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Bethe-Salpeter approach for a class of quark models with 
instantaneous 4-quark interact i on . Thereby decompositions 
of the Bethe-Salpeter vertex and wave functions according 
to their Lorentz structures and the particle content are 
used. Normalization conditions for the bound state func
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t. lntroduct.iun 

In investigat;ing QCD. as a theory of hadrons it is useful to 

utilize analogieR with QED. In this sense QCD should be at least at 

t,he t;heoretica! level as the atomic theory in QED. 

As was shown in [1], the S-matrix theory with nonlocal atoms in 

QED diffcrn from the one with free asymptotical states because 

elementary 1>articles in atoms are off mass-shell. It turns out that 

for t.he • description of the atomic spectra and the interaction of atoms 

it is necr:saary to ·add to the theoretical symmetry principles two 

empirical ones. These are the minimal quantization [2] and the choice 

of the time axis of quantization [1, 3). 

The • minimal quantization consists in the projection of t.he 

Belin£1mte energy-momentum tensor on the explicit solutions of the 

equations for the time gauge-field. component. 'It .leads to the Coulomb 

gauge and to a Lorentz transformation changing the gauge. Concerning 

the choice of the time axis of quantization, we suggest to take it 

parallel to the eigenvector of the bound state total momentum operator 

[3]. In this way, for a separate atom the latter corresponds to the 

Coulomb field moving together with the particles whose bound state it 

forms. The two empirical· principles explained just. now for QED are the 

prize to be paid for the application of a local S-matrix theory to 

nonlocal objects. 



Now let ua turn to QCD. A minimal construction of t.he 

QCD-Hamiltonian leada to the appearance of a new type (in compariaun 

with QED) of static infrared divergences localized in the region of 

amall spatial momenta 

divergences localized 

(whereas in 

on the light 

QED 

cone). 

one deals with 

TI1erefore, an 

redefinition cif the QCD-Hamiltonian is required. Now, 

infrarmi 

infrared 

from the 

phenomenology of a lattice and heavy quarkonia it. follows na1.urally 

that thia can be achieved by adding in the Hamiltonian, t.o t.he colour 

current interaction, a riaing poten1.ial aa a background for a modified 

per1.urbation theory. Thia theory called the QCD for hadrons and 

denoted by QCDh waa investigated in [1] .. In particular, 1.here wau 

shown the absence of infrared divergences, the exiat.ence of the parton 

limit, and the smallness of the effective coupling constant for all 

transfer momenta. 

Furthermore, in [1] it was stated that the low-energy limit of 

the bound-at.ate interaction corresponds to a localization of the 

bound-state wave functions with respect to the relative coordinate, 

and that such a localization is equivalent (for the properties of the 

solutions of the Bethe-Salpeter equation) to a localization of the 

rising potentiaL Therefore, in the low-energy limit the latter is 

replaced by a 4-quark Nambu-Jona-Lasinio potential [4] with a definite 

dependence on the quantization axis nv: 

~JL(x-y) 2 
µ 
Ne / ,S'•(x-y),,-n ,,,n / 

(ll) 

with ,,-n/ = nvY v and n2 = 1 (in the reat frame ,,-r/ =' Y
O 

). The 

parameter µ ia fixed by the masses of. low-lying resonances. 

Thia paper is devoted to the investigation of the Bethe-Salpeter 

equation in the ladder approximation for vertex as well as wave 

functions of quark-antiquark bound states. In this context we consider 

quark models with an instantaneous 4-quark interaction like 1.he quark 

sector of QCDh and Nambu-Jona-Laainio models. 

The Bethe-Salpeter equations are transformed by means of 

decompositions for the vertex and wave functions according to their 

Lorentz .structures .into equations for new (lower-component) functions. 

Furthermore, we consider 

Bethe-Salpeter functions. 

the normalization conditions for the 

We apply the general 

Nambu-Jona-Lasinio model of 

scheme to the 

type (Ll) for the 

investigation of the 

caae of SU(3)
1

• Thereby 

the difference from other modern treatments of the Nambu-Jona-Lasinio 

2 

t 

I 

'f 

~ 

I 

r 

model ! :,. 6] lies noL ··only in the ma1.rix strpcture (Ll) but alno in 

an nxacl. calculation of I.he energy de(Jendence in order to investigate 

I.he> r<'anonn for thn appeflr.u1ce of Lac,hyons in the QCD low-energy 

eX}>a.m,ion L'/ J. 

e,xileLly Laker, 

Beth,,- SnlpeLnr 

Furthermore, the P-A, V-T, 

in\.o account.. They occur 

.,qual,ion with th" help of 

and s~v mixinga have 

aut.omatically by solving 

projection operatorn on 

been 

the 

the 
part.icJe and antipart.iclr. :::,taten. 

This p;tper iu organized an fo]low:;_ 

of quark ·modt!ln 1mdHr ~onsiderat.ic,r1 

correi,_pondiriH B~!-Lhe -~ialpt!-1.e~ P.qunl.ionn in 

ln i;ect.2 we define the el.urn 

throughouL this paper. 111e 

I.he ladcier · approximation for 

diff,er·,enL verl.P.x and wave fwu:t.ionn of quark--,mt.iquark bound ntates 

are given. fax:t..a is devoted to the normali?.at.ion conditions for the 

vertex and wavu ftmct.ions. fn 1,eet.-4 we solve the BeLh" ·Salpeter 

equal.ion for the Nnm~u-,Jona·-1,aninio model of type (Ll) and dinc,uss 

1;1,., ma:rn npect.r.um fot· low -lying mesorm. ~'urLhermore, the pion and kaon 

de,~ay couHl.antn urf"! calcuJat.t~d- !iP.c!l..5 contuinB the conclusion_ 

2 ... 13ethe-:Salpf!ter_eq,iation 

2. 1 _ !>..'cLi n it ion of Lh.•.!.__111.;!i_e_ ! 
]n this section we will 

fot· quark-antiquark bound 

investign t.e 

<JI.at.en in 

the 

the 

Decomponi !;ions for 

We 

the Bethe -1,alpeLer vt,rLex 

bl:s given. derive the corresponding 

lower-component 13ettw-·Balpeter functions. 

