
89-417 

V.M.Dubovik, S.V.Shabanov* 

Oti'b8AMH8HHbll 
MHCTMTYT 
RA8PHbiX 

MCCJ18AOB8HMI 

AYtiH8 

E2-89-417 

TRANSVERSE-LONGITUDINAL PART 

OF A VECTOR POTENTIAL 

IN CLASSICAL ELECTRODYNAMIC!) 

Submitted to 11 Journal of Physics A11 

* Novosibirsk State University 

1989 



1. Introduction 

About. 60 years ago Fock [1] and Weyl [2] proposed the principle 
of gauge symmetry for describing the interaction of charged partic­
les with an external electromagnetic field. It consists in the requi­
rement for the Schrodinger equation to be invariant under both local 
transformations of a phase of a wave function and simultaneous gradi­
ent transformations of electromagnetic potentials. In this approach, 
the interaction of an electromagnetic field with matter is described 
by the vector-potential and both electric and magnetic fields become 
its products. Then the principle of gauge symmetry was generalized 
to the nonabelian case by Yang and Mills/JI Blld it becames one of 
fundamental principles of the moder~ elementary particle physics. 

In classical physics the interaction of electromagnetic field 
with charged particles is described by Maxwell-Lorentz equations which 
are presented only in terms of both E (electric) and · B (magnetic) 
fields, and potentials are auxiliary quantities. Thus_, on the one 
hand, the passage to quantum mechanics demanded altering look on 
the physical meaning of a classical vector potential and, on the 
other hand, the potential concept turned into defining potentials 
with respect to field strengths after the proclaiming the principle 
of gauge symmetry, as the main cause of existing interaction of par­
ticles in nature. 

However, in electrodynamics there exists an ambiguity in deter­
mining potentials up to a gradient of an ~rbitrary function. This 
initiated the discussion about a possibiltiy of observing such poten­
tials configurations which generate no eiectromagnetic field ~] • 
To a great extent this discussion was stirred up by that a gauge was 
usually fixed for picking out physical degrees of freedom of a vec­
tor potential. But, on the other hand, gauge conditions can be chose 
in arbitrary ways. For example, the vector potential distributed 
about the solenoid with a constant internal magnetic field.does not 
vanish everywhere in one gauge (Coulomb gauge), but in an other gauge 
it can be turned into zero everywhere except a certain plan~ [5]. 
It we want to keep the positions of locality and short-range interac­
tion then the question arises. What (which a real field) does a char­
ged particle being near by the solenoid interact with? Note that the 



formulation of electrodynamics in terms of strengths gives a non­
local interaction of a charge with an external field in quantum 
mechanics [6] • 

In the present paper, based on the generalized Hamiltonian dyna­
mics by Dirac171 for systems with constraints,we show that in elect­
rodynamics there exists a gauge-invariant degree of freedom of a _ 
vector-potential generating locally no electromagnetic strengths E 
and B. It turns out that a quantum charged particle interacts loc­
ally just with this degree of freedom.Then we give both Lagrangian 
and _Hamiltonian forms independing on a.gauge choice for describing 
interaction of ch~rged particles in an electromagnetic field, and 
that is more, our consideration does not contain Mandelstam path­
-depending integrals [8-10]. 

Based on the developed formalism we get the gauge~independing 
form of quantum theory in which it is shown that the found degree of 
freedom a vector-potential, as any physical field, can influence 

..pllyeieal tielEI-, physical systems, in particular it induces an elect­
ric current in a superconductor. 

2. The canonical formalism for electrodynamics with an external 
current 

f' 
The electromagnetic action with an external current J = 

::: (9,f) (p. = 0,1,2/3) ) p is a charge density~ j is a 
current density) has the form 

s = J d\ f 4 F. ~ - A Y') r "Jt . c2.n 
Here f}<'II = a,,. A)I - o . .., Ar is the strength tensor, the_~etric 

tensor 3;n> = cl.1°'1 (1, - ~ ,-1,-f), A,._ = (Ao ;-A ) 
are scalar and vector pote~tials, respectively. Action (2.1) is 
invariant under gauge transformations 

A f'-➔ AJ'-- - '"of'-w ) jr - Jr (2.2) 
therefore the 4-current is a local-conserving quantity 

a14 ~v = a-t .P + clit>- J = o . (2.J) 
The gauge symmetry (2.2) leads to constraints on dynamic vari­

ables of the theory (7] i.e., between canonical coordinates and con­
jugated momenta there are relations.containing no time derivatives. 
Pora consistent dynamic description of a system with constraints, 
it is necessary to use the Hamiltonian formalism generalized by 
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Dirac [7]. Por this purpose we pass from action (2.1) to the Lag­
rangian 

L J d3x ( ~ F;~ - A7 ~f~). 
(2.4) 

<;,LL. L 
Defining canonical momenta Tift.= /SA~= •;,o in a standard 
way we can see that there is a primary constraint :fro = O. in 

the theory and ~ = - E., = J\n + On A0 , n = -1 , 2 , '3 , 
en is an electric field. The Hamiltonian of the system.is 

H = Jcl3x [J["11112
+B~)+A/0:0n+J)-~tAJc2.5) 

i , . 
where Bn -::: 2 £ nice F 1C.t stands for a magnetic field·. Por a 
consistent dynamics the condition "'ll'o =0 should hold at all 
moments of time l7] , i.e., 

'lf0 = ~ ~o} HJ = - d;IT" - J o. 
(2.6) 

