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1.Introduction 

During the last time one observes a revival of the interest in the Nambu - Jona -

Lasinio (NJL) model [1]. The most important feature of this model is the spontaneous 

breakdown of chiral symmetry. Generalizations of the original NJL model allow one to 

reproduce the low-energy chiral phenomenology with a minimal number of parameters [2] 

- [7]. 

On the other hand, NJL models have of course some significant shortcomings. They 

are not renormalizable and do not contain quark confinement. Furthermore, their relation 

to the gluon exchange in QCD is not clear so far, at least in the continuum field theory. 

And practically, NJL models do not describe heavy quarkonia and Regge phenomenology. 

In this paper we give the foundation of a regularized new version of the NJL model 

obtained by means of a separable approximation [8] to a relativistic potential model [9] 

for small orbital momenta, I = 0, 1. Thereby, the latter is a generalization of the nonrela- · 

tivistic QCD potential model with rising potential [10]. The reasons for the occurrence of 

the divergences in the NJL model as well as the impossibility of the description of heavy 

quarkonia become clear. 

The modifications of the original NJL model concern the Lorentz structure of the four­

quark interaction and the introduction of the model parameters ( one for each flavour). 

We use it to describe quark-antiquark bound states within the Bethe - Salpeter approach. 

Thereby, we extend results of [6] as well as our earlier work [11] dealing with the two -

flavour case to the three - flavour one. 

2. Formulation of the model 

In [9] a relativistic bilocal potential model has been put forward intended to describe 

hadrons within QCD. Thereby, two assumptions were used made indirectly in QED by 

considering atoms. These are, first, the invariant decomposition of the gauge fields into 

Coulomb and radiative parts and, secondly, the identification of the time axis of the gauge 

field quantization with the relative time axis of the bound states. (The latter means, that 
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the Coulomb field moves together with the atom). According to Markov and Yukawa [12] 

the unit vector 1/µ. of the relative time is choosen as operator parallel to the operator of 

the total momentum P,,. of the bound state, 

z+y 
M(z,y) = M(X = -

2
-lz = z - y), 

where 
• 1 8 

P,,.M(Xlz) = -i ax,,. M(Xlz). 

The relativistic invariant bilocal effective action obtained in [9], takes for the quark 

sector in the colour singlet channel the form 

S,11 = j d4z { q(z) (if)- m0
) q(z)-

2
~ j d4y q(y)q(z) K"(z - y) q(z)q(y) } . (1) 

C 

For simplicity we omitted in (1) all spinor, colour and flavour indices. N, means the 

colour number. m0 = diag ( m~ , m~ , m~ ) denotes the bare quark mass matrix. The 

kernel K" has the form 

K"(z)=71 V(z.L) c5(z•11).71. 

Here 11,,. is the time axis of quantization [9], [13] with 71 = 11,,.,"', 112 = 1 and z; = 

= z,,. - zll, zll = 11,,.(z • 1/). V(z.L) denotes the sum of Coulomb and oscillator potentials: 

( ) 
4 a, 2 .L 

V r = -(-- + Vi,r ), r = lz I. 
3 r · 

In short - hand notation action (1) can be written as [14] 

1 
S,11 = (qq,-G-')- 2N (qq,K"qq). 

C 

After quantization over the quark fields it takes the form 

1 
S,n[M] = N, { 2(M, (K"t' M)- i Tr ln (-G;i,! + M)} (2) 

with M = M ( z, y) being the bilocal field; Tr means both the integration over continuous 

variables and trace over discrete indices. 

The extremum condition for action (2) coincides with the Schwinger - Dyson equation 

for the quark mass operator E : 

E(z) = m0 c54(z) + i K"(z) · Gi;(z), (3) 
where 

Gi;1 (z) = i {Jc54(z) - E(z). 

This equation defines the quark mass spectrum. 

2 

,-,_"'> 

The Bethe - Salpeter equation in the ladder approximation for the modified bound 

state field M'(Xlz) = M(Xlz) - E(z) is given by 

M'(Xlz) = -iK" j dz,dz2 Gi;, (z1 - z2) M'(z'; z2 lz1 - z2) Gi;,(z2 - z1). ( 4) 

It follows from variation of the free part of effective action (2) over fluctuations M'. 

Equation ( 4) defines the bound state mass spectrum. 