Throughout. this paper we will conBider 

following effeetiw, action [!'I: 

S 11 = fd,.x { g (x) [a::'(x)]. /' q,, (x)-
e · {)I O Cf ;\ 1 , 

1 . ln 1 1 1 

Bethe-Salpeter equation 

ladder approximation. 

and wave f1n1ctions 

eq11ationu for 

quark models with 

will 

the 

the 

(2.1) 

2N 
fd

4

y '¼ (y) q" (x) [K'
1
(x-y>J,"/l; ,~ f' '1r,(x) q

01 
(y)} 

2 1 11.7.21 2 • 
C 

Here a::~cx) i ,J/ / --
·u 
m means the Green function for free quarks 

m 

with the bare mass ma1.rix 
·o 
m = diag (m•:,, " m2, 

0 

mN) 
I 

oc and (? 

" 
1, 2, are a compact notation for Dirac as well as flavour 

indices. Flavour and 

respectively. K11(x-y) 

the definite Lime axis 

in 1.h,, rest frame, 1) 
µ 

colour numbers are denoted by N
1 

and Ne 

is the inatantaneoun interac,tion kernel with 
,, c,/ 

µ 
(1, 0, 0, 0) 

1) 

3 

which we choose for simplicity 



KY/(x) = // V(x.1.) 6(XYJ) // -

.L II 
X = X - X µ µ µ 

II 
X = n µ ·µ 

r 
O 

V(i) 6(x
0

) r 
0 

(XYJ) • 

In the short-hand notation action (2.1) can be written as [81 

- -• 1 - r,-
seff = (qq, -G ) - 2N (qq, K qq) . 

C 

After quantization over the quark- fields it takes the form 

S.,r
1

[M] =Ne{½ (M, (Kr,)-
1

M) - i Tr_ln (-G~: + M)} (2.2) 

with M = M(x,y) being the bilocal field; Tr means both the 

integration over continuous variables and the trace over discrete 

indices. 
The extremum condition for action (2.2) coincides with the 

Schwinger-Dyson equation for the quark mass operator :Z: 

where 

:Z(x-y) 
-o 

= m 6 4 (x-y) + i (Kr, (x-y), G:z(x-y)) , 

r.='c l . .,/ ., ~c > ,: x-y :-: 1/u o (x-y) ·· .:.. x-y . 

This equation defines the quark mass spectrum. 

2.2. Bound-state vertex functions 

(2.3) 

Now· let us turn to the homogeneous Bethn-Salpeter equation in the 

ladder approximation for the vert;ex function of the bound state. For 

that we need the plane wave expansion of the bound utate field: 

M(x) = }: f d
3 

.'P _ l { iPx . 
H (2H )3/2 /z,,.,~ e a;C:P) r"(.'P) 

where 

w 
H 

/ 

.. 2 

- :P 

2 l 

+ M 
H 

4 

--j:Px 

+ e ~(:P) F"CP)} , 

(2.4) 

', 

·, 

' 

iu' the bound state energy (.'P = (wH, :P)). Furthermore, a;(.:P) ca;(.1')) 

are creation (annihilation) operators of _states with the 

and the quantum numbers are ' denoted all t~gether by H 
-H 

momentum · :P 

i"(:P) and 

r (.:P) mean the vertex functions of the bound state. 

Then the Bethe-Salpeter equation in terms · of r" in an arbitrary 

reference frame is of the form [1] 

H • d
4 

.1. .1. /[ H ' . ,l / 
r (ql:P) = -1 f(Zn;-:. V(q -p l/1 Ga.(p+.:P/2) r (pjJ>J Gb(p-.1'/2lJ/r, _ 

Here the quark propagator 

G (p) -a • 

was introduced. Equation 

G (p) = / 
m,:1 ~ 

1 

- m 
" 

(2.5) follows 

+ ie 

after the 

(2.5) 

Fourier 

transformation from variation of the free part of the effective action 

(2.2) over fluctuations (M - :Z) In the following we will consider 

th'is equation only. in the rest frame: 

r"c4l . d,. -> -> [ H ~ = -1 f--p- V(q-p) l' G (p+M /2) r (p) r. (p-M /2) r -( Zn >4 o a ""H 0 ""H o 
(2.6) . 

To obtain equations for the lower-component Bethe-Salpeter vertex 

functions, it is necessary to introduce projectiori operators for the 

two particles (9]. In the rest frame they ~e given_ by (for a = 1, '2) 

Hl) _ -1 ·o _ 1 + -2 · _ 1 + ff 
A± (p) - Sa. (p) A± S

0
(p) - . 2 ;(1.,- S

0 
(p) r 

0
) - 2 (1 - r O . .,CP)) , 

(2. 7) 
-t a> -.-0 -1 1 2 
A± (p) = S

0
(p) A± Sa (p) = z (1 ± Sa(p) r 0 ) 

1 -z 
= 2 (1 ± r o Sa (p)) , 

where 

S±2 (p)' = sin ¢ (p) ± 
a a 

p cos ¢ a.(p) = exp[ ± ~ v a.(p)] 

P = Piri pi. = 
pi 

!Pl 
-z 
p -1, 

5 



and 

m., 

sin ¢.,(p) = E (p) 
a 

COB ¢.,(p) = 

., <1 (p) = ½ ( - <P <1 (p) + ~ ) , 

E.,<P) = /·j/ 2 l 
+ m 

<1 

A~ = ~ = ~ (l ± 1' o) -

IPI 
Ea (p) 

In the following we will use the representation 

+, S: = c., ± P B., 

with 

B., = sin v 
0

(p) and c., = COB '-'.,<Pl. 