The Poisson brackets is defined in the following way 

lAV(x),'fij\(~)} = 'ii; ~'.lc~-~o- (2.7) 

Eq.(2.6) is a secondary constraint which sould be fulfilled at all 
moments of time 

{011'Tin+J,, Hj = \~,;'ITn" H1 =·~" l, =0. 
. (2.8) 

As Eq.(2.8) does not contain dynamical variables, there are no 
restrictions on canonical coordinates A A and 'Ti y except·. (2 .6) 

and "'1ro = 0 , and all constraints are of the first class [7] 
A part from ordinary electrodynamic constraints we have got the 

additional condition on external current (2.8). Prom Eqs.(2.J) 
it follows that 'o-t J ~ O • However, the Maxwell equations do not 
co~ta~ sue.! a restriction on j}(- • Actually, - 'ii.9/'S ;if = -wtB-
- dt c - j = 0 , and taking divergence of both sides of this 

equality we find that <"oi cl.Iv.. E + cl.;19- f = ~ _p + dl'IJ. f = 0 
because of the conservation lBJi' (2.J). The question arises: is 
Eq.(2.8) either an artifact of the Hamiltonian formalism or is there 
Hamiltonian dynamics without restriction (2.8)? It turns out that we 

can get rid of restriction (2.8) by the redefinition of Lagrangian 
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(2.4) or action (2.1) so that the equations of motion will be equi­
valent to the initial ones. 

The origin of additional restrictions on external parameters in 
theories with constraints is quite clear. The external parameters 
are given functions of coordinates and time and their Poisson 
brackets with the Hamiltonian always vanishes. 

At the same time the evolution of canonical variables in time 
is determined by their nonvaniahing Poisson brackets with the Hamil­
tonian. However, constraints can contain external parameters (see 
(2.6)). Then the requirement for constraints to fulfill at all mo­
ments of time can lead to some restrictions on the time dependence 
of external parameters, which has been found in passing from (2.6) 
to (2.8). Thus, to eliminate similar restrictions from a theory, it 
is enough to construct the Hamiltonian formalism in which constraints 
do not contain external parameters. In the general case this requi­
rement is not necessary because secondary constraints depend on the 
Hamiltonian form, i.e., successive finding of all conditions of 
consistency cannot lead to restrictions on external parameters in 
spite of that a part of constraints may depend on them. However, 
this question requires a special investigation. Here we shall study it 
in the case of electrodynamics. 

It is well known that the Lagrangian and hence the Hamiltonian 
rectricted from equations of motion have ambiguities, namely, the 
Lagrangian is always defined with an accuracy of a full divergence. 
Nevertheless, for systems with external parameters there is a supp­
lementary freedom in choosing the action we shall demonstrate this 
for electrodynamics with an external current. 

Consider the action f 

s' = 5cl4xf.LF2-o(Ao-L1-~nAn)-l-j (An-oJI(£ Ak)] 
t4 fV J n (2.9) 

here ·h. - 1 is an operator inverse to the Laplace operator 
f1 = OnOn in the whole space /R 3 • It is easy to test that by 

using the conservation law of current (2.J) notion (2.9) is that its 
corresponding Lagrangian density is gauge-invariant. Note that Lag­
rangian (2.4) is not invariant under gauge transformations. It gets 
an additional term that can be rewritten in the form of a total 
time-derivative by using the conservational law of current (2.J). 
Actions S I 

and S do not differ from each other by an integral 
of' 4-divergence therefore their variations over A}( give diffe­
rent equations of motion, which are, however, equivalent to each 
other if' Eq.(2.J) takes place. This is the additional freedom in 
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choosing the action of a system with the external parameters. Really, 

ss ~ -sx· = -E .. J + 'lot 13 = o 
(2. 10a) 

s ~' =-E .- 5 + 't.AJ-t s + ~ 11-
1 
(ap .'1/<J =. o 

5A (2.10b) 
Variations of (2.1) and (2.9) over A 0 coincide and give Eq.(2.6). 

Consider the Hamiltonian formalism for action (2.9). Obviously, 
canonical momenta are 

bL 
":fro = -. = 0 Tin 

'o Ao ' 

-1 

~ ~ ::: - En + dn ~ f · 
S An (2.11) 

Hence, the Hamiltonian of the system has the following form 

H = ~ d3x [t(qr; + s: -JLi-JJ + A0"cnAn + 

+ JL\-i d~n + J n t-A n "'-dn ,1-i OK AK)] . (2 .12) 

Now the condition of consistency of dynamics does not contain external 
parameters: 

{ 91o , H ] = -oh~ = o. 
(2 .13) 

To pick out physical (gauge-invariant) degrees of freedom, it 
is necessary to accomplish a canonic.al transformation that diagonali­
zes constraint (2.13), i.e., converts the constraint into an equality 
of some generalized momentum to zero. Following papers [11] we intro-
duce new variables _ 1 

.J.., = An -vnoK <l Al( / -1 A J = L1 'on 11 , 

c. ;::'91: -o'.d,, 6-
1
<rik; Wt-= -"anTin c2.14J 

cl'I " n "" , -> • 

It is not difficult to check that both pairs Jn, E 11 

are canonical conjugated quantities. Constraint (2.13) 
ables has the required form , "9T"'i = O • So, unphysical 
out to be ~ and AO as their momenta are equal to 
ly and there are only two physical degrees of freedom 

and J" 7"1,.! 
in new vari­
variables turn 
zero identical­
c/.11 J dr,o{l'l=O. 

