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1. Introduction

‘About 60 years ago Fock [1] and Weyl [2] proposed the principle
of gauge symmetry for describing the interaction of charged partic-
les with an external electromagnetic field. It consists in the requi-
rement for the Schrodinger equation to be invariant under both local
transformations of a phase of a wave function and simultaneous gradi-
ent transformations of electromagnetic potentials. In this approach,
the interaction of an electromagnetic field with matter is described
by the veétor-potential and both electric and magnetic fields becoume
its producta. Then the principle of gauge symmetry was generalized
to the nonabelian case by Yang and M1115/3/ and it becames one of
fundamental principles of the modern elementary particle phyaica.

In classical physics the interaction of électromagnetic field
with charged particles is described by Maxwell-Lorentz equations which
are presented only in terms of both E (electric) and B (magnetic)
fields, and potentlials are auxiliary quantities. Thus, on the one
hand, the passage to quantum mechanics demanded altering look on
the physical meaning of & classical vector potential and, om the
other hand, the potential concept turned into defining potentials
with respect to field strengths after the proclaiming the principle
of gauge'aymmetry, as the main cause of existing interaction of par-
ticles in nature,

However, in electrodynamics there exists an ambiguity in deter-
mining potentials up to a gradient of an arbitrary function. This
initiated the discussion about a possibiitiy of obaerving such poten-
tials configurations which generate no eiectromagnetic field [] .
To & great extent this discussion was stirred up by that a gauge was
usually fixed for picking out physical degrees of freedom of a vec~
tor potential. But, on the other hand, gauge conditions can be chose
in arbitrary ways. Por example, the vector potential distributed
about the solenoid with a constant intermal magnetic field.does not
vanish everywhere in one gauge (Coulomb gauge), but in an other gauge
it can be turned into zero everywhere except a certain plane [5].

If we want to keep the positions of locality and short-range interac-
tion then the question arises. What (which a real field) does a char~
ged particle being near by the solenoid interact with? Note that the




formulation of electrodynamics in terms of strengths gives a non-
local interaction of a charge with an external field in quantum
mechanics [6] .

In the present paper, based on the generalized Hamiltonian dyne-
mics by pirac’ 7/ for systems with constraints,we show that in elect-
rodynamics there exists a gauge-invariant degree of freedom of a -
vector-potential generating locally no electromagnetic strengths E
and B . It turns out that a quantum charged particle interacts loc~
ally just with this degree of freedom.Then we give both Lagrangian
and Hamiltonian forms independing on a gauge choice for describing
interaction of cherged particles in an electromagnetic field, and
that ‘is wmore, our consideration does not contain Mandelstam path-
-depending integrals [B8-10] .

" Based on the developed formalism we get the gauge-independing
form of quantum theory in which it is shown that the found degree of
freedom a vector-potential, as any physical field, can influence '
phyeoieal-Lfield, physical systems, in particular it induces an elect-
ric current in a superconductor.

2. The canonical formalism for electrodynamics with an external
current

}(

The electromagnetic action with an external current y =

— ) —_—
= (p,j) (p = 0,1,2,3) , P 18 a charge density’ Y 1s a
current density) has the form

S = jdl'x (—-}(—F:“f, —Aﬂﬂ")

(2.1)
Here F)“, -rb A rb A is the strength tensor, the__inetric
tensor 8 v = i.a,g (4 -1, \(Ao TA )

are scalar and vector potentiale, respectively. Action (2.1) is
invariant under gauge transformations

A= A ;o A= Ik - (2.2)

therefore the 4-current is & local-conserving quantity
ro_ ,,[\j’_
,}j _%P+w =0. (2.3)

'The gauge symmetry (2.2) leads to constraints on dynamic vari-
ables of the thecry [7] i.e., between canonical coordinates and con-
Jugated momenta there are relationsAcontaining no time derivatives.
For a consistent dynamic description of a system with constraints,
it is necessary to use the Hamiltonian formalism generalized by

P e

e 7

Dirac [7] . Por this purpose we pass from action (2,1) to the Lag-

rangian
Lo (202 - A
L= felgRiaT).

