.5) gives (see (2.1), (1.9))

$$
K_{\mu p}\left(B_{1} \xi_{1} \lambda \mid x\right) G_{\rho \nu}\left(G_{1} \xi_{i} \lambda / x_{i} y\right)=K_{\mu \rho}\left(B_{1}, \lambda / x\right) G_{\rho \nu}\left(B_{p}, \lambda / x_{7} y\right)+
$$

$+(1-\xi) K_{\mu \rho}(\beta, \lambda / x) \int d^{4} z G_{\rho \alpha}\left(\beta, 1, \lambda \sqrt{2} / x_{1} z^{2}\right) \nabla_{\alpha}^{z} \nabla_{\beta}^{z} G_{\beta \nu}(B, 1, \lambda \sqrt{2} z, y)+$
$+\left(1-\frac{1}{\xi}\right) \oint_{\mu \alpha}\left(\frac{K(B, 1 / X)}{2 \lambda^{2}}\right) \nabla_{\alpha} \nabla_{\beta} \phi_{\beta \rho}\left(\frac{K(B, 1 / X)}{2 \lambda^{2}}\right) G_{\rho \nu}(B, 1, \lambda / x, y)+(A, 1)$
$+\left(1-\frac{1}{\xi}\right)(1-\xi) \oint_{\mu \alpha}\left(\frac{K(B, 1 / x)}{2 \lambda^{2}}\right) \nabla_{\alpha} \nabla_{\beta} \phi_{\beta p}\left(\frac{K(B, 1 / x)}{2 \lambda^{2}}\right) \times$
$x \int d^{4} z G_{\rho \sigma}(B, 1, \lambda \sqrt{2} / x, z) \nabla_{\sigma}^{z} \nabla_{\infty}^{z} G_{x \nu}(B, 1, \lambda \sqrt{2} / z, y)$.
We omit the color indioes.
Obviously (see (2.3))

$$
\begin{equation*}
\phi_{\mu \rho}\left(\frac{K\left(B_{1} 1(x)\right.}{2 \lambda^{2}}\right) \oint_{\rho v}\left(\frac{K(B, 1 / x)}{2 \lambda^{2}}\right)=\oint_{\mu \nu}\left(\frac{K(B, 1 / x)}{\lambda^{2}}\right) \tag{A,2}
\end{equation*}
$$

One gets for the first item in (A.1) taking into aooount equation (2.8)

$$
\begin{equation*}
K_{\mu \rho}(B, 1, \lambda / x) G_{\rho \nu}(B, 1, \lambda / x, y)=\delta_{\mu \nu} \delta(x-y) \tag{A,3}
\end{equation*}
$$

Using (1.2) and (2.9) we get for the second item

$$
\begin{align*}
& (1-\xi) K_{\mu \rho}\left(B, 1, \lambda(x) \int d^{4} z G_{\rho \alpha}(B, 1, \lambda \sqrt{2} / x, z) \nabla_{\alpha}^{z} \prod_{\beta}^{z} G_{\beta \nu}(B, 1, \lambda \sqrt{2} / z, y)=\right. \\
& =(1-\xi) \phi_{\mu \rho}\left(\frac{K(B, 1 / x)}{2 \lambda^{2}}\right) \nabla_{\rho} \nabla_{\beta} G_{\beta r}(B, 1, \lambda \sqrt{2} / x, y) \tag{A.4}
\end{align*}
$$

Let us take into a.000unt
$\oint_{\beta \rho}\left(\frac{a}{\lambda^{2}} K(B, 1 \mid x) G_{\rho v}(B, 1, \lambda / x, y)=G_{\beta v}\left(B, 1, \left.\frac{\lambda}{\sqrt{1-a}} \right\rvert\, x, y\right)\right.$
to remrite the third item in the form

$$
\left(1-\frac{1}{\xi}\right) \oint_{\mu \alpha}\left(\frac{k(B, 1 \mid x)}{2 \lambda^{2}}\right) \nabla_{\alpha} \nabla_{\beta} G_{\beta \nu}(B, 1, \lambda \sqrt{2} \mid x, y)
$$

The fourth item takes the form (see (A.5))

$$
\left(1-\frac{1}{\xi}\right)(1-\xi) \oint_{\mu \alpha}\left(\frac{1}{2 \lambda^{2}} K(B, 1 / x)\right) \nabla_{\alpha}^{x} \int d^{Y} z \nabla_{\rho}^{x} G_{\rho \sigma}(B, 1 / x, Z) \nabla_{\sigma}^{z} \quad \text { (A.7) }
$$

$$
\times \nabla_{\beta}^{z} G_{\beta v}(B, f, \lambda \sqrt{2} \mid z, y)
$$

where $G_{\rho \sigma}(B, 1 / x, z)=\lim _{i \rightarrow \infty} G_{\rho \sigma}\left(B_{i} 1, \lambda / x, z\right)$
the nonregularized propagator.
Froil the identity

$$
\nabla_{\mu} K_{\mu \rho}(B, 1 \mid x)=-\nabla^{2} \nabla_{\mu}
$$

it is possible to obtain $/ 8 /$ that

$$
\nabla_{\rho}^{x} G_{\rho \sigma}(B, 1 / x, z) \nabla_{\sigma}^{z}=-\delta(x-z)
$$

To apply (A.B), one has to assume that $\nabla_{\mu}^{Z} G_{\mu r}(B, 1 \mid Z, X)$ vanishes sufficiently fast for $Z \rightarrow \infty$ as to allow partial integration.