It is well known that when passing to gauge-invariant variables in 
the Hamiltonian unphysical variables become cyclic i.e., the Hamil­
tonian does not depend on them. In fact, 

H ph = 1 d3x [-1 ( cnl + Bn2 
- _f Ll-1;) - J :ctn] ( ) 

., 2. 15 
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..1 -~ 1-t 
4 - 'f -o !:,. 0 J where Jn - J n n K I< is the tansverse part of a 

current. The last addend in(2.15) is equal to the last term i~ 
(2.12)ae j.,-=-J~+'ch.ii-1dicJI( and 'd"ol"' =vviJ,,...l..s 0 
The third term in (2.15) is the Coulomb energy. The Hamiltonian 
equations of motion in gauge-invariant variables have the form 

• J. , 7 
t-n = 1 f",Hrd =l, -~IC:t13l<.;cln= {oln,Hf'h1=E.,c2.16) 

that coincides with Maxwell equation of the relation 
C' =- E.1. =--1:: +1.Li-ld. f following from (2.14) and (2.11) is 
Cn n n n K. K 

taken into account. 

J. Nature of the vector-potential 

As has been already noted, the postulation of the gauge prin­
ciple, as a basic principle for describing the interaction of a field 
with matter, has initiated the discussion 'of the vector potential -nature. Is A simply a convenient form for describing inter-
actions of quantum particles with en electromagnetic field or is 
it a more fundamental physical concept than a field itself? A reason 
for a negative answer to this question is usually the ambiguity in 
determination A (see (2.2)). Really, the observed quantities, li­
ke E and B , cannot depend on gauge arbitrariness. Below we shall 
demonstrate that guage-invariant degrees of freedom of the vector 
potential can be excited in some apace regions in which, however, 
both electric and magnetic fields are absent. In this sense the 
concept of the potential already in claeefoal theory turns out to be 
more fundamental than fields themselves. 

Pirat let us consider the question of e class of permissible 
I 

functions in (2.2). Though the action ::3 is invariant with respect 
to transformations (2.2) with an arbitrary function UJ , there 
are some restrictions on w • Actually, calculate a circulation of 

the vector potential over an arbitrary closed contour C! limiting 
an area . 

~ (ldl)=JS c~s-tX,~)=Jf(sJ~J~:r. 
c 6 G o.1> 

Essentially, the magnetic field flux cf> is a gauge-invariant. 
However we can replace in the left-hen~ aide of Eq. (J.l) A ...,,.A+vw, 
then we find that the circulation of Vw over an arbitrary closed 
coutour may vanish. Thia is the necessary and sufficient condition 
of one-valuedneee of the function [12]. 
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~very observed quantity Frn [AJ<,"JTA:, 1,.J depending on 
canonical variables and external parameters j~ should be gauge­
-invariant and satisfy the following equation~ 

(J.2) { ~h ,Tio J = { Fr}, , Tr~ ~ = 0 
since first class-constraints are generators of gauge transformations 
(7). Eqs. (J.2) obviously, mean that Fp}, does not depend on 

Ao and that is a longitudinal component of the vector poten­
tial. Since ':1fo ="It~ = O, the dependence of F rn on ":ffo 
and '9f; is also absent. Hence 

Ffh = ~ [ J, z) J, f J, 
(J.J) 

i.e., every quantity observed in experiments depends only on gauge­
invariant variables oL" ; En and e~ternal currents. 

Let us take the variable oL. itself as en observable and n -+ __.,, __,. 

calculate it in apace regions, where f e B = 0 • If· E = 0 
then we may set O = O and 'o ... A = O for simplicity. It 

➔ J .... - -ry' 
follows from B = O that 'ro-t A'= O and thus, A = V .JI. • 
Ii: B := 0 in the whole apace IR3 , then substituting 

A-==v.f. into (2.14) we find J:=o . Another situation arizea 
if there exists a region V in which B # 0 • In this case 

[ 

v(-) ..,. -v -

A
._ r.-) _ A x. ::t € Y , 7.,0-t A = B , 

lx - -}' c--) ➔ -y o -O V :x: Xe. ) D-
(3.4) 

we have 

and there is the condition of countinuity on a boundary of a region 

?JV; V:i=Av '::;, C:=oV ,i.e. B=Oat :CE~V. 
Apparently, a condition of that abprt does not restrict our conside­
rations. A real current always is distributed over a epatiallY. exten­
ded region.Two- and one-dimensional current carriers are ideai objects 
for which we must pay be the introduction of corresponding conditions 
for magnetic field components. Note also that the region R3

\ y is 
multiconnected. Really if B :::/= 0 only in V , then there 
always exists a countour that is not in V , the magnetic flux 
through which is nonzero. Por example, this coutour can be chosen 
on the surface r;JV ( B = 0 'X'. S "o V) as 1he lines of the magnetic 

_, ' --field are always closed : ~1V"' B=O. Hence, the function :f. in (J.4) 
should be multi-valued. Since a curculation of- V .}\ over tbe 
coutour described avobe zero, does not vanish. So, in spite of a 
"pure gauge" from of the vector potential in 1R3.\ V it cannot be 
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reduced to zero by a gauge transformation as functions W _ in 
(2.2) should be single-valued (see (J.1)). In other words A in 

R3 
\ V bas a gauge-invariant part. To pick out it explicitly, we 

calculate the functional oln[ A] for configuration (J.4) at 
a point X e V • We find 

I -'d 1 d ~ s A~(ff) J3 + ')') j 'dKfGV (p 
0'--11 - n + n I( Li~li:'-iTj J n IC 'J q;; lx-H1 g . 