Defining canohical momenta %ﬁjk ///i4 = F;a in a standard
way we can see that there is a primary constraint <fi; =0. in
the theory and <3, = - E A * 0 A, s n=1,2,13

2
En is an electric field. The Hamiltonian of the system is

H = J e (4 e)en amep -1 A e

where B, = 9_ ‘C_nke F\c(’, stands for a magnetic field. For a
consistent dynamics the condition = <o =0 should hold at all
unounents of time [7] s 1ee.,

Ty = 4T, H = 0T -9 =

(2.6)

The Poisson brackets is defined in the followiﬁg way
N) v 3,
<y X -
{AC), T =9, . o

EQ.(2.6) is a secondary constraint which sould be fulfilled at all

moments of time
HY =71,

[WTp, MY = {2,

(2.8)

As Eq.(2.8) does not contain dynamical variables, there are no
restrictions on canonical coordinates A}JL and ‘ﬁ)* except:(2.6)

and S, =0 « and all constraints are of the first class [7] .
A part from ordinary electrodynamic constraints we have got the

additional condition on external current (2.8), From Eqs.(2.3)

1t follows that "0, $ =0 . However, the Maxwell equations do not_

contain such a restriction on ':]),L . Actually, - SS/SA = witB-

—'Bt t - j =0 , and taking divergence of both sides of thie

equality we find that VY div B+ diw T =" p+ dip ¥ =

because of the conservation lew (2.3). The question arises: is h

Eq.(2.8) either an artifact of the Hamiltonian formalism or is there

Hemiltonian dynamics without restriction (2.8)? It turns out that we

can get rid of restriction (2.8) by the redefinition of Lagrangien



(2.4) or action (2.1) so that the equations of motion will be equi-
valent to the initial ones.

The origin of additional restrictions on external parameters in
theories with constraints is quite clear. The external parameiers
are given functions of coordinates and time and their Poiason
brackets with the Hamiltonian always vanishes.

At the same time the evolution of canonical variables in time
is determined by their nonvahisbing Poisson brackets with the Hamil-
tonian, However, constraints can contain external parameters (see
(2.6)). Then the requirement: for constraints to fulfill at all mo~
ments of time can lead to some restrictions on the time dependence
of external parsmeters, which has been found in passing from (2.6)
to (2.8). Thus, to eliminate similar restrictions from a theory, it
is enough to construct the Hamiltonian formalism in which constraints
do not contain external parameters. In the general case this requi-
rement is nét necessary because secondary constraints depend on the
Hamiltonian form, i.e., successive finding of all conditions of
consistency cannot lead to restrictions on external parameters in
spite of that a part of constraints may depend on them. However,
this question requires a special investigation.‘Here we shall study it
in the case of electrodynamiés.

It is well known that the Lagrangian and hence the Hamiltonian
rectricted from equations of motion have ambiguities, namely, the
Lagrangian is always defined with an accuracy of a full divergence.
Nevertheless, for gystems with external parameters there is a supp-
lementary freedom in choosing the action we shall demonstrate this
for electrodynamics with an external current. '

Consider the action 4 ')’D A—‘A )]

1 : -

§' = fdaft gl -p(homa AR (n =D 2 AT,
here 'A"i, is an operastor inverse to the laplace operator
A =(D,:b,, in the whole space Rs . It is easy to test that by
using the conservation law of current (2.3) notion (2.9) is that its
corresponding Lagrangian density is gauge-invariant. Note that Lag~
rangian (2,4) is not invariant under gauge tranaforwations. It gets
an additional term that can be rewritten in the form of a total
time~derivative by using the conservational law of current (2.3).
Actions Sl and ﬁ; do not differ from each other by an integral
of 4-divergence therefore their variations over A give diffe-
rent equations of motion, which are, however, equivalent to each
other if Eq.(2.3) takes place. This is the additional freedom in

e e

'

choosing the action of a system with the external parameters. Really,

- giég.-— _éa - j’ + ‘et B =0

5A : (2.10a)

O . R ~ y
_58' _ E LT wtBepad AT (R 1) =0,

SA (2.10b)

Variations of (2.1) and (2.9) over A, coincide and give Eq.(2.6).
Consider the Hamiltonian formalism for action (2.9). Obviously,
canonical momenta are