(2.8) 

(2.9) 

Now, by means of the 

can be represented as 

projection operators the propagator G.,(P) 

G (p) = 
a 

1 

P
0

1'
0 

- P;.1', - m., + i& . 

= [ 
A':'(p) 

P
0 

- E
0

(p) + ie 
+ 

= 

A1:'(p) 

P
0 

+ E.,(P) -

+ 

ie) 
r 

0 = 

[ x•:• <P> x•a; (p) ] 

yo 
p - E (p) + ie p + K (p) - ie 

• 0 <1 
o a 

After inserting (2.10) into (2.6) and integrating over Po 

" ( n+(p) n_(p) ] 
r (q) = -I (q) r + r 

P O E(p)-MH-i& K(p)+t\,-.ie 
0 

with 

6 

(2.10) 

one obtains 

(2.11) 

) 

-;, 

-:, 

}! 

' 

n.(Pl =- ,\·:•(p) 10 r"(p) 10 K~'-''(p) 

n (p) " A' 0
'(pJ } r"(p) 1 . X' "'(p) 

- 0 () + 

and the total energy ;i,; 

as the inte1{ral operator 

·E., + E,. , the bound state mass 

I (q) __ _p_ V(p--q) • I d3 

" (2rr )
3 

(2.12) 

M,, as well 

Now, using standard method::, equation (2.11) for r" de~oup)es into 

equations for new wave functions r7 and r: In an 

reference frame these are defined by means of the decomposition 

r·" -
l -

- / :P 
r·"cpJ:P) = r"<Pl·'.t·) + (. ____ r"(pJ:1>J , 

' M z 
H 

1st + r5 P1-+ (r·_u 
'P/ 

:,· ,::_'__) ,/' + /- (1 
,, M2 l 5 µ 

H 

•r, 
• µ 

.r 
( __ ] ·pf 

2 l ' 
Mn 

arbitrary 

= 1, 2. 

However, to study the meson mass spectrum, it is enough to consider 

the bound states at rest, ,'P = 0. In this case one has 

r·" = r" + r" 
1 ro 2 

r" = rsr;"' + rPLP + ;-VLV + t'ALA 
1_ t l l lt, L It 

where 
s r = 1, 

p 

r r ca' 
V 

r = ., . . ,, A 
t 

I 1, 2, i ·= 1, 2, 3, 

- r r . 
• 5 

Furthermore, we make, the decompositions (a = 1, 2) 

L
1 

(p) = p L
1 

+ c
0

(p) L
10 

I\ L t l l 

with 

e''(p) ::: ;o.(p) ;-
' ' 

a 
0

b 
e, (p) e, (p) 

Therefore, (2.13) takes the form 

C',,.l, 
'-' 

7 

V, A 

P, <(p) () . 

}, (2.13) 



r" 1 ( r71 + - r·"' ) -I 

=- 2 I: ro 2 r 
I 

where the matrices 
-, 
y , I = 1, 2, ... , 6, are given hy 

1 -2 
. 

a -a -.. -5 Q 

r = r , r = e , y "' p , r = 1 , r = i' e 

" " 
6 

r = r.,P 

Inserting decomposition (2J4) into (2.U) yields 

+ n- = I: n! 1, 2, __ ., 6 , 

+ 1 [( - - ·1 ( + + ") ] -. n;=-4 c-sp± c+spyoyr·c± for I = 1, 2, 

n! = - { [(c• - s•~] ± (c- + s-~J.r 0 ] ;
1 r_0 ± for l = 3, 

± 1 [ ( + + ") - ( - - ") ] -, n 
1 

= 4 s + c p + s c p y.o .r r" + for I = 4, 5, 

+ 1 [( - - ") ( + + ") ] -. n;= °4 B +cp + B -cpr0 rrs+' for I = 6. 

+ 
Here the following not,at.ion has been introduced: 

for the combinations 

s-

+ + } B- = s- = s (p)c (p) :! ,, (p)c (p) 
le-· 1 2 2 t 

s± = c± = c (p)c (p) • s (p)EJ (p) 
p 1 2 I ;l • 

of the trigonometric a I functions (2.9), respectively. 

are I.he modified vertex functions: 

r 1 ·- c- r1 • c~ r; for I = 1, 2, 
c± - 1 --

r' + l c- r: for I = 3, = C r ± 
ct 1 

I + I ,i r' rs! = s r
1 

± 2 
for I = 4, 5, 

I - I rs!. = s r
1 

:> B+ r: for I = 6. 

8 

and 

,,, 
bw! 