v d IR \V (J.5) 
After integration by parts in the ~econd integral in (J.5) we get 

X = v j:fh -t \>tAJ = 1 s· A~~9) di -~ J: yo C!P{:Cff) Ji 
1 J' "Wtlx-ffl <1 n.f 4'iljx':t1( <1' 

S'v <i(J.6) 

where -i ~ V } a V is the external normal to the sur-

face ')y , [6'~ is an element of the area 7J V • Punctional 
(J .6) is gauge-invariant ( AV~ Av+ Vw 1 ➔ J,+w) and moreover, 
is a harmonic function in the region R3< V ('";lnol. 11 =11:/fn:.O)i.e_/fr~ 
gives a solution of the corresponding Dirichlet problem for the' 
Laplace equation in the.multi-connected region. ' 

Por the simplest regions V formula (J.6) can be simplified. 
Since }.th [A] is g~ge-invariant, we can transform (J.6) in any 
appropriate gauge of A and. 'j (in the Coulomb gauge also) if of 
course, it is not singular for a given distribution of currents crea-

... v 
ting both A and j. i.e., it completely fixes the gauge arbitra-
riness and is regular defined at all points of the space JR 3 • Ac­
ting proceeding in a similar way, we find for double-connected regi-
one 

fph[A] =-f(-x:) § (A,rle) = -f[x)<p 
c! , (J. 7) 

where <p is the flux U:irough the count our C tba t is in JR 3 
\ V 

and once encircles the region Y , and the function :f ('JC) depends 
on the geometry of the region y . Por example, for an infinite 
solenoid directed along the O 2 axis, f (X) = 0 k9, where 6) 
is the polar angle of the cylindrical system of coordinates. 

Thus, we conclude that around the regions occupied by th_e magne­
tic field there is a real physical field distributed in vacuum, like 
both electric and magnetic fields. If charges and currents are sour­
ces for electric and magnetic fields, respectively, the source of the 
field 'J.. ?h , according to (J.7 ), is the magnetic field flux. 
A peculiarity of the picked out degree of freedom of the vector 
potential (J.6) consists in that o/...'n =')n }-Ph is both longitudinal 
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and transverse simultaneously. Just the fact that an unphysical part 
of the longitudinal component of the vector potential J vanishes 
for configuration (J.4 )·.and ,l_ n 1= 0 allows us to consider 
this longitudinal-transverse degree of freedom of the vector poten­
tial to be physical. 

Expression (2.15) represents the total energy of an elec!romag­
netic field with external sources. Let us take the current j in 

-:;,. _,.. _., I 

the form :J .- J + J where S we shall call a trial current 
system and j is an external current. We shall assume currents f _, . 
and J independent i.e., they have not common carriers. Let also 
the configuration of r be such that there exists a magnetic 
field only in some region V and an electric field is generally, 
absent (compensated), i.e •. only-, :f. Ph . is distributed out of V. 
Put the trial current system J out of Y . Then the energy 
of this cu~ent system in the external field J Ph created by the 
current :J is (see (2.15)) 

E =-j cfx: { J'-\ V jph) = 0, 
J2. (J.8) 

where Jl is the volume in which currents flow. The equality of 
the integral to zero follows from the requirement that the current 

J-,.L has no normal component on the surface 'a9.. (out of S2. -,, J =O). Generally, the integration region, according to (2.15) 
can be._!eplaced ~ a larger region Q'.::, Q , S2' n Q = 0 since 
both j and ) 1 have no common carrier. In this c·ase Eq.(3.8) 
becomes obvious. 

However, if S?. is broken into smaller parts then the ener­
gy of individual parts may turn out to be nonzero due to the surface 
contribution (on the surface of the part of Q 1 j 1 .L can have a 
normal component). What is the physical meaning of this energy? 
To answer this question, one should make a certain assumption about 
the nature of the current f' , i.e., to formulate its microsco­
pic theory. So, in the framework of electrodynamics with an external 
current it is impossible to answer the question about physical actions 
of the field f Ph on current systems. This is a consequence of 

electrodynamics being incomplete [13]. 

4. Hamiltonian dynamics of a particle in an electromagnetic 
field 

Let us assume that the current of a trial system is induced by 
moving classical particles (pointed). To describe tbe interaction of 
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charged particles with the field 
,-f'ph p , one should find the 

gauge-invariant formulation of dynamics of the system of the elect­
romagnetic field and charged particles. Usually, the Mandelstam 
formalism is used \j, 10] • However, in our opinion, this method 
of describing the interaction of charged particles with the elect­
romagnetic field is deprived of a physical clarity in a sense*), 
moreover, particular calculations through this formalism are highly 
cumbersome [14] , although they have explicit gauge invariance. 
We,_shall solve the task presented above by the Hamiltonian forma­
lism where gauge-invariant variables have a simple physical meaning. 

