

объединенный
 институт
 ядерНых
 исследований
 дубна

B 36
E2-89-439
V.A.Bednyakov, S.G.Kovalenko

NEW RELATIONS BETWEEN $\ell N-S C A T T E R I N G$ CROSS SECTIONS
and NEUTRAL CURRENT PARAMETERS

Submitted to "Zeitschrift für Physik C"

Бедняков В.А., Коваленко С.Г.
Новые соотношения между сечениями $\ell \mathrm{N}$-рассеяния и параметрами нейтральньх токов

Получены новые соотношения в глубоконеупругом и квазиупругом (-J) $\mathrm{N}-, \mathrm{e}^{ \pm}(\mu)^{ \pm} \mathrm{N}$-рассеянии, устанавливающие связь сечений с параметрами нейтральных токов и независящие от структурньх функций и формфакторов нуклона. Известньй пример такого рода - соотношение Пашоса-Вольфенптейна в (\bar{v}) N-pacceянии. Соотношения получены с учетом вклада дополнительного Z^{\prime}-бозона, что позволяет использовать их как для извлечения параметров Стандартной модели $\left(\rho, \sin ^{2} \theta_{w}\right)$, так и поиска некоторьх проявлений новой физики.

Работа выполнена в Лаборатории ядерньх проблем оияИ.

Препринт Объединенного института ядерных исследований. Дубна 1989

Bednyakov V.A., Kovalenko S.G. E2-89-439 New Relations Between $\ell \mathrm{N}$-Scattering Cross Sections and Neutral Current Parameters

New relations which connect cross sections with neutral current parameters have been obtained in deep inelastic and (quasi-) elastic ${ }^{(-)} \mathrm{N}^{\mathrm{N}}-, \mathrm{e}^{ \pm}(\mu)^{ \pm} \mathrm{N}$-scattering; the relations are independent of the structure functions and formfactors of the nucleon. A known example is the Paschos-Wolfenstein relation in $\left.{ }^{(}\right) \mathbf{N}$-scattering. The relations have been obtained with allowance for the contribution of the extra Z^{\prime}-boson which makes it possible to use them both for extractions of the Standard Model parameters $\left(\rho, \sin ^{2} \theta_{W}\right.$) and for the search for some manifestations of new physics.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1989

Precision measurement of the Standard Model (SM) parameters and the search for new-physics effects require special effort for elimination of the factors that are difficult to be theoretically checked. In lepton-nucleon scattering this is first of all the nucleon structure characterized by the structure functions (SF) and formfactors of the nucleon (FFN). Neither of them was found on the basic of the first principles of the theory as yet. So the values of the neutral current parameters extracted from experimental data may have large systematic errors due to the uncertainty in the theoretical description of the nucleon structure. It is well known that in νN-scattering there are relations for special combinations of the cross sections which allow the uncertainty to be eliminated. An example is the Paschos-Holfenstein relation [1]:

Despite the fact that the formula involves the cross sections of the deep inelastic νN-scattering ($\mathrm{N}^{\mathrm{I}=0}$ is the isoscalar target), nevertheless the right-hand side of the relation contains only the SM parameters $\rho, \sin ^{2} \theta_{H}$ and is independent of SP.

In this paper new relations of this kind are found for scattering of (anti-)neutrino and longitudinally polarized electrons and positrons or μ^{\ddagger} - mesons on non-polarized nucleons and nuclei. The relations are obtained with allowance for the

contribution of the extra Z^{\prime}-boson which is considered in N-scattering as the most probable manifestation of new physics at the tree level. We discuss the Z^{\prime}-boson occuring in the superstring inspired $E_{6}{ }^{-}$grand unified model [2], which is an object: of thorough investigations now [3]-[17]. The relations obtained can be used for analysis of the results of precision measurements which will probably be carried out in the near future. The use of them will allow a decrease in the influence of the uncertainties related to nucleon structure, which is important for achieving a high accuracy of the extracted values of the SM parameters $\left(\rho, \sin ^{2} \theta_{W}\right)$, and for the search for Z-boson manifestations.

§1. Effective Lagrangian and N-scattering cross sections

As a basis, we shall take the SM Lagrangian extended to include the Z^{-}-boson:

$$
\begin{equation*}
L_{N C}=e A^{\mu} J_{j}^{e m}+g_{z} z_{1}^{\mu} J_{\mu}^{(1)}+g_{z} \cdot Z_{z}^{\mu_{z}} J_{\mu}^{(2)} \tag{2}
\end{equation*}
$$

The fields. Z_{1}, Z_{2} are the eigenstates of the mass matrix whose non-diagonal elements determine the mixing of current Z^{o} and Z^{\prime} states. Mixing angle θ is:

$$
\tan ^{2} \theta=\left(M_{z 0(s m)}^{2}-M_{z 1}^{2}\right) /\left(M_{22}^{2}-M_{z 0(s m)}^{2}\right)
$$

where $M_{z O(s m)}=M_{w} / \cos \theta_{w}, M_{z 1}$ and $M_{Z 2}$ are the masses of the physical fields Z_{1}, Z_{2}. The neutral currents entering into Lagrangian (2) will be written down as

$$
\begin{equation*}
J_{\mu}^{(k)}=\Sigma\left\{\varepsilon_{L}^{(k)} \bar{f}_{L} \gamma_{\mu} f_{L}+\varepsilon_{R}^{(k)} \bar{f}_{R^{\gamma} \mu^{\gamma}} f_{R}\right\}, k=1,2 \tag{3}
\end{equation*}
$$