+ c-

and 

(2.14) 

·, 

(2.1!>) -;, 

stand 

(2.16) 

·-, 

r' c± 

'!< 

Now, we are able to write down the Bethe-Salpeter equations for · 

the lower-component vertex functions in th!' rest frame. The result can 

be given in the following manner: 

r"-"'(q) = _P__ --(e+-!:✓-) r 11
-

6
'(p) + -. (e--H:-"+) r 11

-
61

(p) 
I (q) [ 1 · 1 ] 

~) B E-H - + 1 E+M + - 2 
. 

rl3-4l(q} 
~) 

r;;cq) 

r~;(q) 

- IP (q) [-1-(·"':t'i'{'e±) 
- 8 K--M 

r' a-"'CP) i- _:_(.,. :.±te-) r'a-"'CP)l 
t E+M + + z J 

= _ IP :q) ~ab [ 

= _ IP :q) ~ab [ 

1 

E-M 
e± r:!CP> + 

1 
_ .,.. !,I:, 

E-M + r s_(p) + 

1 
- 'e rzb ,l 

E+M + c_(p)J , 

1 
'P, • + 

E+M -
r~!CP>] 

with 

r'•-6' = r• - r6 -
~) c± B+-

r'a-,, = r 3 
- r" -

~) c± B+-

f+ = S B 
+ + 

± B B 
- q p q p 

u~~ ;: B 
+ + 

B ± B B 
- q p q p 

'e+ = C C ± C+ 
+ 

C 
- q p q p 

.. 
t = P, 4, 

6 ab = ea(q) eb(p) 

' ' 
and E = K(p) 

2.3. Bound-state wave functions 

(2.17) 

(2.18) 

(2.19) 

Sometimes it is favourable to work not with the vertex function 

r (= r") but with the Bethe-Salpeter wave function 111 . In the rest 

frame -both these quantities are connected with each other by the 

relation 

r(q) = IP(q) r
0 

111(p) Y
0 

(2.20) 

so that 111 is defined as 

9 



>l'(p) = { 

By using (2.11), 

n.CP) 

E(p) - M 
+ 

(2.12), and 

n (p) } 

E(p) + M 

(2.7) 4'(p) 

represented in the form 

0 

>l<(p) = s~ • CP> >l<(p) s; • (p) 

0 

n±(p) = s~ • CP> n±(p) s-: (p) 

with the definitions 

and 

~(p) = - { 
(p) 

0 

n±(p) 
0 

= A~ r(p) A°.. 
- + 

+ 

0 

rep) = s~ • CP> r(p) s; 
1 

CPl . 

0 

0 

n (p) } 

E(p) + M 

The function >l'(p)fulfills the condition 

0 

A~ >l<(p) A~ = 0 

and 

Therefore, it exhibits 

Lorentz structures: 

an unambiguous expansion 

o o ... o. • .J:Ja - o 
>l<(g) = r 

5 
L + e (g) N + q ,:. 

with the decomposition 

Lo = Lo + Lo 
1 · r o 2 

n±(p) can be 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

with respect to the 

(2.26). 

(2.27) 

and analogously for tf O and a
0 

Inserting (2.25) into (2.24) and the resulting expression in 

(2.23) one obtains with the help of (2.20) 

10 

1 

n 

\1 

l' 

0 

ol>(p) 
{ 

_1 __ ,._o j (p) S'(p,g) >l'(g) -S'(g,p) Ao + 
ET ( p) - M • " 1 • 2 -

+ ----- /\0 
1 

ET(p) + M 
rqCP> s;cp,g) <I•Cg) s;cg,p) A~ } 

where . s:(p,g) i = 1, 2 , is given by 

s;cp,g) ::: s~· (p) ro s~ 
1 

(g) 

'l'he action of the projectors 
Ao 

± 

0 

on the wave function >I' 

0 1 0 

,\; >l<(p) =•---- TT+(P) 
E(p) :;: M -

with 

0 

n±(p) = A~ I (p) s (p,g) >l'(g) s (g,p) A°.. 
_ q 1 . 2 + 

(2.28) 

is given by 

(2.29) 

From (2.29) one can derive the following two SchrOdinger-type 

equations: 

0 0 0 0 

}. M :r 
O 

>l'(p) = E(p) ,i, c p) - n. c p) - n c p) . 
u 0 0 0 

M >l'(p) = E(p) r
0

>1<(p) - n.CP> + n (p) 

(2.30) 

By means of the decomposition 

9 ( 0 J OJ ) -J 
= E ,i, CP> + :r ,i, CPl r t O 2 p 

J=1 

0 

'l<(p) 

where the matrices 
-J given in accordance with (2.26) and (2.27) r are 

by 

-1 -2 ;"(p) • 
-9 (2.31) · r = 1· • rP r p = p 

p 5 

and 

0 0 0 

>1<' = Lo q,2 = N:a q,9 = ,:.0 . i = 1, 2, 
' ' 

11 



0 

equations (2.30) can be rewritten for 

they can be transformed to 

0 
,J,J 

• aml 'I'~ • In a common form 

0 

H q/ CP> trerKrJ > = 
0 0 0 

J -1(--J -I< 
E 'I' (p) tr (Y r ) - tr [y (TI +<P) :t n (p))], I = 1, 2, 3. 

c:> q p q c:> q p 

(2.32) 

Evaluating the traces in (2.32) for each case (J = 1, 2, 3) we 

obtain the following equations for L~ N~a , and 7° 

0 0 [ :;::;: :;::;: 0 ] H L (p) = E(p) L (p) + I (p) ( C C .. t: B B ) L ( q) 
(2) <'> q pq pq <'> 

1 2 2 

H 7o (p) E( ) _o ( ) I ( ) [ :!: ± :!: :!: ,:_o ( b ± :!: ob ] = P L P - P (?. C C - B B ) q) + () C C N (q) 
<~> c:> q P q P q c:> - P q c:> 

H N°a(p) = E(p) N°"(p) - I (p) {[/c+6ab + B+B+('f;6°b - -r1°r/')] N°b(q) + 
(2) (.) q . p q- p q - - (. ) 

1 2 2 

a++ O }' .+ (YI C C-) ,:_ 
1 

( 4 )· 
p q (2) • 

(2.33} 

+ + Here a- and c- are defined according to (2.16). The quantities 
p p 

0. 