The standard Lagrangian of interaction of a charged particle 
• I 

with an external electromagnetic field is 

i . :i (- -) A L = 2 rnv- +e A,lJ" -e 0 , 
(4 .1) 

~ ~ --+ 
where V- = L ; t. is a radius-vector of the particle. Under 
gauge transformations (2.2) Lagrangian (4.1) is added with a total 
derivative, L- L + e ¾tw ( '1/d.i = 'o-1: + (u·,V) is a material 
d_erivative) therefore the Lagrangian equations of motion remain 
invariable under gauge transformations. Interaction in (4.l) is 
described by 5 cP:c l 5 A - _?Ac) t where 1 = e. v'. ~ 3 c~ -~) ' 

J :::. e <o'1 ('r - 'r) , therefore, by analogy with (2. 9) the gauge-in­
variant Lagrangian has the fo:z:in 

L = Lex-t+f t-m~'1}$2 +eq,~l(A-~~-~nA.,)-ei(Ao-,1-~rvnA")} 
f (4.2) 

Here L ext is the Lagrangian of the electromagnetic field 
with external sources 1 )" corresponding to action (2. 9), and 
inatead of one particle we take a set of particles enumerated by 

•> -- A~ Par example, in Ref.(9] authors propose to replace A by = 
. = A - ? s c! (A, <Ir) in the interaction Lagrangian for ~,char­
ged particle with an electromagnetic field. The quantity A is 
a gauge invariant depending on the contour C ~Let A= VJ be 
out of v_ and r ~lso_,be out of V t then. AT vj:. J = V :f:--v ~c (vj.., cJ.e)==vf,-V(f-tC»wtf)=O,but the gauge-invariant variable 

J._. is nonzero (see (J.6)), i.e., in the suggested formalism [9] 
the degree of freedom jfh is absent. We emphasize that the intro­
duction of of.. as a canonical variable diagonalizes constraints, 
therefore cf.. contains full information about physical degrees of 

freedom in electrodynamics. 

IO 

:! 

f ., 

, 
tpe index i . These particles form the current 1 of a trial 
system. }'-

Passing to the Hamiltonian formalism-we determine canonical 
momenta , 

n _ 'o L. _ n -f 
P.0 - " 1J-n - mq ~ + ea ( A 11 -1 /1 cl A ) 

v o i r r r n K 1< (4.Ja) 
~ L .. . , 

'Jio = '?) A =- O) (4.Jb) 
0 I 

. _sl_:::- -~ '.l_ eq, 
:lt/T)- '8A,.C:r) fn+'dnAJ-f~nLfi1l~xl~4-Jc) 

In addition to (2. 7) we put { -r;, p4' j = tn.., ~'iq'. By usual rules 
one can find the Hamiltonian of the system and verify that secondary 
constraints are setted. by Eq.(2.13). Then we pass to new canonical 
variables (2.14). As a result, we get the Hamiltonian written through 
physical gauge-invariant variables 

-~ -t e e ~ 2. H =H -L.elly+-:>- ~ ~., +l.~-rri:...eJ.), 
~h '2)'.t i 1 .t t*1' 4Tl l1rt;,\ !L ~ mi~, 1 (4.4) 

where Hex~ is Hamiltonian (2.15), the second term in (4.4) is the 
energy of Coulomb interaction of charged particles with external 
charges J , and what is more, EiJ should be taken at the 
point '{1 , the third term is the Coulomb energy of charged partic­
les from which the infinite self-energy of every point-like charge is 
eliminated. The Hamiltonian equations of motion do not depend on 
gauge and have the form 

l O = { ol , H ph 1 = E ri , 

En C '.(_) = { E 11 > H Ph 1 = .t.1. C -x:) + E ri k'.e c) I( Be C x) + 

+z ei, S..1.(i-iq)(p/-ecl.."'") i m'i, 111< r 1 'l, , 

~ = {>li,Hr") = ~}(fi - e1cZ) . 

(4.?a) 

(4.5b) 

(4.5c) 

~=\Pi) Hp'h) c::= 'C; t7J 11 - ~Vcouf1 (4.5d).l. 

where we have taken i~to account that l ol....,c.(x.), £,...(~)J = slc...c-~--~)== 
= (_b. -.ti.- 1 'o/on)~ (x:-~) and V cou.f is a sum_ of the second 
and third terms in (4.4) and the configuration of d 
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Now let J>=O be such that there exists a spatial region in 
which jPh is distributed. Per example, consider the motion of 
charges in the field of the infinite or toroidal solenoid. In this 
case the term of interaction in (4.2) ( A0 -= 0, dtA = 0 ) bas the 
form of the total derivative ~ e~(~1V)j:i'lt :== dfcltfe~ f P"h(ii) 
Which can be omitted from Lagrangian (4.2)? This might be expected 
as the motion of classical particles in the externalfl.eld is descri­
bed _ by they Lorentz equation in which contains only E ., B and 
they_vanish here. 

·From the viewpoint of the canonical formalism the essence con­
sists in the following.Although by passing from (4.1) to (4.2) we 
have destroyed the gauge ambiguity of the particle momentum (4.Ja) 
is ·gauge-invariant) nevertheless, in the definition o~ the canoni­
cal momentum there is an arbitrariness that is larger then the gauge 
freedom in electrodynamics. Really, if we alter the Lagrangian of a 
system, L - L + ¼t- Jc. Ji is an arbitrary function of 

_, ~ -JO'(") 

coordinates and time, then p - p + V .;£. • Multivalued function 
Q are also admissible here. This arbitrariness.does not'influ­

ence the Hamiltonian equations of motion although the Hamiltonian 
depends on Q • Note, however, that when we pass to quantum.mecha­
nics, the mul ti-valuedness of Q influences the form of wave func­
tions. If we consider the wave function single-valued, then 52 should 
not enter into its phase. Thus, we have found that classical particles 
do not feel the field jf>h , in such idealized consideration. 