Let us now introduce the bound state vertex functions rH via a plane wave expansion 

of ,vt': 

M'(Xlz) = I:/ (dP)3 ~ [e•1'nXaJi(P)rH(P) + e-•1'nXa:ii(P)tH(P)], 
H 21r v2wH 

where WH = JM1£ + Ph i~ the bound state energy and PH = (wH, PH) the total 

momentum. a1i and a:U denote the corresponding creation and annihilation operators. 

Then, from (4) we get the Bethe - Salpeter equation for r 
d .L 

r(p.L) = - / (2:)3 Y(p.L - q.L) Vo(q.L) 0 r(q.L) (5) 

with 

Vo(q.L) 0 r(q.L) = / ~: 71 Gi;,(q.L) r(q.L). Gi;,(q.L) 71 ~r 1/>(q.L) .. (6) 

The Bethe - Salpeter equation for the wave function 1/> reads 

J 
d .L 

1/>(q.L) = -Vo(P.L) (
2
:)3 Y(P.1 - q.1) 1/>(q.1) · (7) 

Now, in the case of a short - range potential ( m < < µ ) we make use of the separable 

approximation [8] , 

Y(P.l - q.l) = /(p.l)/(q.l). 

Then, after integrating (7) over q.l with the weight /(q.l)/(21r)3 we get 

r' ~ J 
dq.L 
(21r)3/(q)1/>(q) = 

J dp.L 2( ) ( .l , 1 J.L dp.L ( .L) , 
- (21r)3/ PVoP )0rc:-µ' 

0 
( 21r)3VoP .r 

(8) 

(9) 

The last relation of (9) is obtained after substituting the formfactor / 2(p) by a 

0 - function ( corresponding parameters µ 2 and L can ever be found ). Analogiously the 

Schwinger - Dyson equation (3) has in momentum space the form 

J dq.L 2 m, N, J.L dq.L m, . 
m, =mo,+ (2,r)3/ (q)2E(q) c: mo,+ µf o (21r)3 2E(q) ' (i = u, d, s). (10) 

3 



Integration in (10) leads to 

8 2 2 - N m; [L' 'l 2L] 
11" Jli - cm; - m? - mi n mi (11) 

Relations (9) and (10) show that in the separable approximation (8) the underlying 

potential model is equivalent to a regularized NJL model with the kernel 

K-'Jm(z) = Tl S'(z) Tl . 

Then, action (1) becomes the effective action of a generalized NJL model: 

S;W = j d4x{ q(x) (ip- m0
) q(x)-

2
~c [ q(x) Tl;,-• q(x) ]2 

} . (12) 

Here the parameter matrix ;,-1 = diag ( µ;; 1 , µ"j1 , µ-; 1 ) has been introduced for phe­

nomenological reasons. The difference to the original NJL model lies in the choise of the 

four - quark interaction term, which in our case depends on the time axis of quantization 

and breaks flavour symmetry. 

3. Meson properties 

From our.model with effective action (12) we calculate the low - lying meson masses 

M11 within the Bethe - Salpeter approach [15] . Thereby, it is sufficient to consider the 

underlying equation (9) in the rest frame ( Tl= -y0 and P11,, = (M11, 0, 0, 0) 

JI .Ne I d
4
p M11 lI ( M11 f = -i- -- 1'0 Ga(P + -) f Gb p - -ho • 

µ 2 (2,r)4 2 2 
(13) 

Now, we decomppse f 11 as 

1 0 2 (14) 
{ 

fH = fH + 1' . fll 

H SS PP VV AA f 1 = -y L1 + -y L1 + 1'; Lli + 1', Lli 

where· -y5 = 1 , -yP = -y5 , -yf = -y, , -yf = -y,-y5 and l = 1, 2; i = 1, 2, 3 . Then, the 

Bethe - Salpeter equation (13) decouples into the following sets of algebraic equations 

_ JLa/Lb L{ 
NC 

_ /La/Lb L{ 
Ne 

C1L{ + B1L{ 

D 1L{ + B 1Lf (15) 

The coefficients B 1
, C 1

, and D 1 , which are in general complex quantities, are given by 

{ 
B 5 =BA= MnA-(Mn) > 

BP= Bv = _M11A+(Mn) ; 

4 

ij 

~

' 
,, 

:) 
J 

{ cs = CA + ½.B = Ds + ,B 

cP = cv + ½.B = DP + .B ; • 

{ D5 = DA - ½.B = (m1 - m,)A-(MH) 

DP= Dv - ½.B = (m1 + m2)A+(Mn) 

A±(MH) 

,B(MH) 

1 
2 [ m1a1(M11) ± m2a2(M11) ] 

1 ' 2 [ .B1(MI1) + .B,(Mll) I ; 

( 
a 1(Mn)) (L dk 1 1. ( 1 ) 
.Bi(Mn) = lo (2,r)3 · E1 · (E1 + E2)2 - Mk+ if· k' 

(a2 ,,B2 are obtained from a 1 ,,B1 by interchanging indices 1 and 2 ) . 