The chiral constants are of the form

$$
\begin{equation*}
\varepsilon_{i}^{(1)}(f)=\varepsilon^{z 0}(f) \cos \theta+g_{z} \cdot / g_{z} \varepsilon^{z}(f) \sin \theta, \quad 1=L, R \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \varepsilon_{i}^{(z)}(f)=\varepsilon^{z^{\prime}}(f) \cos \theta-g_{z} / g_{z} \cdot \varepsilon^{z o}(f) \sin \theta \tag{5}\\
& \varepsilon^{z 0}(f)=T_{3 L}(f)-X_{W} Q^{e m}(f)
\end{align*}
$$

Here $X_{W}=\sin ^{2} \theta_{W} ; T_{3 L}(f)$ and $Q^{e d}(f)$ are the third component of the weak isospin and the electric charge of the fermion f. The chiral constants $\varepsilon^{z^{\prime}}$ are given in Table. Angle $\theta_{E 6}$, involved in their definition, characterizes the scheme of the E_{6} gauge symmetry breaking and is a free parameter of the theory. The relation between the coupling constants g_{z} and g_{z}, also depends upon the symmetry breaking. The following result of the renormalization group analysis is known in the general case [7]:

$$
\left(g_{z} \cdot / g_{z}\right)^{2} \leq \frac{5}{3} X_{W}
$$

When studying N-scattering in the Born approximation, it is convenient to follow the effective Lagrangian [18]

$$
\begin{equation*}
L_{\mathrm{NC}}^{\mathrm{eff}}=-\frac{4 \mathrm{G}}{\sqrt{2}}\left[\bar{\ell}_{\mathrm{L}} \gamma_{\mu} \ell_{\mathrm{L}} \mathrm{~J}_{(\mathrm{L})}^{\ell \mu}+\bar{\imath}_{\mathrm{R}} \gamma_{\mu} \ell_{\mathrm{R}} \mathrm{~J}_{(\mathrm{R})}^{\ell \mu}\right] \tag{7}
\end{equation*}
$$

which is obtalned from the initial Lagrangian (2), $\left(t_{L}, \mathrm{R}=\frac{1}{2}\left(1 \mp \gamma_{5}\right) t, \ell=\nu, \theta, \mu\right)$. Effective hadron current $(1=L, R)$ are introduced:

$$
\begin{align*}
& J_{(1)}^{\ell \mu}=\sum_{q}\left\{E_{(1) L}^{\ell q} \bar{q}_{L} z^{\mu} q_{L}+E_{(1) R^{\ell q}} \bar{q}_{R} \gamma^{\mu} q_{R}\right\}= \tag{8}\\
& =\frac{1}{2}\left[\alpha_{(1)}^{\ell} V^{\Delta \mu}+\dot{\beta}_{(1)}^{\ell} A^{a \mu}+\gamma_{(1)}^{\ell} v^{0 \mu}+\delta_{(1)}^{l} A^{0 \mu}\right] . \tag{9}
\end{align*}
$$

Here $V^{\mathbf{s}}, \mathrm{V}^{0}$ are the isovector and isoscalar vector currents; A^{B}, A^{0} are the isovector and isoscalar axial-vector currents. The effective current parameters depend upon Q^{2} and have the form:

$$
\begin{align*}
& E_{(1) j}^{\ell q}=\frac{x}{2} \frac{m_{p}^{2}}{Q^{2}}\left[Q^{e l l}(\ell) Q^{e m}(q)+\right. \\
& \left.+\frac{Q^{2}}{X_{W}\left(1-X_{W}\right)}\left[\frac{c_{1}^{(1)}(\ell) c_{j}^{(1)}(q)}{M_{1}^{2}+Q^{2}}+\left(\frac{g_{z}}{g_{z}}\right]^{2} \frac{\varepsilon_{1}^{(2)}(\ell) c_{j}^{(2)}(q)}{M_{z}^{2}+Q^{2}}\right)\right] \tag{10}
\end{align*}
$$

$$
\begin{align*}
& a_{(i)}^{2}\left(Q^{2}\right)=x_{Q_{p}^{2}}^{m_{p}^{2}} Q^{\mathrm{em}}(\ell)+a_{(i)}^{l}\left(Q^{2}\right) a^{2}+b_{(i)}^{l}\left(Q^{2}\right) a^{2} . \\
& \beta_{(1)}^{l}\left(Q^{2}\right)=a_{(1)}^{l}\left(Q^{2}\right) \beta^{Z}+b_{(i)}^{l}\left(Q^{2}\right) \beta^{2}, \tag{11}\\
& r_{(i)}^{\ell}\left(Q^{2}\right)=\frac{x}{3} \frac{m_{F}^{2}}{Q^{2}} Q^{e m}(l)+a^{\ell}(i)^{\left(Q^{2}\right) r^{2}+b_{(i)}^{\ell}\left(Q^{2}\right) r^{2},} \\
& \delta_{(1)}^{\ell}\left(Q^{2}\right)=a_{(1)}^{\ell}\left(Q^{2}\right) \delta^{2}+b_{(1)}^{l}\left(Q^{2}\right) \delta^{2}, \\
& a_{i}^{\ell}\left(Q^{2}\right)=\frac{2}{\left(1-X_{W}\right.}\left[\varepsilon_{i}^{(1)}(\ell) \cos \theta \frac{M_{H}^{2}}{M_{1}^{2}+Q^{2}}-\left[\frac{g_{Z}^{\prime}}{g_{Z}}\right] \varepsilon_{i}^{(2)}(\ell) \sin \theta \frac{M_{H}^{2}}{M_{2}^{2}+Q^{2}}\right], \tag{12}\\
& b_{i}^{\ell}\left(Q^{2}\right)=\frac{2}{\left(1-X_{W}\right)}\left[\frac{g_{Z}}{g_{z}}\right]^{2}\left[\varepsilon_{i}^{(1)}(\ell) \sin \theta\left[\frac{Z_{Z}}{g_{z}} \cdot\right] \frac{M_{H}^{2}}{M_{1}^{2}+Q^{2}}+\varepsilon_{i}^{(2)}(\ell) \cos \theta \frac{M_{W}^{2}}{M_{Z}^{2}+Q^{2}}\right],
\end{align*}
$$