There is one remark here. We have neglected the influence of the 
trial system of charges on the source iJ of the external field which 
should remain stationary to remove both E and · B field out of so11e 
region V • Obviously, a moving charge creat~ the emf of induction 
in contours where currents flow, therefore, J will no longer be sta­
tionary. Hence, in the region of motion of a charge there arises an 
"external" magnetic field wpich influences the charge. In other words, 
the charge influences itself by its own magnetic field by means of 
winding along which the external current flows (however, the existence 
of ·external current in winding is not already necessary for this 
effect) • 

,f Ph Though a powe action of field ./' is absent on a classical 
particle nevertheless · :J. Ph bas a clear physical meaning. The 
Coulomb field of a charged particle penetrates into the region 
therefore the electromagnetic momentum in V differs from zero 

...... - 1 r cP [~ ~- - -,7 p ( 'z\) = 'l'ri t ~ vl·i\-~1 ' B('X'J , (4.6 > 
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where B(i) is the magnetic field in the region V is the 
position vector of charge eq. (? '\, S V ) • • After simple calcu­
lations one can be convined of [15] that 

l>(1VJ=e'lvjf'h(?i). (4.7) 

For this we have integrated (4.6) by parts and have used Eq. (2.16) 
~ ~ - ..L • ~ -:- f' {'h 

in the stationary case 'to+ D = -- 6d... = J , where c1- "'"'v J' • 
So, in the classical theory j- Ph describes the momentum of the 
electromagnetic field in the system charge-stationary solenoid. 

5. Quantum theory and superconductivity 

Using the rules of can~nical quantization for Lagrangian (4.1) 
we obtain the Schrodinger equation describing a quantum charged par­
ticle in an external electromagnetic field 

i hot 'P [ 
1 c·.,.... e. _,.)2 A.] 

2m f-cA +e-: 'fl. (5.1) 

Here p == - ~{1? is the momentum operator (for more clarity we 

restore the dependence on the ligh velocity C ). Eq.(5.1) is inva­
riant under gauge transformations (2.2) with simultaneous phase ro­
tations of the wave function 4' - exp ( ,i, %cw) \.fl 

To answer the question about a possible influence of the exter-
nal field }-fh on a quantum trial particle, it is necessary, as 
in (4], to write Eq.(5.1) in terms of gauge-invariant variables. 
This could be made directly (without (5.1)) by quantizing the theory 
determined by the Lagrangian (4.2) written only for one particle 

L' = i m1l + ~ ('t\ ( A - v Lii (v, A)))+ e.1y, cs.2 > 

where we have used the constraint ~h E., -.5' = -..1 A0 - d A -_p = O 
n n 

for transforming the last term in (4.2). Hence, 

1.i11t4'p1-i = Li'" ( ?- ~ ;r_ )2- et.-)] 4'P~ · c5•
3

, 

Eq.(5.3) can also be obtained from (5.1) by introducing 
-invariant wave function 

r . . e. --1 A ' 4'rh .= e,x(l'"-._-1-t,e b.. 'on ., J'V. 

the gauge-

(5.4) 
Substituting ~ into Eq.(5.1) we get Eq.(5.3) if the constraint 

o.,E~ =.f is taken into consideration for transforming the term 
of the Coulomb interaction. Substitution (5.J) corresponds to the known 
result that both the phase of a charged field and a longitudinal 
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component of a vector field A are linear combinations of one 
physical end one unphysical degrees of freedom [11] • Put 

J = 0 1 J:=:-<v 'Jpk in (5.J ). It is well known that the spectrum of 
the Hamiltonian can depend on the solenoid field if the one-valued­
nese of a wave function is assumed [16] • Otherwise, the substitution 

\Jlph = e)(f (i :<! f P"') 'f 
(5.5) 

reduces Eq.(5.2) to the equation for a free particle. The energy 
spec~rum does not depend on jPh in this case and function (5.5) 
becomes multi-valued in view of the multi-valuedness of } J'h • 
Por example, for a charged rotator in the field of the infinite sole­
noid U-6] we have 

u · _ 1 ( -&12.)2 =Jc(e- tl)2
\lJ c:f \/J 

n 'Vph - .n L2 :J.'flc frn .21 .2,t1ic fph e fph · 
(5.6) 

Here I is a moment of inertia, l is any integer , L 
2 

= - i. ~ ½ 0 
is the operator of the angular momentum projection on.the axis 0~ 
in cylindrical coordinates, j?" is taken from (J.7) where 

f(-:c)= G/:i.11 • Eq.(5.6) remains correct if we assume that 
tph l6l+J.T1):,:: '\-'pi,( 0) ---e)(171eB, Then it follows from (5.6) that the rotator 
spectrum Ee depends on 'j I'll at noninteger e_-:fi /:L'Jr'n (! • 

The consideration of a rotator shows th~t the field jphchanges 
the rotation energy of a quantum particle. Hence, the macroscopic 
manifestation of the field jPh is. possible only as a coherent 
quantum effect. The superconductivity gives the simplest and, 
apparently, most visual example of it. 

The free energy of a superconductor of volume Yin the exter­
nal electromagnetic field is given by the Ginzburg-Landau functional 

Fs ==) d\:{-al\j}(2+Jl'IJ('+:m '11)(-iiiv+ ~eAl'l-'3 I 

V (5. 7) 

where 'r' is the complex order parameter of the wave function of 
the Cooper pair in the BCS model, YYI is the electron mass, e is its 
charge. Our further analysis will be qualitative. We shall not solve 
the Ginzburg-Landau equation exactly. A matter of principle for us 
is the following: can the field j.Ph have a possibility to influ­
ence a real physical system or not, i.e., is there a way of observa­
tingJph? In other words, is a method to elucidate whether the mag­
netic field exists inside the solenoid without any manipulations 
with the solenoid itself? 