5L L __g 4,7 4"
T = — =0 , iy = = = -k, +t7 jg. .
’ b A, ® A (2.11)

Hence, the Hamiltonian of %he system has the following form
H = S NEM [Ji(vw,ﬁ- B? —jDA’Jo) +A 0 A,
- . : -4 ’

f AT, + AT AT A |

Now the condition of consistency of dynamics does not contain external

parameters: .
fsw,H} =39 =0

(2.12)

(2.13)
To pick out physical (gauge-invériant) degrees of freedom, it
is necessary to accomplish a canonical transformation that diagonali-
zes constraint (2.13), i.e., converts the constraint into an equality
of some generalized momentum to zero. Following papers [11] we intro-

duce new variasbles -4
S:A (anAn; ’

-4
th = An -an‘-DKA AK
én =9, ’hbn(DK A”g,“( y Wf = —(}’S‘T" . (2a4)

It is not difficult to check that both pairs Oln, En and jf,‘qrg
are canonical conjugated quantities. Constraint (2.13) in new vari~-
ables has the required form ,‘QT% =0 . So, unphysical variables turn
out to be E and Ao as their momenta are equal to zero identical-
ly and there are only two physical degrees of freedom e[n ,an<1;,=0.
It is well known that when passing to gauge~-invariant variables in

the Hamiltonian unphysical varimbles become cyclic i.e., the Hamil~
tonian does not depend on them. In fact,

Hew = [d% H (& + 8, —fﬂ'ﬁ)*]:%]

5 (2.15)



1 -1
where j'n = \jn—?"A CDK ,]K is the tansverse part of a
current, The last addend 1n(2 15) is equal to the last term in
(2.12) as j§, = 3 +W A 0 and Dpd, =W Y=0 .
The third term 1n (2. 15) is the Coulomb energy. The Hamiltonian
equations of motion in gauge-invariant variables have the form

8./n & (’"\} J lL"ln) gzgn(zns)

that coincides with Maxwell equation of the relation
£, =- E‘ =-E, +'\nA ')KEK following from (2.14) and (2.11) is

taken into account.

nl(_u“' *’

3. Nature of the vector-potential

As has been already noted, the postulation of the gauge prin-
ciple, as a basic principle for describing the interaction of a field
with matter, has initiated the discussion of the vector potential
nature., Is ZT simply a convenient form for describing inter-
actions of quantum particles with an electromagnetic field or  is
it a more fundamental physical concept than a field itself? A reason
for a negative answer to this question is usually the ambiguity in
determination A (see (2.2)). Really, the observed quantities, li-
ke E and B s, cannot depend on gauge arbitrariness. Below we shall
demonstrate that guage-invariant degrees of freedom of the vector
potential can be excited in some space regions in which, however,
both electric and magnetic fields are absent. In this sense the
concept of the potential already in classical theory turns out to be
more fundamental than fields themselves.

Pirst let us consider the question of a class of permissible
functions in (2.2). Though the action ﬁ? is invariant with respect
to transformations (2.2) with an arbitrary function (10 , there
are gome restrictions on (0 . Actually, calculate a circulation of

the veotor potential over an arbitrary closed contour C’ limiting

on e § (FdE) = I (i, d> = [ (845) = .

A (3.1)
Egsentially, the magnetic field flux C_I) is a gauge~invariant.
However we can replace in the left-hand side of Eg.(3.1) ,K'—»’A'+{7>QJ,
then we find that the circulation of Gw over an arbitrary closed
coutour may vanish. This is the necessary and sufficient condition
of one-valuedness of the function DZJ .

6
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Every observed quantity FFh [A/UT/*') :I/‘-] depending on
canonical variables and external paraméters j should be gauge-
-invariant and satisfy the following equations

{ l’h’ i { ph)w‘i?]:o (3.2)

since first class~-constraints are generators of gauge transformations
{7) . Eqs. (3.2) obviously, mean that T, ph does not depend on
Ao and that is a longitudinal component of the vector poten~

tial. Since S, = '“‘S = 0, the dependence of }-p}\ on Jio
and QT(S is also absent. Hence
g — o d
F,= FLLE,pT],
i (3.3)

i.e.,, every quantity observed in experiments depends only on gauge-
invariant variables oln ) En and external currents.