T/ 

and :!.a are given by 

r,°' = 4, e~(p) , !J.
0 = P, e~(g) (2.34) 

and { and Dab have been introduced earlier by (2.18) and (2.19}, 

respectively. 
0 

From (2.21) one obtains the relation between 'l'J and 'l'J 

J -K --J 
'1- tr(r r} 

<:> 

with 

aJ = { 

By means of (2.8) we get 

(

-K -J ( ±a J ) ) 0 J 

= (±) tr y y S S 'I' 
• 2 c' > 

1, 

-1, 

J = 3, 

J 1, 2 

12 

2 

(2.35} 

j 
l 

~) 
-~ 

(+c• ) -1 
S ., e 

(±ot ) 
.r -

(±ot j) -

• "2 
= C + Ct 

J 
B q 

so that 

i.e. 

L 
~) 

+ ± C Lo 

c'> 
2 . 

'l'J 

c:) 
(:!:<-"tJ) 0 J 

= ± C 'I' 
c:) 

,:_ = ± 
~) 

c± ,:_o 

<:> 

Next let us consider the Bethe-Salpeter 

J = 1, 2, 3, 

N"" = :!: c:;: N°"' 
c:> c:> 

equation in terms 

From (2.25), (2.20} and (2.21) there follows the representation 

0 0 

r(p} = ..:rqCP> s;CP,4) 'l'(q) s;cq,p) 

0 

where s· is given by (2.28}. Decomposing r as 

O ( 0 I O I ) ~, r=E r +r r r 1 0 2 
I 

0 

and 'I' a=ording to (2.26) one obtains from (2.37) 

of 

O -K -I 
r 1 (p} tr (y Y ) = 

<:> p p 

- iq (p}: <~~q} tr [ ;: s;<:tl}(p,q}r;; s;c4 ,P>] = 
2 

0 

= - I (p} 'l'J 
1 

(q} tr 
q <2> 

K o--J s J<q) s-•c > o 
{ 

- [ (+ot ) ] 
y Py 1'.q 1 2 q y 

(+~ } (s;1
(p} S

1 
K(p)]} 

(2.36) 

0 

r 

(2.37} 

with I, K = 1, 2, ... , 6 and J = 1, 2, 3 ot J defined by (2.35) 

and 

~K = { 
1, K = 3 ,4 , 5 

-1, K = 1, 2 , 6 
(2.38} 

The matrices ;K and r' are defined due to (2.1.5} and (2.31), 
p q 

respectively. Their lower indices denote the corresponding momenta. 

Now, using relations of the type (2.36) 

Bethe-Salpeter equations linking the vertex functions 

0 

wave functions 'l'J take the form 

13 

the 
0 
rI 

desired 

and the 



0 

r' (p) = 
<:> 

i (p) [(c±c+ - t:B+B+] ·Lo (q)] 
q q p q p <:) 

0 
r2a(p) = 

<:> 
Iq (p) [( 

± +6 .:,l;, ± +(~ 6•ab _ a_ b)) CC -BB., -T)I) 
q p- q p - --

No"' (q)] 
c:) 

0 - [( - + + +) ~ r"(p)=-l(p) t:c+c--B-B- Z
0

(q) 
<'> q qp qp <'> 
2 2 

O 4 - [ ( + + _. + +) o a + + Oo ~ r (p) = (±) I (p) B-C- - t:c B- L (q) - T/ C-B- N (q) <') q q p . q p (.) -- q p ( 1 ) 
2 2 . 2 

0
5a - [ + ± a O ] r 

1
(p) = (±) Iq(p) Bqcp r, L 

1
(q) 

(2) . (2) 

06o - [( + + + +) o ] r (p)=(±)l(p) t:Bc +Bc L (q) c' > q q p q p c • > 
2 2 

On the other hand, one obtains from the Schr()dinger-qke equation 

(2.30) after replacing n±(p) according to (2.22) and decomposing r
0 

like in (2.38) the following relations: 

0 0 0 

J = r., = M 'I!., - E >I>., 

c:, c:> c:, 1, 2, 3 

or 

0 

r' 
c:> 

= M L
0 

- E L
0 

c:> <:> 

and analogously for N°0 
and :;:

0 

For completeness we also give the relations connecthlg 

rt<. These can be .derived from (2.25): 

+ 0 + 0 + 0 + 0 

r' = c- r' + s- r 6 . r' = c- r' :;: B- r" 
<:> <:> <:> c' > <' > <' > 2 2 2 

+ 0 + 0 
r2a. = c- r2a . . r!ia = c- r50 

c:) <:) <:) <:) 

r3 _ ± ~3 + ± ~• 
+ 0 + 0 

- C - B . r 60 = c- f'
60 ± B- r' 

<:> <:> c:, c' > c' > c' > . 2 2 2 
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0 

r' and 

From these equations follows that, as already stated in (2.17), there 

takes place a mixing of vertex functions for 

No mixing occurs for I ,-:: 2, 5 . 

) = 1, 6 

3. Normal~zation of the Bethe-Salpeter function 

and 

The Bethe-Salpeter vertex function is normalized as follows: 

d
4

P H + H 
E J -- er (:P)) r (:P) CJ> - '" > M = 1 . 
H (2H )4 u H ""H 

I = 3, 4. 