where $x=2 \pi a \sqrt{2} / \mathrm{Gm}_{\mathrm{r}}^{2} \approx 0.610^{4}, m_{r}$ is the proton mass.
In the tree approximation $a^{2}=1-2 X_{b}, \beta^{2}=1, \gamma^{2}=-\frac{2}{9} X_{W}, \delta^{2}=0$, $\alpha^{2}=-\beta^{2^{\prime}}=-\gamma^{2}=2 \frac{\sin \theta_{E 6}}{\sqrt{10}}, \delta^{2^{\circ}}=2 \frac{\cos \theta_{E 6}}{\sqrt{6}}$.

Lagrangian (7) is convenient because it is similar to the Lagrangian of the νN-scattering. It allows the formulae for deep inelastic and (quasi-)elastic scattering cross sections of polarized leptons on nucleons with allowance for the z^{\prime}-boson contribution to be written down without calculations. It is enough to make the following substitutions in corresponding formulae for the $\nu \mathrm{N}$-scattering cross sections: $\nu \rightarrow e_{\mathrm{L}}, \bar{\nu} \rightarrow \bar{e}_{R}, \varepsilon_{\mathrm{L}, \mathrm{R}} \rightarrow$ $\mathrm{E}_{(\mathrm{L}) \mathrm{L}, \mathrm{R}}^{l}$ or $\nu \mp e_{\mathrm{L}} ; \nu \rightarrow e_{\mathrm{R}}, \varepsilon_{\mathrm{L}, \mathrm{R}} \rightarrow \mathrm{E}_{(\mathrm{R}) \mathrm{L}, \mathrm{R}}^{\ell}$.

Lets us urite down the final formulae for deep inelastic N-acattering
$\frac{d^{2} \sigma^{N C}}{d x d y}(\ell N)=\rho_{N}\left(E_{(L) L}^{\ell}, E_{(L) R}^{\ell}\right) ; \quad \frac{d^{2} \sigma^{N C}}{d x d y}\left(\bar{l}_{\mathrm{R}} N\right)=\rho_{N}\left(E_{(L) R}^{\ell}, E_{(L) L}^{\ell}\right)$,
$\frac{d^{2} \sigma^{N C}}{d x d y}\left(e_{L}^{+} N\right)=\varphi_{N}\left(E_{(R) L}^{e}, E_{(R) R}^{e}\right) ; \quad \frac{d^{2} o^{N C}}{d x d y}\left(e_{R}^{-} N\right)=p_{N}\left(E_{(R) R}^{e}, F_{(R) L}^{e}\right)$,
$\frac{d^{2} o^{C C}}{d x d y}(\nu(\bar{\nu}) N)=\sigma_{0} x\left[f_{B(\bar{B})}+f_{d(\bar{d})}+\left(f_{\bar{u}(u)}+f_{\bar{c}(c)}\right)(1-y)^{2}\right\}$,
and (quasi-)elastic an-scattering
$\frac{d \sigma}{d Q^{2}}\left(\ell_{L}\left(T_{R}\right) N \rightarrow \ell_{L}\left(\ell_{R}\right) N\right)=\rho_{ \pm}\left(F_{V L(N)}^{\ell}, F_{M L(N)}^{\ell}, F_{A L(N)}^{l}\right)$
$\frac{\mathrm{d} \sigma}{\mathrm{dQ}}\left(\bar{l}_{\mathrm{L}}\left(\ell_{\mathrm{R}}\right) \mathrm{N} \rightarrow \bar{l}_{\mathrm{L}}\left(\ell_{\mathrm{R}}\right) \mathrm{N}\right)=\varphi_{ \pm}\left(\mathrm{F}_{\mathrm{VR}(\mathrm{N})}^{\ell}, \mathrm{F}_{\mathrm{MR}(\mathrm{N})}^{\ell}, \mathrm{F}_{\mathrm{AR}(\mathrm{N})}^{\ell}\right)$
$\frac{d \sigma}{d Q^{2}}\left(\nu n\left(\bar{\nu}_{P}\right) \rightarrow e_{L}^{-} P\left(e_{R}^{+} n\right)\right)=\frac{d \sigma}{d Q^{2}}\left(e_{L}^{-} p\left(e_{R}^{+} n\right)+\nu n\left(\nu_{P}\right)\right)=\cos ^{2} \theta_{C^{\rho}} \rho_{ \pm}\left(F_{V}^{C C}, F_{M}^{C C}, F_{A}^{C C}\right)$.
To shorten the writing, the following notation is introduced:

$$
\begin{align*}
& \rho_{N}\left(\varepsilon_{L}, \varepsilon_{R}\right)=o_{0} x \Sigma\left[f_{q}^{N}\left(x, Q^{2}\right)\left[\left|\varepsilon_{L}(q)\right|^{2}+(1-y)^{2}\left|\varepsilon_{R}(q)\right|^{2}\right]+\right. \\
& \left.+{\underset{q}{N}}_{N}^{N}\left(x, Q^{2}\right)\left[\left|\varepsilon_{R}(q)\right|^{2}+(1-y)^{2}\left|\varepsilon_{L}(q)\right|^{2}\right]\right\}, \tag{19}\\
& P_{ \pm}\left(F_{V}, F_{M}, P_{A}\right)=\frac{G^{2}}{\pi}\left(\left[\frac{F_{V}^{ \pm F_{A}}}{2}\right)^{2}+(1-y)^{2}\left(\frac{V_{V} V_{A}}{2}\right)^{2}+\frac{M y}{4 E}\left(F_{A}^{2}-F_{V}^{2}\right)+\right. \\
& \left.+\frac{y_{2}}{2} F_{M}\left[(1-y) \frac{E}{2 H} P_{M}+y\left(F_{V}+\frac{1}{4} F_{M} \mp F_{A}\right) \pm 2 F_{A}\right]\right\} ; \tag{20}
\end{align*}
$$