Let us take the variable ./ itself &8s an observable and
calculate it in space regions, where E B =0 . If E =0 ,
9=0 end Ve A= for simplicity, It
- — —
follows from B = O that ‘%ot A :o and thus, A =VY.
Iii B = 0 in the whole space [R3 , then substituting

A =FXL into (2.14) we find Z>=( . Another situstion arizes
if there exists a region V in which RB#( . In this case

we have A’({r’) '_ Av(f) Xev ,‘“%O'ttz\’v: :é”
= —_ - - =0
Vf(”c) teV, (3.4)

and there is the condition of countinuity on a bouj).'dar,w,r of a region

P VL=AY , X eV , l.e. B=pat T €%V.
Apparently, a condition of that a\prt does not restrict our conside-
rations. A real current always is distributed over a spatially exten-
ded region.Two- and one-dimensional current carriers are ideal objects
for which we must pay be the introduction of corresponding conditions
for magnetic field components. Note also that the region R3\_V is
multiconnected, Really if B #0 onlyin 'V , then there
alwaysvexists a countour that is not in °/ , the magnetic flux
through which is nonzero. For- example, this coutour can be chosen
on the surface OV ( B 0 'x: €%V) as the 1lines of the magnetic
field are always closed : 0(1‘1}4 B8=0. Hence, the function £ in (3.4)
should be multi-valued. Since a curculation of V,j(’ over the
coutour described avobe zero, does not vanish. So, in spite of a
"pure gauge™ from of the vector potential in [R3\V it cannot be

then we may set



reduced to zero by a gauge transformation as functions w_. in
(2.2) should be single-valued (see (3.1)). In other words A in

R\ V hes a gauge-invariant part. To pick out it explicitly, we
calculate the functional nl' AJ for configuration (3.4) at
a point % &€ V' . We find

Lo f 0, [ mjﬁ-,ff-@@

g Azgl (TS
After integration by parts in the eecond integral in (3.5) we get ¥
- fUAg=, Al 0 HDLD 4 |
4971 %- *) s
g lﬁ]lr 5( 6) i . !Y
where ’.‘I‘l g€V ,(BV is the external nome.l to the sur-

face r)V ’ &615 is an element of the area dV . Punctional ‘
(3.6)1s gauge~invariant Z{V—» ﬂ'v+ 6’0 f—> +w)and moreover,

is a bharmonic function in the region R3\ */ ("a ody= Afp O)xe
gives a solution of the corresponding Dirichlet problem for the
Laplace equation in the.multi-connected region, '

For the simplest regions V formula (3.6) can be simplified.
Since :XG’)‘ [A] is gauge-invariant we can transform (3.6) in any
appropriate gauge of A and. (in the Coulomb gauge also) if of
course, it is not singular for a given distribution of currents crea-
ting both AV and i.e., it completely fixes the gauge arbitra-
riness and is regular defined at all points of the space ]R3 . Ac~
ting proceeding in a similar way, we find for double-connected regi-

B GO R AR

where q: is the fluxthrough the countou.rc that is in )R \V ’
and once encircles the region v , and the function :S:(oc) depends !
on the geometry of the region . For example, for an infinite Y
solenocld directed along the Oz axis, f(:):): 943,,— where 0
is the polar angle of the cylindrical system of coordinates,
Thus, we conclude that around the regions occupied by the magne-
tic field there is a real physical field distributed in vacuum, like
both electric and magnetic fielda. If charges and currents are sour-
ces for electric and magnetic fields, respectively, the source of the
field fP" , according to (3.7), is the magnetic field flux.
A peculiarity of the picked out degree of freedom of the vector
potential (3.6) consists in that Ognz')n JC"" is both longitudinal

£h

23
:

and transverse siwultaneously. Just the fact that an unphysical part
of the longitudinal component of the vector 'potenfial :g- vanishes
for configuration (3.4) and .,(n + 0 allows us to consider

this longitudinal-transverse degree of freedom of the vector poten-~
tial to be physical. :