(3.1) 

Here :P 
0 

denotes the bound state energy and "-' 
H 

is given by (2.4). A 

normalization is possible only for :P "' 0 . To derive a normalization 

condition for the lower-cpmponent Bethe-Salpeter vertex functions we 

consider the action (2.2) and make an eXPansion in powers of small 

values (:P
O 

- ,o") Let us concentrate upon the term 

8
rree2 

N d 4
:P d

4
k 

-i ~ tr J ---- --- r G {~+k) MP'l G fu-k) r M(.1') 
2 (Zrr)' ( 2 ,T)• o 12 22 o 

which is obtained from the second part of the action (2.2) by means of 

a Fourier transformation. By using 

analogously to (2.11) in the following manner: 

(2.10) it can be 

sfree2 
Ne tr J 
2 

d 4
:P d

3
k 

----
(2n)" (2n)" [ 

A (k)r r"(:P)y A (k) 
_• _ __:o ___ o=----- + 

E(k) - /;z - ic 

A (k)r r"(.1')r A (k) ] 
+ - o o • r(J>) 

E(k) + /;2 - i£ 

Now we eXPand the dominators in (3.2) in powers of 

Then, by taking into account 

/:,,2 _ ;2 = I :,,2 
w 

- MH w: + i<. - t\. = (:PO - w ) ~ + ••• 
0 H 0 H t\. 

rewritten 

(3.2) 

(:PO - "-'"). 

and introducing the notation :P = .r;z the equation (3.2) turns into 
H H 

15 



s ~ 
fr&e2 

Ne tr J 
2 

d
4

P 

(2n )'
1 [ 

. ,,, a ] 
1 - ~ (:7'. - '" ) -.--

M O ff iJ:P 
ff ff 

_ __ + o o - + - o --~-+__ I . r J 
d

3
k [ ;\ (k)r rff(.1')r A (k) ;\ (k)r ['ff(:")r A (k) ] 

(2n )
3 

E(k) - _-r, - iE E(k) + :P -- ic 
H ff •:,.) = H 

ff ff 

Comparing this expression with (3..1) one receives as normalization 

condition for the lower-component Bethe·-Salpeter wave f\lllctionB 

3 ff - H -

~ ~- tr J ~ [ l\+.(k)r0 r r 0 A __ (k) + A_(k)r 0 r r 0 A+(k) ] -r = 1. 

2M,, a:I' (2rr )
3 

E(k) - :P - ic E(k) + :I' - i.: I 
ff . ff ff Pff=t\. 

(3.3) 

4. Meson Masses and decay constants from a. spec ia! Nambu-Jona-Lasinio 

model 

4.1 Mass spectrum for low-lying meson~ 

Now let us turn to the special Nambu-Jona··Lasinio model defined 

by the effective action (2.2) with Kf/ being the instantaneous 

interaction kernel (1..1). The corresponding· Schwinger-Dyson equation 

(2.3) for the quark mass operator which .is now given by :Z(x-y) 

=. <5
4

(x-y) diag (m , m , ... , m ) reduces to the following equations: 
1 2 Nf 

m 
'· 

0 • = m - I 

' 

N 

·-½ I 
µ' 

_<!~<L ___ l 
(2n )" q/ __ m 

/ ' 
+ iE 

N L ··• 
mo + _c_ f --9.9_ 

' 2µ2 (2n)3 
' 0 

➔2 
(q 

1 

+ m: )1.,,-2 
1, 2, ... , N

1 
• 

(4..1) 

m a 
' 

Here we introduced, for each constituent quark mass 

corresponding parameter µ' so that the parameter µ 

replaced by 

in (1..1) is 

2 
µ = µa µb a.,b=u"d.,a 

Integration in (4..1) leada to 

H, 

Bn
2

µ~ = Ne 
m 
' 

m, [ 2 . 2 2L ] L -m. ln-o 1. m . .. 
m ' 

(4.2) 

' 
This relation linking the parameters µi and L with the masses m~ 

and m, will be of importance in our subsequent calculations. 

Our aim is to calculate, from our Nambu-Jona-Laainio model within 

the Bethe-Salpeter approach, the. mass spectrum for low-lying mesons in 

the three-flavour case (the calculation for two flavours baa been 

performed in [9]). To do this, it ia enough to consider the bolllld 
➔ 

states at rest, :I' = 0 . In our case the Bethe-Salpeter equation (2.6) 

takes the form 

rff 
N d"p . o ff o · 

= -i ~ J-- r G (p+:I' /2) r (\. (p-:P a/2) r 0 
µ2 ( 2 rr)" o a H 

After inserting decomposition (2..13) for rH it decouples into four 

sets of two algebraic equations for the quantities 

2 µ 
- L

1 = <f L
1 

+ -Ji L
1 

N • ' z 
C 

I = S, P, V, A 
2 

µ 
- L

1 = D
1 

L
1 

+ -Ji L
1 

N 2 2 t 
C 

(L: = LI for I = V, A, i = l, 2, 3). 
l' 

LI 
• and 

} 

The expressicrns fgr the coefficients B
1 

, CI , and DI 

table L There ia .employed the following :abort-hand notation: 

Al'M ·) - 1 [ m a· IM) ""\'·11 - 2: . • .., .... -,mz "'2Ct\.> ] 

·'.J!'cii ) = .... 
2
1 ·, [· in ~ fM ) + m a lM } ] 

. -fl I _.f:"~--a . ~ Z~:')f 
- -- - . , . . ' 

-~, . ... ·. 

where <>• 
Ol ·:' and ·,.(3 . denote.·•t1ie' ,_ .. ..;.,.ala 2, JI ... .µ...-Eµ,-

(az 

L 
· d

9
k 1 l 

a,(t\.) = J (2rr )a . Ki (E, + E2 )z - ~ + i£ 

is obtained from a • 
by interchanging indices 1 and 2), 
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LI 
2 

(4.3) 

are given ·in 

(4.4) 



Table 1.: Coefficients B1 
, C

1 
, and D1 

in the system of equations 

(4.3) f'.or I = S, P, V, A. 