where $\sigma_{0}=\frac{2 G^{2} M E}{n} \approx 1.72 \cdot 10^{-4 i}(\mathrm{E} / 1 \mathrm{GeV}) \mathrm{cm}^{2}, \quad f_{\mathrm{Q}}^{\mathrm{N}}\left(\mathrm{x}, Q^{2}\right), f_{\mathrm{Q}}^{\mathrm{N}}\left(\mathrm{x}, Q^{2}\right)$ - are the distribution functions (DF) of quarks and antiquarks in the nucleon; $N=P, n ; F V, M, A\left(Q^{2}\right)$ are the $E F N$. E is the initial lepton energy in the lab system, $Q^{2}=2 M B x y=S x y$.

FFN $F_{k(N)}^{i}\left(Q^{2}\right), \quad F_{K}^{C C}\left(Q^{2}\right)$ are determined from the matrix elements:

$\langle p| J_{\mu}^{C C}|n\rangle=\bar{u}\left(p_{2}\right)\left\{P_{V}^{C C} \gamma^{\mu}-\frac{\rho^{\mu \nu} q_{\nu}}{2 M} F_{M}^{C C}-\gamma^{\mu} \gamma^{s} P_{A}^{C C}\right\} u\left(p_{1}\right)$.
Following the isotopic symmetry of strong interactions and the CVC hypothesis, one can put down:

$$
\begin{align*}
& F_{V, M}^{C C}=F_{1,2}^{P}-F_{1,2}^{n} \tag{22}\\
& F_{V i(P, n)}^{\ell}\left(Q^{2}\right)=r_{+1}^{\ell} F_{1}^{P}\left(Q^{2}\right)-r_{-1}^{\ell} \mathbb{F}_{1}^{n}\left(Q^{2}\right), \quad i=L, R
\end{align*}
$$

$$
\begin{aligned}
& F_{M i(p, n)}^{l}\left(Q^{2}\right)=r_{+1}^{l} F_{2}^{P}\left(Q^{2}\right)-r_{-i}^{l} F_{2}^{n}\left(Q^{2}\right), \\
& F_{A 1(p, n)}^{l}\left(Q^{2}\right)= \pm \beta_{1}^{l} F_{A}^{C C}\left(Q^{2}\right)+\delta_{1}^{2} F_{A}^{0}\left(Q^{2}\right),
\end{aligned}
$$

where $r_{ \pm 1}^{l}=\frac{2}{2}\left(a_{i}^{l} \pm 3 r_{i}^{l}\right)$ and $F_{1 ; 2}^{\mathrm{P}, \mathrm{n}_{2}}$ are , the electromagnetic FFN. According to the definition, $G_{M}^{p, n}=F_{1}^{p, n}+F_{2}^{p, n}$ is the magnetic FFN; the isoscalar axial-vector FFN $\mathrm{F}_{\mathrm{A}}^{0}$ is in the matrix element

$$
\begin{equation*}
\langle N| A_{\mu}^{0}|N\rangle=\bar{u}\left(p_{2}\right) \gamma \gamma_{\mu} \gamma^{5} u\left(p_{1}\right) F_{A}^{0}\left(Q^{2}\right) . \tag{24}
\end{equation*}
$$

§2. Factorization and elimination

of the nucleon structure dependence

Let us turn to the main task of the paper and find the combinations of cross sections for different processes where the dependence upon the structure functions and formfactors of the nucleon characterizing its structure are cancelled.

Let us begin with deep inelastic \mathbb{N}-scattering and introduce the following quantities:
$\Delta_{ \pm}^{\ell} L_{, ~ R}=\frac{d^{2} \sigma^{N C}}{d x d y}\left(\ell_{L}, R^{n}\right) \pm \frac{d^{2} \alpha^{N C}}{d x d y}\left(\ell_{L}, R^{P}\right) ;$
$\bar{\Delta}_{ \pm L, R}^{l}=\frac{d^{2} \sigma^{N C}}{d x d y}\left(\bar{l}_{R, L}{ }^{n}\right) \pm \frac{d^{2} \sigma^{N C}}{d x d y}\left(\bar{l}_{R, L} p\right)$,
$\Delta_{ \pm}=\frac{d^{2} \sigma^{C C}}{d x d y}\left(\nu_{n}\right) \pm \frac{d^{2} \sigma^{C C}}{d x d y}\left(\nu_{p}\right)=\frac{d^{2} o^{C C}}{d x d y}\left(e_{L}^{-} p\right) \pm \frac{d^{2}{ }_{\alpha} C C}{d x d y}\left(e_{L}^{-} n\right)$,
$\bar{\Delta}_{ \pm}=\frac{d^{2} \sigma^{C C}}{d x d y}\left(\bar{\nu}_{n}\right) \pm \frac{d^{2} \sigma^{C C}}{d x d y}\left(\bar{\nu}_{p}\right)=\frac{d^{2} \sigma^{C C}}{d x d y}\left(e_{R}^{-} p\right) \pm \frac{d^{2} \sigma C C}{d x d y}\left(e_{R}^{-} n\right)$.
They can also be expressed through the cross sections of scattering on nuclei:

$$
\begin{array}{ll}
\Delta_{+L, R}^{l}=\frac{\mathrm{d}^{2} \sigma^{N C}}{\mathrm{dxdy}}\left(\ell_{L}, \mathrm{R}^{\mathrm{N}}\right), & \bar{\Delta}_{+}^{l} \mathrm{~L}, \mathrm{R}=\frac{\mathrm{d}^{2} \sigma^{\mathrm{NC}}}{\mathrm{dxdy}}\left(\bar{l}_{\mathrm{R}, \mathrm{~L}}^{\mathrm{N}}\right), \\
\Delta_{+}=\frac{\mathrm{d}^{2} \sigma^{\mathrm{CC}}}{\mathrm{dxdy}}\left(\ell_{\mathrm{L}} \mathrm{~N}\right), & \bar{\Delta}_{+}=\frac{\mathrm{d}^{2} \sigma^{C C}}{\mathrm{dxdy}}\left(\chi_{R^{N}}\right)
\end{array}
$$

$$
\begin{aligned}
& \Delta_{-L, R}^{\ell}=\frac{1}{\beta}\left[\frac{1}{A_{i}} \frac{d^{2} \sigma^{N C}}{d x d y}\left(\varepsilon_{L}, R_{1}\right)-\frac{1}{A_{2}} \frac{d^{2} o^{N C}}{d x d y}\left(\varepsilon_{L, R^{2}}\right)\right],
\end{aligned}
$$

$$
\begin{align*}
& \Delta_{-}=\frac{1}{\beta}\left[\frac{1}{A_{1}} \frac{d^{2} \sigma}{d x d y}\left(\nu A_{1}\right)-\frac{1}{A_{2}} \frac{d^{2} \sigma}{d x d y}\left(\nu A_{2}\right)\right]=\frac{1}{\beta}\left[\frac{1}{A_{2}} \frac{d^{2} \sigma^{C C}}{d x d y}\left(e_{L}^{-} A_{2}\right)-\frac{1}{A_{1}} \frac{d^{2} \sigma^{C C}}{d x d y}\left(e_{L}^{-} A_{1}\right)\right], \\
& \bar{\Delta}_{-}=\frac{1}{\beta}\left[\frac{1}{A_{1}} \frac{d^{2} \sigma C C}{d x d y}\left(\bar{\nu}_{1}\right)-\frac{1}{A_{2}} \frac{d^{2} \sigma^{C C}}{d x d y}\left(\tilde{\nu}_{2}\right)\right]=\frac{1}{\beta}\left[\frac{1}{A_{2}} \frac{d^{2} \sigma C C}{d x d y}\left(e_{R}^{+} A_{2}\right)-\frac{1}{A_{1}} \frac{d^{2} \sigma C C}{d x d y}\left(e_{R}^{+} A_{2}\right)\right], \\
& \text { where } N \text { is the isoscalar target, } A_{1}, A_{2} \text { are the nuclei, with } \\
& \text { different isospin and atomic weights } A_{1}, A_{2}, \quad B=n_{1} / A_{2}-n_{2} / A_{2}, n_{1,2} \\
& \text { is the number of neutrons in nucleus } A_{1,2} \text {. } \\
& \text { Using formulae (13)-(15),(19), we find: } \\
& { }^{-\Delta^{-}}{ }_{-L}^{l}=o_{0} f\left(\mathrm{x}, \mathrm{Q}^{2}\right) \times\left(\left|\mathrm{E}_{(\mathrm{L}) \mathrm{L}, \mathrm{R}}^{\ell d}\right|^{2}-\left|\mathrm{E}_{(\mathrm{L}) \mathrm{L}, \mathrm{R}}^{\ell \mathrm{U}}\right|^{2}+\right. \\
& \left.+(1-\mathrm{y})^{2}\left(\left|\mathrm{E}_{(\mathrm{L}) \mathrm{R}, \mathrm{~L}}^{2 \mathrm{~d}}\right|^{2}-\left|\mathrm{E}_{(\mathrm{L}) \mathrm{R}, \mathrm{~L}}^{2 \mathrm{u}}\right|^{2}\right)\right\}, \\
& { }^{\prime} \bar{\Delta}_{-R}^{\ell}=\sigma_{0} f\left(x, Q^{2}\right) \times\left(\left|E_{(R) R, L}^{\ell d}\right|^{2}-\left|E_{(R) R, L}^{\ell U}\right|^{2}+\right. \\
& \left.+(1-y)^{2}\left(\left|E_{(R) L, R}^{\ell d}\right|^{2}-\left|E_{(R) L, R}^{\ell U}\right|^{2}\right)\right\}, \tag{31}\\
& \Delta_{-}=\sigma_{0} x f\left(x, Q^{2}\right), \quad \Delta_{-}=-\sigma_{0} x f\left(x, Q^{2}\right)(1-y)^{2}, \tag{32}\\
& \Delta_{-1}^{l}+\bar{\Delta}_{-1}^{l}=-o_{0} \times k\left(x, Q^{2}\right)\left(1+(1-y)^{2}\right) \frac{1}{2}\left(\alpha_{1}^{l} \gamma_{1}^{l}+\beta_{i}^{l} \delta_{i}^{l}\right) \text {, } \tag{33}\\
& \Delta_{-i}^{l}-\bar{\Delta}_{-i}^{l}=e_{i} \sigma_{o} \times f\left(x, Q^{2}\right)\left(1-(1-y)^{2}\right) \frac{1}{2}\left(\alpha_{i}^{l} \delta_{i}^{l}+\gamma_{i}^{l} \beta_{i}^{l}\right) \text {, } \\
& \Delta_{-} \pm \bar{\Delta}_{-}=o_{0} x f\left(x, Q^{2}\right)\left(1 \mp(1-y)^{2}\right), \tag{35}\\
& \Delta_{+1}^{l}+\bar{\Delta}_{+1}^{l}=\sigma_{0} x \Lambda_{1}\left(x, Q^{2}\right)\left(1+(1-y)^{2}\right) \frac{1}{4}\left(\left(\alpha_{i}^{l}\right)^{2}+\left(\beta_{i}^{l}\right)^{2}+\left(\gamma_{i}^{l}\right)^{2}+\left(\delta_{i}^{l}\right)^{2}\right) \text {, } \\
& \Delta_{+1}^{l}-\bar{\Delta}_{+1}^{l}=-e_{i} \sigma_{0} \times \Lambda_{2}\left(x, Q^{2}\right)\left(1-(1-y)^{2}\right) \frac{1}{2}\left(\alpha_{i}^{l} \beta_{i}^{l}+\gamma_{i}^{l} \delta_{i}^{l}\right), \\
& \Delta_{+} \pm \bar{\Delta}_{+}=0_{0} \times \AA_{1,2}\left(x, Q^{2}\right)\left(1 \pm(1-y)^{2}\right), \\
& \text { where } \\
& f\left(x, Q^{2}\right)=f_{u}^{P}\left(x, Q^{2}\right)-f_{d}^{P}\left(x, Q^{2}\right),
\end{align*}
$$