Substituting (A.8) into (A.7) we arrive at the expression $-\left(1-\frac{1}{\xi}\right)(1-\xi) \phi_{\mu \alpha}\left(\frac{K(B, 1 / x)}{2 \lambda^{2}}\right) \nabla_{\alpha} \nabla_{\beta} G_{\beta \nu}(B, 1, A \sqrt{2} / x, y)$.

If we take into account (A.9), (A.6), (A.4) and (A.3), then we shall find that ($\mathrm{A}, 1$) will take the form of equation (2.5).

APPENDIX B

Let us show that $\Gamma_{\lambda}[\tilde{Q}, B]$ is invariant under transformations (1.4), (1.7). For simplioity we omit Lorentz and oolor indices and integrations, if they are unimportant for understanding.

From (3.4), (3.5) one obtains

$$
\begin{equation*}
\frac{\delta \Gamma_{\lambda}[\bar{Q}, B]}{\delta \bar{Q}}=-J \tag{B.1}
\end{equation*}
$$

The imvariance of $W_{\lambda}[J, B]$ under (1.5), (1.8) means that

$$
\begin{equation*}
\frac{\delta W_{\lambda}}{\delta J} \delta J+\frac{\delta W_{\lambda}}{\delta B} \delta B=0, \tag{B.2}
\end{equation*}
$$

Where δB and δJ correspond to infinitesimal transformations of (1.4), (1.6) type

$$
\begin{equation*}
\delta J_{\mu}^{a}=-i\left(\omega^{c} T^{c}\right)^{a b} J_{\mu}^{b} \tag{B;3}
\end{equation*}
$$

Let us take the derivative of (3.4) with respect to B (J is fixed)

$$
\frac{\delta \Gamma_{\lambda}}{\delta B}+\frac{\delta \Gamma_{\lambda}}{\delta \widetilde{Q}} \frac{\delta \widetilde{Q}}{\delta B}=\frac{\delta W_{\lambda}}{\delta B}-J \frac{\delta \widetilde{Q}}{\delta B}
$$

Taking into account (B.1) we get

$$
\begin{equation*}
\frac{\delta \Gamma_{\lambda}}{\delta B}=\frac{\delta W_{\lambda}}{\delta B} \tag{B.4}
\end{equation*}
$$

In acocordance with (B.3), (B.1), (3.5)

$$
\frac{\delta W_{\lambda}}{\delta J^{a}} \delta J^{a}=-i \tilde{Q}^{a}\left(\omega^{c} T^{c}\right)^{a b} J_{\mu}^{b}=i \tilde{Q}^{a}\left(\omega^{c} T^{c}\right)^{a b} \frac{\delta \Gamma_{\lambda}}{\delta \tilde{Q}^{b}}
$$

Thus

$$
\begin{equation*}
\delta J^{a} \frac{\delta W_{\lambda}[J, B]}{\delta J^{a}}=\frac{\delta \Gamma_{\lambda}[\widetilde{Q}, B]}{\delta \widetilde{Q}^{a}} \delta \widetilde{Q}^{a}, \tag{B.5}
\end{equation*}
$$

Where $\delta \tilde{Q}^{a}=-i\left(\omega^{c} T^{c}\right)^{a b} \tilde{Q}^{b}$.
So we can rewrite relationship (B.2) in the form (see (B.4), (B.5))

$$
\begin{equation*}
\frac{\delta \Gamma_{\lambda}[\widetilde{Q}, B]}{\delta B} \delta B+\frac{\delta \Gamma_{\lambda}[\widetilde{Q}, B]}{\delta \widetilde{Q}} \delta \widetilde{Q}=0 \tag{B.6}
\end{equation*}
$$

Relationship (B.6) means that $\Gamma_{\lambda}[\widetilde{Q}, B]$ is invariant under transformations (1.4),(1.7).

1. DeFitt B.S., in Quantum Gravity 2/Eds. C.J.Asham, R.Penrose, D.W.Sciama, Oxford: Clarendon Press, 1981.
2. Abbott L. F., Nucl. Phys., Bl85, p.189, 1981.
3. Ichinose S., Omote M., Nuol. Phys., B203, P. 221, 1982; Jack I., Osborn H., Nuol. Phys., B207, p.474, 1982;
Hart C.F., Phys.Rev., D28, p.1993, 1983;
Scharnhorst K_{f}, HUTP-87/A087, Cambr1dge, 1987.
4. Leutwyler H. Nucl. Phys., Bl79, p.129, 1981; Blizalde E., Soto J., Nuol. Phys., B260, p.136, 1985;

- Cea P., Phys. Rev., D37, p.1637, 1988.

5. Еаталин П.А., Матинян С.Г., Саввиди Г.К., ТР, т.26, с. Һ०7, 1977.
6. Stephens C., Ann. of Phys., v.181, Y.120, 1988.
7. Feynman R.P., Hibbs A.R. Quantum mechanics and path integrals, New York: McGraw-Hill, 2965; Еきимов Г.З. Проблемы квантовой теории нелокальных взаимодепстви才, М.: Наука, I985.
Efimov G. V., Ganbold G., JINR, E2-89-263, Dubna, 1989.
8. Kaizer H.J., Scharnhorst K., W1eozorek E., PHE 87-9, Zeuthen, 1987.