--------
I B' c' n' 

s M,.A(MH) (m
1

-m
2

)A(M,.) + (3 (m, -m
2 

)A(M,
1

) 

---------------
p M,.FCMH) Cm

1 
!-m

2 
)F(M,. J + (> (m

1 
+m

2 
)I<'(M,.) 

----
V M,.FCM,.) (m

1 
+m

2 
JF(M

8 
J + 2(1/3 (m

1
+m

2
)F(M,.l + (3/3 

A MHA(M,. J (m, -m
2 

)ACM,. J + 2/1/3 Cm, tm
2 

)A(M" J + (1/3 

(>(M,.) IL d'
3

k [ 1 1 ] 

= c2,r) 3 E + E 
1 2 

kz 

(E, + E2 )2 M2 + i,: 
H 

(3 can be expressed by means of ,:'< and OI 
l 2 

2 
1 

µ [ mo, moz ) (?(MJ=- 2---- + - [( M2-- 3m
2 

- m
2

) c, (M,.J 
2Nc m, m2 2 

H t 2 t 

+ ( ~ - 3m: - m: ) e</M,.) ] 

. The coefficients B' C
1 

, and n' in system C4.3) of 

homogeneous algebraic equations are in general complex quantities. In 

this way system (4.3) has an unambiguous solution if 

2 z 

} 
( I µ] ( I µ] 12 Re C - N · Re D - N - (Re B) = 0 

C C 

(Im C
1

)·(Im D1
) - (Im B

1
)

2 = 0 

We will use just these equation..<J to .detenirlne the mass spectrum. 

C4.5J 

First of all one has to calculate the integrals a
1 

and a
2 

.For 

<\ one gets: 

18 

Ue "',(M,.) 
N 

C 

2 2 
811 µ 

( 

[ d,111,.l - r.;-..;:, a.c<an ( r,/ z, U'i,J 'f 

[ ./
---~ 1 + r

2 
/ lz CM,.)I 

1 

d
1
(M,.) - lz

2
(M

8
)l ln 

2 

1 - r 2 / I z 2 CM,.) I 
1 

z2 > 0 , 
{ 0, 

Im 01 CM,.) = 
• Z(M,.), z

2 
< 0 , 

] . z2 > 0 • 

] , z
2 

< 0 , 

0 (4.6) 

(4.7) 

Z(M)=~~/lz(t\.)1
1 [(1-"'~] 

z
2 

CM,.) 

z,(t\.) 
+ 1 + 

H 8n2µ2 4 2 ~ 

+ A Cm
2 

- m
2 

+ u2 >] 2 2 t .. -\t 

with 

L2 

d,(M,.) = 2 

~ [ Cl + r 1 )(1 + r 2 ) 2 ] 
Cr - r ) + - 1n ------- L + 

2 1 2 m1m2 

[ 
t.

2 

) [ 1 + r 1 m2 ) 

+ m: - ~ ln 1+ r z m, 

A 
2 2 

2 = m2 - mt 

rcA . i = 1, 2 , 
' Lz 

4m=~ -- - i -- - 2 

zz(M,.) = (~ - Az) 

Furthermore, in solving the mass relation for the 

1110dify integrals C4.4) for "'. and et2 , taking into 

z
2 

< O 

a -meson we • 
a=ount the 

+. 1r . The decay width r(a -> qq) and substituting M ,;, M by H 1 u a a 
,,, - - - t .t 

new integrals are denoted by '". and a 2 • For c'. one has: 
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tr M r 
a a a 

Re a (M ) = ---1
-- Re o (M ) + ___ __!: _ __!_ Im "' (M ) • (4.8) 

1 a 1 H2 + rz 1. a 1 M2 -t r2 1 a 
a

1 
a

1 
a

1 
a

1 

M r M2 
a l a il 

Im c'.(Ma) = ' Re « (M ) + 1 
Imo/Ma) (4.9) 

1 tr + r2 1 a
1 

Hz + r2 l 
. al a a a 

1 1 1 

0 

The expression.'3 for 

interchanging the indices 

OI 
2 

1 

and ~ 

and 2 
2 

are obt.air1ed from (4.6) · (4.9) 

In the same way one gets the 

formulae for d2 (l\,J • z, (MH) . " l and 

4.2 Determination of the pion and kaon decay constants 

According to (2.13) the fle!J1e-Salpeter vertex function 

pseudoscalar sector with the botmd state at rest is given by 

p p p 
r = r

5
L

1 
+ r

0
/ ,.,L

2 

The corresponding Bethe-Salpeter equation haB the form 

4µ
2
L: =- C.P(Mp) r,: + B.P(Mp) r,: 

} 4_/1.t D.P (11,,) L: + B'P (HP) L: 2 I 

where 

B.P(MP) = BN,, MPF(M.,) 

.P 
C (MP) = tlN,_ (m, + m

2
)F(H,.) +· 4N_/'(M

1
) 

D.P(MP) 8N_, (m
1 

+ m
2 

)F(M.,) 

Here in distinct.ion t.o (4.3). tr,. ha$ been calculat,ed. 

for the 

The pseudoscalar decay constants. are defined by 

coupling in the second term of action (2.1) which 

S1,.,..,2. The corresponding pseudoucalar part reads 

the 

we 

axial-vector 

deno,te by 

P . 1 [ ,.P P2 ,.P P2 ,P PP] sf -2(M ) -2 trfl C (M XL ) + D (M XL ) + 2B (M ) L [, . re-.,. P P J. p 2 P 1 2· 

Thin representation follows immediately from 

term of (4.10) is of interest here. It. yields 

20 

equation (3.2). 