Expression (2.15) represents the total energy of an elect;x;omag—
netj.c field _v,yith _ext_ernal sources. Let us take the current 4 in
the form J — ¥+ J’ where S’  we shall call a trial current
system and j is an external current. We shall assume currents T
and 3./ independent i.e., they have not common carriers. Let also
the configuration of T be such that there exists a magnetic
field only in some region v and an electric field is generally,
absent (compensated), i.e,. only fp is distributed out of V.
Put the trial current system J out of \/ . Then the energy
of this cux_-_x;ent system in the external field f"h created by the
current J is (see (2.15))

" -
= &= (J4947) =0,

2 (3.8)
where JU is the volume in which currents flow. The equality of
the integral to zero follows from the requirement that the current

'f has no normal component on the surface 25 (out of £

j =(0). Generally, the integration region, according to (2.15)
can be replaced 11‘{ a larger region Q’ DQ 52 = (0 since
both J and ]’ have no common carrier. In this case Eq.(3.8)
becomes obvious. ’ .

However, if is broken into smaller parts then the ener-
gy of individual parts way turn out to be nonzero due to the surface
contribution (on the surface of the part of Q 2 :]"L can have a
normal coumponent). What is the physical meaning of this energy?

To answer this question, one Should meke a certain assumption about
the nature of the current y 1.e., to formulate its microsco-~
pic theory. So, in the framework of electrodynamics with an external
current it is impossible to answer the question about physical actions

of the field _]('Ph on current systems. This is a consequence of
electrodynamics being incomplete [13] .

4, Hamiltonian dynamics of a particle in an electromagnetic
field

Let us assume that the current of a trial system is induced by
moving classical particles (pointed). To describe the interaction of



charged particles with the field , one should find the
gauge-invariant formulation of dynamics of the system of the elect-
romagnetic field and charged particles. Usually, the Mandelstam
formalism is used B. 10] . However, in our opinion, this method
of describing the interaction of charged particles with the elect-
romagnetic field is deprived of a physical clarity in a sense‘),
moreover, particular calculations through this formalism are highly
cumbersome . [:14] , although they have explicit gauge invariance.
We shall solve the task presented above by the Hamiltonian forma-
1i8m where gauge-invariant variables have a simple physical meaning.

The atandard Lagrangian of interaction of a charged particle
with an external electromagnetic field is

— —
L=gmvi+e (A7) -eA,,
where 6: f ; —'f: 1e a radius-vector of the particle. Under
gauge transformations (2.2) Lagrangian (4.1) is added with a total ;
derivative, - L+ e%tu} ( d/c{‘l: =9, + (1‘}',6) is a material ;
derivative) therefore the Lagrangian equations of motion remain
invariable imder gauge transformations. Interaction in (4.1) is
described by LjA - OA ) , where = eV 33(1’- 3) s
9= e%”(_'r— ‘z) therefore, by analogy with (2.9) the gauge-in-

variant Lagranglan has the form

L= Lot {—"—“e 3 (A FatagA) - g(Aem & %A )}
(4.2)
Here L ext is the Lagrangian of the electromagnetic field
with external sources j}L corresponding to action (2.9), and
instead of one particle we take a set of particles enumerated by

re |

)For example, in Ref. [9} authors propose to replace g by A =
‘ A V S‘ (A d_') in the interaction Lagrangian for _a)/char- ‘I
ged particle witb an electromagnetic field. The quantity A_. ]
a gauge invariant depending on the contour C' ., Let A \v4 :
out of \/ and C also be out of \/ , then A [vj_] =3 f,.
S (Vf de) Vf Vé( c.um‘ Obut the gauge-invariant variable
15 nonzero (see (3. 6)). i.e., in the suggested formalism [9]
the degree of freedom j:ﬂ’ is absent. We emphasize that the intro-
duction of o{ as a canonical variable diagonalizes constraints,
therefore o contains full information about physical degrees of

freedom in electrodynamics.
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the index (i, . These particles form the current J/ of a trial
systen. »

Passing to the Hamiltonian formalism we determine canonical
momenta .

no L "
Pz == =m - -1
i vy ¥ ey (AR, 9.#“.)} (4.3a)
Y M :
¥, = 3 A A, 0, (4.3b)
I

- S ﬂg .