respectively, $f_{q}^{p+n} \equiv F_{q}^{p}+f_{q}^{n}, e_{L}=-1, e_{R}=1$. The dependence upon the nucleon structure is accumulated in f and h_{i}, which are common factors in formulae (30)-(38).

Now we obtain the similar relations for (quasi-)elastic N-scattering: Let us introduce the differences

$$
\begin{align*}
& \nu_{L(p, n)}^{l}=\frac{d \sigma}{d Q^{2}}\left(\ell_{L} p, n \rightarrow \ell_{L} p, n\right)-\frac{d \sigma}{d Q^{2}}\left(Z_{R} p, n \rightarrow Z_{R} p, n\right) \tag{41}\\
& d_{R(p, n)}^{e}=\frac{d \sigma}{d Q^{2}}\left(e_{L}^{+} p, n \rightarrow e_{L}^{+} p, n\right)-\frac{d \sigma}{d Q^{2}}\left(e_{R}^{-} p, n \rightarrow e_{R^{-}}^{-} p, n\right) \tag{42}\\
& \varepsilon=\frac{d \sigma}{d Q^{2}}\left(\nu_{n \rightarrow e_{L}^{-}}^{-} p\right)-\frac{d \sigma}{d Q^{2}}\left(\bar{\nu}_{p \rightarrow e_{R}^{+}}^{+}\right)= \tag{43}\\
& =\frac{d \sigma}{d Q^{2}}\left(e_{L}^{-} p+\nu n\right)-\frac{d \sigma}{d Q^{2}}\left(e_{R}^{+}{ }_{n+\nu} \bar{\nu}_{p}\right) \tag{44}
\end{align*}
$$

We also consider (quasi-)elastic scattering of leptons on the nuclear target of deuteron. For this purpose we shall use the following relations between the cross sections:
$\alpha_{L}^{l} \equiv x_{L(p)}^{l}+\mathscr{N}_{L(n)}^{\ell}=\frac{\mathrm{d} \sigma}{d Q^{2}}\left(\ell_{L} \mathrm{~d} \rightarrow \ell_{\mathrm{L}} \mathrm{np}\right)-\frac{\mathrm{d} \sigma}{\mathrm{d} Q^{2}}\left(\bar{l}_{\mathrm{R}} \mathrm{d} \rightarrow \bar{l}_{\mathrm{R}} \mathrm{nP}^{\prime}\right)$,

$\varepsilon=\frac{d \sigma}{d Q^{2}}\left(\nu d \rightarrow e_{L}^{-} p p\right)-\frac{d \sigma}{d Q^{2}}\left(\bar{\nu} d \rightarrow e_{R}^{+} n n\right)=\frac{d \sigma}{d Q^{2}}\left(e_{L}^{-} d \rightarrow \nu n n\right)-\frac{d \sigma}{d Q^{2}}\left(e_{R}^{+} d \rightarrow \bar{\nu}_{p p}\right)$.

$$
\begin{equation*}
\text { Following formulae }(16)-(18),(20) \text {, we obtain: } \tag{47}
\end{equation*}
$$

$\left.\mathscr{N}_{1(p, n)}^{\ell}=\omega\left(E, Q^{2}\right)\left(F_{V i(p, n)}^{l}+F_{M i(p, n)}^{\ell}\right) F_{A 1(p, n)}^{\ell}\right)$
$\varepsilon=\cos ^{2} \theta_{c} \omega\left(E, Q^{2}\right)\left(F_{V}^{C C}+F_{M}^{C C}\right) F_{A}^{C C}$,
$\omega\left(E, Q^{2}\right)=\frac{G^{2}}{\pi} \frac{Q^{2}}{M E}\left(1-\frac{Q^{2}}{4 M E}\right)$.
Lets us use the scaling law for the FFN:
$G_{M}^{P} / \mu_{P} \approx G_{M}^{n} / \mu_{n}$,

$$
\begin{equation*}
F_{A}^{o} \approx \frac{\lambda}{2} F_{A}^{C C} \tag{50}
\end{equation*}
$$

where $\mu_{p}=2.79, \mu_{n}=-1.91$ are the magnetic momenta of the proton and neutron.