(4.10) 

The last 

I 

/ 

P. 

Fp = 2NCF(M,, ) L: 

' ' 
(i = u) and kaon (i = s) decay conatants. for the pion 

'fa calculate Fn and F" • the normalization of the paeudoscalar 
P. 

vertex functions r 
5 

LL 
1 

is required. It follows from the 

normalization condition (3.3) for the lower-component Bethe-Salpeter 

vertex'functiona which for the pseudoscalar sector is given by 

1 

:P 
p 

d 

d:P 
p 

p (:P ) I 
sfree2 p :J>p=~ 

= 1 

with :P P = F, Then, with the help of (4.10) we obtain the 

normalization condition for pion ~ kaon vertex functions: 

( P. )2 .¥/ L
1

' = 1 

with 

_
2 

1 d .P 
.A'. = -- - C (:P )I 

L 2:Pp d:Pp p J'p=t\, 

BO that. 

P. 

L ' = .,y 
1 ' 

and finally 

F =2NF(M ).¥ 
P. c .P. 

L L 

(4.11) 

4.3. Numerical results - -

In this paper we calculate the massea for low-lying meaona in the 

iao-apin symmetric case mou mod mu = md . Then the pion 

relation takes approximately the form (for m:/L
2 

« 1 and ~ « ~): 

Mz 
n 

m 
2 Ou 

mu 
[ Lz + 

2 
m 

u 

2L 
( 2 - 3 1n mu )] · ( 1n 

2L 

m 
u 

- 1 r· 

mass 

(4.12) 

From expression (4.12) it is clearly seen that the pion appears as a 

Goldstone particle (M
11 

= 0 for m0 = 0). 
Now let us present the numerical results. Our theory contains, as 

parameters, the bare quark masses mou = mod 
m

0
a , the parameters 
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µ: , i = u, d, a with v: = .L•~ 

the Schwinger-Dyson eguatiun it 

connected by relation (4.2). 

and the cut- off parameter 

follows that. 

To fix the parametero, we take, .au input data 

2 
/.l, 

Ul 

and 

m,:t 

l, From 

L ill'f! 

330 MeV, 
m

9 
= 400 MeV, M = 140 MeV, 

" M"- = 4B4 HeV and M. c'f'/0 Mc,V. Tlwn ono 
I-~ obtains for N 3 with L 1.590 MeV ~ 11:r·w' MeV" = .. µ ;.,. .. 

= 9.7·10
4 

M;v2 
.., . ,:t 2 

µs from (4.5) , (4.9): 

~ou =: m0 d :c 2.1 MeV . m 
Os 

56 MeV, 

Mo = 660 MeV 

M = (1132 - i654) MeV a 
1 

M * = 896 MeV 
K 

M'.P :c 970 MeV 

From (4.11) one gets for the decay conBLants 

FK = 149 MeV, so that 

FK 

F,, 
L38. 

F ·rr . 101:1 MnV and 

The results obtained in our earlier work [10] for t.he two··([avour 

case are in agreement with the correspondfr1e values reported here. 

5. Conclusion 

We 

vertex 

quark 

have derived general eguationR for different Bethe-Salpeter 
and wave functions (including 

models 

the lower-component 

4-quark interaction 

ones) 

like, 

for 

for 
instance, 

Thereby,· 

the 

.with 

quark 

used 

his t.antaneous 

sector of QCOh 

the projection 

or Nambu-·Jona··· Lasinio·-type models. 
we 

antiparticle 

(2.26) for 

(2.3~i). 

operat;ors 

stateH and decompositions 

'l•(q) The main results of 

(2.14). 

sect.2 

The general scheme 

(2.9) 

(2.15) 

on 

of 

particle 

r" 
are eguations (2J7) 

!,he masses 

and 

and 

and 

of 
low-lying mesons from the 

is applied to determine 

Nambu-;Jona-Lasinio model of type (Ll) in 

the case of three flavours. Thereby, m distinction to the usual 

procedure we did not expand in energy. In this connection let, us refer 
to some recent papers (5, 11] on different Nambu-Jona-Lasmio models. 
We want alao to mention that m (12] there ·was considered a 

Nambu-Jona-Lasinio model for the two-flavour case within the 
Bethe-Salpeter approach. 
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/I 

In our approach no tachyons appear, whereas ' they do appear m 

t.he QGD lnw·-nnerHY cxpairnion as claimed m [7]. Furthermore within 
S--V mixings have been take;, into our· approach I.he P-A V-T and 

account. from t.hc very t,,agim1ir1I1 by using an ;,deguate decomposition of 

u,., UethP.··S11Jpeter verLex function,:,. With the help of the general 

no,·maliimtinn cnndit.ion (:l.3) .we were able to <lei.ermine the pion and 

kaon . decay conat.antn. The numerical results reported in sect.4.3. are 

in good c11:ri,emcnl. wit.Ii experiment. 
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