Therefore we omitted the magnetic field energy in the super­
conductor, i.e., disregarded the depth of penetration of the field 

B into the superconductor. 
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The basic state of the superconductor is specified by the ab­
solute minimum of its free energy. However, when switching an 
external field, relative energy minima can arise where the system can 
be kept for arbitrary time. If the external field is absent, then the 
absolute minimum is reached at '\':::: 'fo := c;nvii. e., when the kinetic 
energy assumes zero values, and l'-l'o/2 = a; 8 (coefficients Q and 
B are determined from thermodynamical properties of a superconductor). 
Usually '¥,,is normalized as lf.,I~ n6{:L where Yl1 is a number of 
paired electrons per unit volume (in general 1 I'-\' I 2 is a density of 
Cooper pairs). 

Consider a ring made from a superconducting material and put on 
the solenoid. If the ring temperature is T > Tc. , where Tc 
is the critical temperature, the current in the ring dies down. 
Let us stabilize the flux of the magnetic field for T '> Te 
Then, upon cooling the ring to T <:: Tc. it transforms into su-
perconducting state. Let us find the wave function of the ground 
state of a superconductor in this case. Thus, using substitution . 
(5.4) (where e. __,. .!2e ) we rewrite Fs through gauge-invariant 
variables cL and 't' and, then, we pass to cylindric coordinates in 
the kinetic energy operator which becomes ~ ... l-~·r2. - t ½'l. t.'"¾'l+ 
+ 1/T..~ (-i'½e - if/cp

0
}l·) , where we have substituted J:=- 9:/= 

-==. e~ <3?/.1.'n 'Z.. e_ is a basis vector of the cylindric coordi-
v 1 e . 

nate system, ~o =-·n:1iC/e is the magnetic flux quantum (fluxon). 
The only difference of the kinetic energy operator, as compared with 

the case 1 Ph = 0 , consists in the charge of the rotation 
energy of the condensate, therefore, the minimum is reached on function 

'\1ph independing both of c and 1l: , i.e., 

r '.l [ 12 BI I" -tl /JC r_ ,rJ ~)2 7 Fs :::: )/- x_ -o. I %h + JI. 'l',h - .lir>r tl JpnC'or ~o 'Vr~•(5.8) ·. 

Hence, the minimum of Fs is reached when \ 'f'rn j 2 ~ I 4'o / 2 • The 
phase of \yph fa only altered (see (5.6)). Assuming wave function 
to be multi-valued we see that the function 

\}Ip-., = 'fo eXf (i e 4/ Po) 
(5.9) 

realizes the minimum of f 3 according to (5.5) the function is 
multi-valued st q:> =I= integer ,x Po therefore the angular momen-
tum of the Cooper pair can tak·e all real values. If the angular mo­
mentum is quantized with an integer, i.e •• the wave function is one­
valued, then the function 

15 



'f rn = '¥0 e~ t eoe > eo = [ o/p~] 
(5. 10) 

gives the minimum of Fg • Here .f.0 is the integer to be chosen 
from the condition of minimal Fs 

1 
'[ 512 / ~ 

0
] means rounding 

of <;f/~
0 

to the nearest integer. Between solutions (5.9) and 
(5.10) there is an essential difference. The state with a nonzero 
curr~nt corresponds to solution (5.10), but there is no current for 
state (5.9). In fact, the density of a superconducting current is 

1t _e. r 31 r_·i-= ..2e ~ h ] 
Js - ~1'11 l \Vph \. tn\7-c o( )'Yrh + .c. (5.11) 

The substitution (5.9) into (5.11) gives J!! -::::O but for (5.10) 
we find ee e n/f, (eo ~ o/ri.) 

.').rn'Zc 10 I 
-j~ 

(5.12) 
where 'to is the ring radius. It follows from (5.12) that '1 s can 

have different directions in dependence on €0 . • If ~ =fJPo +}Po 
where N is integer, the system turns out to be in the state with an 
unsteady equilibrium as F5 is identical for both oases Yno = N 
and rYlo i= N + 1. • After "throwing down" the system into one of 
minima the current j S gets maximal in absolute value. 

There is the Bloch theorem according to which Fs has a 
minimum at ~ s -= 0 • We emphasize that the statement of this theo-
rem relates to the absolute minim1llll of Fs • State (5.10) defines a 
relative minimum which turns out to be steady. The appearance of the 
current in the situation described above can be explained in a suffi­
ciently simple way. The magnetic flux passing through the supercon­
ducting ring should be quantized, i.e., it should be divisible by ~o• 
Thereby, after a passage of the ring into a superconducting state 
the current arises in it, the magnetic field of which supplements the 
total magnetic flux through the ring to an integer number of quanta 
Although (5.12) may only serve as the first approach to the solu-
tion of Ginzburg-Landau equations, nevertheless, it gives a correct 
qualitative picture of the phenomenon. But for quantitave estimates 
of the current. the known formula Is= C (<J?o eo - e.) IL ' where L 
is the contour inductance, can always be used. This formula is exact 
for superconductors [17] • We want to add the question to the presen­
ted reasonings which real physical field makes the Cooper pairs to 
move thus creating a current? If we keep the field-theoretical inter-
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pretation of interating matter, then there is no other, locally 
interacting with matter field (see (5.J), (5.8)).except "jph 

In conclusion of this paragraph we note that the behaviour of a 
superconductor in the field of a solenoid was discussed in Ref. [18] 
in connection with quantization of the angular momentum. 
However, the authors of ref. {j.a] were not correct in their reasonings, 
for example, their use of thetCoulomb gauge and also the use of sin­
gular gauge transformations (on the occasion of it see (?-9] were 

incorrect. 