Relation (50) is well-known and valid with a high accuracy in a wide interval of Q^{2}. The scale law for the axial FFN (51) is less reliable. It may have some grounds, for instance, in QCD, based on local duality. [19] or dipole extrapolation of the results of perturbative calculations [20]. However, the experimental status of this relation is not quite clear. The normalization constant λ is calculated or taken from experiment. In the non-relativistic quark SU_{6}-model $\lambda=0.6$. Some difference in values of λ in different approaches as well as deviation from scale law (51) do not lead to noticeable influence on the effecta under discussion. This is explained by the small contribution of $\delta \mathrm{F}_{\mathrm{A}}^{\mathrm{o}}$ to initial formulae (23), due to the small value of parameter δ. One should remember that in the $S M$ at tree level $\delta=0$.

On the basis of formulae (22),(23),(50),(51) we transform (48) into:
$\boldsymbol{x}_{i(p, n)}^{\ell}=\frac{s}{4} \omega\left(\mathbb{R}, Q^{2}\right)\left(F_{V}^{C C}+F_{M}^{C C}\right) F_{A}^{C C}\left(3 \gamma_{i}^{l} \mu \pm a_{i}^{l}\right)\left(\lambda \delta_{i}^{l} \pm \beta_{i}^{l}\right)$,
$d_{i}^{l}=\frac{1}{2} \omega\left(E, Q^{2}\right)\left(F_{V}^{C C}+F_{M}^{C C}\right) F_{A}^{C C}\left(\alpha_{i}^{l} \beta_{1}^{\ell}+3 \gamma_{i}^{l} \delta_{i}^{l} \lambda \mu\right)$,
where $\mu=\left(\mu_{p}+\mu_{n}\right) /\left(\mu_{p}-\mu_{n}\right)$.
Formulae (30)-(38),(49),(52),(53) are initial ones for obtaining the relations independent of DF and FFN. From the cross sections combinations $\Delta, \mathcal{X}, \varepsilon$ one should choose two combinations so that DF and FFN would be cancelled if the combinations are divided by one another. For example, it is seen from (30) and (32) that in the ratio $\Delta_{-L}^{l} / \Delta_{-}$the $D F f\left(x, Q^{2}\right)$ is cancelled. Thus, one can easily obtain all the relations of this kind from formulae (30)-(38),(48),(52),(53). To save place, we do not write them down in the general form, confining ourselves to the approximation $Q^{2} \ll$ $M_{Z}^{2} \approx 10^{4} \mathrm{GeV}^{2}$ and $\mathrm{M}_{Z}, \gg \mathrm{M}_{2}\left(\mathrm{M}_{2}>\mathrm{M}_{4}\right)$. The latter conditions
corresponds to the $S M$ limit. If the given approximation is inapplicable, e. g. in HERA experiments where $Q^{2} \approx 10^{3-5} \mathrm{GeV}^{2}$, one should use the formulae in the general form.

Since electron scattering is due to both weak interaction W and electromagnetic interaction $E M$, the structure of the relevant formulae is $E M^{2}+E M \cdot W+\mathcal{W}^{2}$. In the Q^{2} region considered the leading term is the one with the maximum power of EM. As to the neutral current parameters and the dependence upon the Z^{\prime}-boson contribution, they all are included in $\mathrm{W}_{\text {: }}$ So, below we give the relations that do not involve the dominating term EM ${ }^{2}$ which is of little physical importance. In the formulae we shall only retain the leading term of the EM.W type corresponding to electroweak interference. In this case the accuracy is worse by no more than $1-2 \%$, for $Q^{2}<200 \mathrm{GeV}^{2}$. In the given approximation the desired relations have the following form:
-for $\nu \mathrm{N}$-scattering
$\frac{{ }^{(} \bar{\Delta}_{-L}^{\prime \nu}}{\Delta_{-}}=-(1-y)^{2} \frac{{ }^{〔} \bar{\Delta}_{-L}^{\prime \nu}}{\bar{\Delta}_{-}}=\frac{1}{6} \rho^{2} X_{H}\left[\left[1+(1-y)^{2}\right]\left(1-2 X_{H}\right) \pm\left[1-(1-y)^{2}\right]\right\}$,
$\frac{\bar{\Delta}_{-L}^{\nu}}{\Delta_{-L}^{\nu}}=\frac{\left(1-X_{H}\right)(1-y)^{2}-X_{H}}{\left(1-X_{H}\right)-X_{H}(1-y)^{2}}$,
$\frac{\Delta_{ \pm L}^{\nu}+\bar{\Delta}_{ \pm \mathrm{L}}^{\nu}}{\Delta_{ \pm} \pm \bar{\Delta}_{ \pm}}=\left\{\begin{array}{l}\rho^{2}\left(1-2 X_{W}+\frac{20}{9} X_{W}^{2}\right) / 2 \\ \rho^{2} X_{W}\left(1-2 X_{W}\right) / 3\end{array}\right.$,
$\frac{\Delta_{ \pm L}^{\nu}-\bar{\Delta}_{ \pm L}^{\nu}}{\Delta_{ \pm} \mp \bar{\Delta}_{ \pm}}=\left\{\begin{array}{l}\rho^{2}\left(1-2 X_{W}\right) / 2 \\ \rho^{2} X_{H} / 3\end{array}\right.$,
$-\frac{x_{L}^{\nu}(p, n)}{\varepsilon}=\frac{\rho}{4 \cos ^{2} \theta_{c}}\left\{1-2 X_{W}(1 \pm \mu)\right\}, \quad-\frac{\lambda^{2}(p)^{+\alpha}}{\delta} \frac{L(n)}{\nu}=\frac{\rho}{\cos ^{2} \theta_{c}}\left(\frac{1}{2}-X_{W}\right)$,
narrow-band beam (NBB). This limits the statistics for extraction of the parameters $\left(p, X_{W}\right)$. The situation is quite opposite for relations (56)-(58), among which there is the Paschos-Wolfenstein relation (formula (57)). They are formulated for total cross sections, which is much more favourable for gathering statistics, but these are combinations of νN - and $\bar{\nu} N$-scattering cross sections. As a result, there are uncertainties related to different normalization of ν and $\bar{\nu}$ beams