In addition to (2.7) we put {‘r1 R , = 5;""5; /o By ususl rules
one can find the Hamiltonian of the system and verify that secondary
constraints are setted . by Eq.(2.13). Then we pass to new canonical
variables (2.14). As a result, we get the Hamiltonian written through
physical gauge-invariant variables

o [‘ q;@ 4n %7\ ii %7 ‘1(44)
where Flext is Hamiltonian (2. 15). the second term in (4.4) is the
energy of Coulomb interaction of charged particles with external
charges § , and what is more, A-‘ should be taken at the
point Y s the third term is the Coulomb energy of charged partic-
les from which the infinite self-energy of every point-like charge is
eliminated. The Hamiltonian equations of motion do not depend on
gauge and have the form

{DL th} : (4.5a)
én(ﬁ =1€,, th’B = j:('x) + En.ce(bee(m)*" (4.5b)
28 L E (" L)

={’(1’th11=“(?1“€ L) )
P% llP‘P P;\’}, = ‘(1 Vol -V Vw«é’ (4. 5d)
where we have taken into acoount that {.,LK(:t) ¢ (‘4)3 S @C-:j)‘
=(g. -4'0D W On) 83 (- 4) and Vcoul 1is a sum_ of the second_

- and third terms in (4.4) and the configuration of :I .

11



Now let P =0 be such that there exists a spatial region in
which jf?h is distributed. Por example, consider the motion of
charges in the field of the infinite or toroidal solenoid In this
case the term of interaction in (4. 2) ( A =0 rBi_A =0 ) bas the
form of the total derivative Z € ( V) f? "d/clt 7( ('Z ) .
Which can be omitted from Lagrangien (4 2)? This migbt be expected
as the motion of classical particles in the externalfield is descri-
bed by they Lorentz equation in which contains only g, B and
they vanish here.

"Prom the viewpoint of the canonical formalism the essence con-
sists in the following.Although by passing from (4.1) to (4.2) we
have destroyed the gauge ambiguity of the particle momentum (4.3a)
is gauge~invariant) nevertheless, in the definition of the canoni-
cal momentum there is an arbitrariness that is larger then the gauge
freedom in electrodynamics. Really, if we alter the lLagrangian of a
system, [, = [, + é4gt.gf2 S 'is an arbitrary function of
coordinates and time, then P - 7 +—§7JZ. . Multivalued function

Sl are also admissible here. This arbitrariness does not influ-
ence the Hamiltonian equations of motion although the Hamiltonian
depends on s, Note, however, that when we pass to quantum.mecha-
nics, the multi-valuedness of 62 influences the form of wave func-
tions. If we consider the wave function single-valued, then G2 should
not enter ‘into its pbase. Thus, we have found that classical particles
do not feel the field XPh , in such idealized consideration.

There is one remark here. We have neglected the influence of the
trial system of charges on the source 5’ of the external field which
should remain stationary to remove both £ and i; field out of som
region \/ . Obviously, a moving charge qreatgg the em#f of induction
in contours where currents flow, therefore, j will no longer be asta-
tionary. Hence, in the region of motion of a charge there arises an
"external" magnetic field which influences the charge., In other words,
the charge influences itself by its own magnetic field by means of
winding along which the external current flows (however, the existence
of external current in winding is not already necessary for this
effect).

Though a powe action of field :KP is ébsent on a classical
particle nevertheless jQP has a clear physical meaning. The
Coulomb field of a charged particle penetrates into the region
therefore the electromagnetic momentum in \f differs from zero

- 4 —»ez . - ]
P ('11,) T S\'Oﬁt [Vl:c'ril ’ B(T)] ) (4.6)

y
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where B(f) is the magnetic field in the region \% is the
position vector of charge eq' (‘? c V) " o After simple calcu-~
lations one can be convined of [15] that

D=\ = £~ hy o

P(Ey) = e VI™(7). 4.7)
For this we have integrated (4.6) by parts and have used Eq. (2.16) "
in the stationary case <ot = —Ad = '_]‘L , where L =Vf° .
So, in the classical theory Ph describes the momentum of the
electromagnetic field in the system charge-stationary solenoid.