6. Conclusion 

As a matter of fact, the field j ?h can produce a mechariical 
influence. Consider two simple•(but difficult in experimental reali­
zation) examples. Let the frame made from a suitable material be hung 
up in a vertical plane and the toroidal solenoid be run through the 
frame (the toroidal solenoid should be taken to exclude the return 
magnetic flux). Moreover, let the external constant homogeneous mag­
netic field B

0 
be run through the frame. Put the frame so that 

the flux of Bo through it would be quantized. Then, after cooling 
this frame to T.::::: Tc the frame begins to oscillate if the fiux 
inside the solenoid is not quantized. The frequency of small oscil-
lations is w =- ( Ts <l?ti<t / I J Va. • where r ~ is the super-
conducting current in the frame, SPei<-t is the flux of B 0 

through the frame and 'I is its inertial moment with respect to 
the hanging axis (oscillations of the frame with a current in the 
external magnetic field). Besides, the turning scales can be used for 
observing mechanical recoil in the superconducting ring when a super­
conducting current appears after cooling. When the Cooper pairs b~gin 
to move coherently, the atomic frame of the ring gets a recoil in 
according to the conservation of angular momentum. So, oscillations 
of the turning scales will arise, the amplitude of which will be 

XiiTsl11e./wee-H 1 M is the ring mass, We is the natural 
frequency of the turning scales, l'l1e is the electron mass. 

Certainly, in technical aspects it is more easy to observe elect­
romagnetic displays of fph by using SQWID's. Moreover, the Aha­
ronov-Bohm effect should be interpreted as the result of scattering 
a charged particle by the field ·"f::Ph , as follows from (5.3). 

.l:!ased on the simplest idea o:r-1short-range interaction, i.e. the 
transfer of interaction by a field we should point out, in the analysis 
of the above-mentioned effects what physical (i.e., independent of gauge) 
field influences charged particles. We have demonstrated, using both 
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the principle of gauge symmetry and postulates of quantum mechanics, 
that just the field j.Ph can be the only transmitter of interac­
tion. In this connection, we would like to recall the paper by T.T.Wu 
and C.N.Yang [20] in which they have introduced the "minimal" desc­
ription of electromagnetic interactions in terms of a nonintegrable 
phase factor ~ (A'-Je). Again, keeping the idea of abort-range 
interaction and_ locality, one should point out what field is respon­
sible for the appearance of this phase factor in the wave function 
In other words, how the stokes theorem works in electrodynamics, 
wben:by going around the solenoid over a closed contour we find 
the flux of a magnetic field inside the solenoid (see (J.1)). The 
reference to mathematical reasons (milti-valuedness of the functions 

j beyond V in (J.4) of this does not turn out to be convin­
cing from a physical view point because one can take a real physical 
system as the contour, for.example, the superconducting ring descri­
bed above. It seems to be incredible tbatthis nonintegrable phase 
factor of a wave function of a charged particle appears by a jump, 
for example, wben·crossing same plane (such gauge can be chosen for 
the vector potential [5] ). Thus, the existence.of the physical 
{gauge-independent) field distributed in vacuum throws light upon 
these problems. 
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)ly6oBHK B.M., Illa6aHoB C.B. 
ilpO.D:OJihHO-nonepetmaH KOMllOHeHTa BeKTOpHoro 
llOTeHQHaJia B KJiaCCHtieCKOH 3JieKTpO,nHHaMHKe 

E2-89-417 

B KnaccHt~ecKoii 3JieKTpo,nHHaMHKe B paMKax o6o6rn:euuou 
raMHJibTOHOBOH .D:ID:IaMHKH )lHpaKa ,noKa3aHO cyrn;eCTBOBaHHe 
<lJH3HtieCKOH (KaJIH6pOBOtiHO-HHBapHaHTHOH) CTeneHH CB06o,nhi y 
BeKTOpHOrO llOTeHQHana, He C03,narorn;ero 3JieKTpOMarHHTHbiX llOJieH. 
)laHa KaJIH6pOBOtiHO-HHBapHaHTHaH <iJopMyJIHpOBKa 3JieKTpO,nHHaMH­
KH 3apH)!(eHHbiX tiaCTHQ, B paMKax KOTOpOH o6cy)!(,naeTCH BOllpOC 
o ua6nro,neHHH uaii,neuuou cTeneHH cso6o,nhi. iloKa3aHO, tiTO oua 
HBJIHeTCH npHtiHHOH B036y)!(,neHHH TOKa B CBepxnpoBO,nHW:eM KOJibUe, 
uaxo,nHrn;eMcH B none coneHoH,na. 

Pa6oTa BbinOJIHeHa B na6opaTOpHH TeopeTHtieCKOH <PH3HKH 
Ol1JU1. 
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Existance of a physical (gauge-invariant) degree of freedom of 
the vector potential generating no electromagnetic fields is proved in 
classical electrodynamics within the Dirac generalized Hamiltonian 
dynamics. The gauge-invariant form of electrodynamics of charged 
particles is given within which the question of observing the obtained 
degree of freedom is discussed. It is shown that it causes an electric 
current in a superconducting ring put.on the solenoid. 
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