Among relations, (59)-(62) for eN-scattering we'd like to single out three last relations for ${ }_{N}^{e} \mathrm{C}$ (62). Their definition does not include the cross sections for charged current eN-scattering, which is a rare process occuring only due to weak interaction. These relations do not involve the parameter p. As a result the extraction of the remaining parameter X_{W} from the data becomes more reliable. We also notice, that ${ }_{N}^{e}{ }_{N C}$ is very sensitive to X_{H} :

$$
\mathrm{K}=\frac{\mathrm{d}}{\mathrm{~d} X_{W}} \log x_{\mathrm{NC}}^{e}=\frac{1}{X_{W}\left(1-2 X_{W}\right)} \approx 8 \text { for } X_{W}=0.23
$$

So, in the error ΔX_{W} induced by the error $\Delta x_{N C}^{e}$ in the measurement of $\mathcal{R}_{\mathrm{NC}}^{\mathrm{e}}$ is suppressed by a large factor $\mathrm{k}=8$:

$$
\begin{equation*}
\Delta X_{W}=\frac{1}{6} \frac{\Delta \dot{R}_{N C}^{e}}{R_{N C}^{e}} \tag{65}
\end{equation*}
$$

The sensitivity of other relations, includins the PaschosWolfenstein relation, is much lower and does not exceed $\mathbb{K}=1$

A question of electroweak corrections to the relations obtained has been left unconsidered in the paper. It requires special study similar to that in Ref [21] applied to the PaschosWolfenstein relation, where the authors showed that the contribution of the corrections is amall and can be neglected in a
good approximation. Similar properties could be typical of the electroweak corrections to all relations (54)-(62), whose particular case is the Paschos- Wolfenstein relation. There are some reasons for that based on the similarity in the structure of all relations obtained. But this is still a hypothesis.

Table. Chiral constants $\varepsilon_{L}^{Z^{\prime}, R}$, parameterizing fermion- Z^{\prime} boson interactions (Here $\xi=\frac{1}{2} \mathrm{Bin} \theta_{\mathrm{E} 6} / \sqrt{10}, \lambda=\frac{1}{2} \cos \theta_{\mathrm{E} 6} / \sqrt{6}$).

fermion	$\varepsilon_{L}^{z^{\prime}}$	$\varepsilon_{R}^{z^{\prime}}$
ν	$\lambda+3 \xi$	$5 \xi-\lambda$
e	$\lambda+3 \xi$	$\xi-\lambda$
u	$\lambda-\xi$	$\xi-\lambda$
d	$\lambda-\xi$	$-\lambda-3 \xi$

The authors are thankful to D.Yu.Bardin, C. Burdik, Yu.P.Ivanov and B.Z. Kopeliovioh for the useful discussions.

References

1. F.Paschos, L. Wolfenstein, Phys.Rev.D7. (1973) 91.
2. J.Rosner, Comments Nucl.Part.Phys. 15 (1988) 195.
3. R.W. Robinett, Phys.Rev.D33 (1986) 1908;
M.Dine et al., Nucl. Phys. B259 (1985) 519.
4. D.London, J. Rosner, Phys.Rev.D34 (1986) 1530.
5. D.London, G.Belanger, J.N.Ng, Mod.Phys.Lett.A2 (1987) 343.
6. E.Cohen, J.Ellis, K.Enqvist, D.V.Nanopoulos, Phys.Lett. 165B (1985) 76; J.Ellis, K.Enqvist, D.V.Nanopoulos, F.Zuirner, Nucl. Phys.B276 (1986) 436.
7. R.W.Robinett, J.L.Rosner, Phys.Rev.D25 (1982) 3036;
P.Langacker, R.W.Robinett, J.L.Rosner, Phys.Rev.D30(1984)1470.
8. T.G.Rizzo, Phys.Rev.D34 (1986) 1438.
9. V.Berger, N.G.Deshpande, K. Whisnant, Phys.Rev. Lett. 56(1986)30;
V.Berger, N.G.Deshpande, J.Rosner, K. Whisnant, Phys.Rev.D35 (1987) 2893.
10. P.J.Franzini, F.J.Gilman, Phys.Rev.D35 (1987) 855.
11. F.Cornet, R.Ruckl, Phys.Lett.B184 (1987) 263.
12. V.A.Bednyakov,S.G.Kovalenko, Sov.J.Nucl.Phys. 49 (1989) 866;
V.A.Bednyakov, S.G. Kovalenko, Phys.Lett.B214 (1988) 640.
13. L.S.Durkin, P.Langacker, Phys.Lett.B166 (1986) 436.
14. G.Costa et al., Nucl. Phys.B297 (1988) 244.
15. U.Amaldi et al., Phys.Rev.D36 (1987) 1385.
16. G.Belanger, S.Godfrey, Phys.Rev.D34(1986)1309;D35(1987)378.
17.. S.Capstick, S.Godfrey, Phys.Rev., D35 (1987) 3351.
17. V.A.Bednyakov, S.G.Kovalenko, Prepr.JINR, E2-89-295, Dubna, 1989.
18. V.A.Nesterenko,A.V.Radyushkin, Phys.Lett.B128 (1983) 438.
19. I.E.Carlson, J.L.Poor, Phys.Rev.D36 (1887) 2169.
20. F.Paschos, M.Wirbel, Nucl.Phys. B194 (1882) 189.

Received by Publishing Department on July 6, 1989.