System (15) has an unambiguous solution if 

(ReC1 - /La/Lb)(ReD1 - /La/Lb)- (ReB1 )2 = 0 
. Ne· Ne 

(ImC 1
). (ImD 1

) - (ImB1
)
2 = 0 . 

We will use just these equations to determine the mass spectrum. 

(16) 

Let us now briefly explain how to calculate the pion and kaon decay constants. Ac­

cording to (14) the Bethe - Salpeter vertex function for the pseudoscalar sector can be 

represented as rP = -y5Lf +-y0-y5Lf. F,, and FK are defined by the pseudoscalar part of 

the axial - vector coupling in the second term of action (1) which reads 

SJ!!;(Mp) = 4:ctr11 [ CP(Mp)(Lf)' + DP(Mp)(Lf)2 + 2BP(Mp)(Li)(Lf) ] (17) 

From the last term on the r.h.s. of (17) we obtain the decay coµstants in the form 

FP; = 2 Ne A+(Mp;) Lf;, (i = u,s) (18) 

with Fp. = F,,, Fp, = FK. Here the value of Lf; follows from the normalization condition 

for the Bethe - Salpeter vertex function : 

d•p f / (21r)•(rH(pn+rH(P)(Po-Wn)Mn = 1 (19) 

As has been shown in [11) from (19) one gets 

1 8 (2)P ~ 
Pp BPp S1.,. (Pp)j-pp;Mp = 1 , Pp= yPp . 

Then, with the help of (12) we obtain 

P, [ 4Nc 8 p( ) 1_1 L1 = --
8 

c Pp l'Pp;Mp , . 
Pp Pp · 
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4. Numerical results 

Here we present the results for the isospin symmetric case mo,, = mOd , mu ,;, md. Our 

theory contains five parameters : the bare quark masses mo,, = mod, mo., the parameters 

µ! = µ~, µ! , and the cut - off L . µf and Lare connected by relation (11). 

To fix the parameters we take, as input data, mu= md = 330MeV, m, = 400MeV, 

M,. = 140MeV, MK= 494MeV and Mp= 770MeV. Then one obtains for N, = 3, 

L = 1590MeV, µ! = µ~ = 8.7 -104(MeV)2, µ! = 9.7 -104(MeV)2 with the help of 

(10): m0u =mod= 2.lMeV, m 0, = 56MeV, M,, = 660MeV, Ma, = (1132 - i654)MeV, 

MK* = 896M e V, M+ = 970M e V . From (18) one gets for the decay constants F,. = 

108MeV and FK = 149MeV, so that FK/F,. = 1.38. For the quark condensates we 

find< ifuqu >= (-234MeV)3, < ij,q, >= (-246MeV)3. 

5.Conclusion 

A new QCD- inspired version of the NJL - model with effective action (12) has been 

obtained ( as a separable approximation for the low - lying resonances ) from a relativistic 

potential model. Thereby it became clear how to continiously turn from the spectroscopy 

of light quark to that of heavy quarks. But for the latter, the QCD potential is a long -

- range one and the simplest separable approximation is not applicable, so that the NJL 

model does not work in this case. 

From our model we calculated for the three - flavour case the low - lying meson spectra 

within the Bethe - Salpeter approach. In distinction to the usual procedure [2] - [4], [7], 

we did not expend in energy. Therefore, in our treatment no tachyons appeared, whereas 

their occurrence was claimed in [16] for the QCD low - energy expansion. Furthermore, 

we took into account the P - A, V - T, and S - V mixings from the very beginning 

by using decomposition (9) of the Bethe - Salpeter vertex function r. With the help 

of the normalization condition (19) for r we were able to determine the pion and kaon 

decay constants. The quark condensates have been analyzed, too. The numerical results 

reported in sect. 4 are in reasonable agreement with experiment. 
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