5. Quantumn theory and superconductivity

Using the rules of canonical quantization for Lagrangian (4.1) -
we obtain the Schrodinger equation describing a quantum charged par-
ticle in an external electromagnetic field

. { Y A Y —
thoeP = [E%n( F'%A)*'GAJYJ- (5.1)

Here P :-—11VV is the momentum operator (for more clarity we

restore the dependence on the ligh velocity ¢ ). Eq.(5.1) is inva-
riant under gauge transformations (2.2) with simultanecus phase ro-
tations of the wave function Y —exp (4 %)y .

Tc answer the question about a posaible influence of the exter-
nal field AP ona quantum trial particle, it is necessary, as
in [43, to write BEq.(5.1) in terms of gauge-invariant variables.
This could be made directly (without (5.1)) by quantizing the theory
determined by the Lagrangian (4.2) written only for one particle

. R <L Ve I - '
e (R T T Ry os oo

where we have used the constraint (? E n"P=-4A, —'3 A —j) =0
for transforming the last term in (4.2). Hence,

. _TA _g_ 2-_ - ]

'L‘t’(at ph —LQMCP COL) eAf \Ph' (5.3)
Bg.(5.3) can also be obtained from (5.1) by introducing the gauge-
-invariant wave function

Ve —ex(?(h—A WAV (5.4)

Substituting W into Eq.(5.1) we get Eq.(5.3) if the constraint

?,E, =P 18 taken into consideration for transforwing the term
of the Coulomb interaction, Substitution (5.3) corresponds to the known
result that both_tbe phase of a charged field and a longitudinal

13



. —>
component of a vector field A are linear combinations of one
physical end one unphysical degrees of freedom [11] . Put

$=0, L= in (5.3). It 1s well known that the spectrum of
the Hamiltonian can depend on the solenoid field if the one-valued-
ness of a wave function is assumed [16] o Otherwise, the substitution

Won = exp (i35 £™) v (5.5)

reduces Eq.(5.2) to the equation for a free particle. The energy
spectrum does not depend on Ph in this case and function (5.5)
becomes multi-valued in view of the multi-valuedness of Ph |

For example, for a charged rotator in the field of the infinite sole-
noid [I_LG] we have

Hy =_L(L —gi)l =—Mj(€— e 2\}’ =E
\PPh 2T U2 ggic Y/ph 21 Jnhe ph e \Uph. :
(5.6)

Here | is a moment of inertia, £ 1is any integer . LZ :-iﬁ%@
is the operator of the angular momentum projection on .the axis Oz
in cylindrical coordinates, fﬂ' is taken from (3.7) where

{() = O/ast . Bq.(5.6) remains correct if we assume that
Yen (9»(1‘71):\\2[,“(6) mex(fi@. Then it follows from (5.6) that the rotator
spectrum E, depends on :f Ph at noninteger e@/iw*ﬁc’ .

The consideration of a rotator shows that the field changes
the rotation energy of a quantum particle. He.nce, the macroscopic
manifestation of the field Ph is possible only as a coherent
quantun effect. The superconductivity gives the simplest and,
apparently, most visual example of it. .

The free energy of a superconductor of volume V 1in the exter-
nal electromagnetic field is given by the Ginzburg-Landau functional
3 2 8 4, A ¥ 1o, 2e 72

O e s o2

(5.7)

where ‘V is the complex order parameter of the wave function of
the Cooper pair in the BCS model, Y is the electronm mass, € is its
charge. Our further analysis will be qualitative. We shall not solve
the Ginzburg-Landau equation exactly. A matter of principle for us
is the following: cen the field ](Ph have a possibility to influ-
ence a8 real physical system or not, i.e., is there a way of observa-
ting jph? In other words, is a method to elucidate whether the mag-~
netic field exists inside the solenoid without any manipulations
with the solenoid itself? )

Therefore we omitted the magnetic field energy in the super-
conductor, i.e., disregarded the depth of penetration of the field

—

B into the superconductor.
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The basic state of the superconductor is specified by the ab-
solute minimum of its free energy. However, when switching an
external field, relative energy minima can arise where the system can
be kept for arbitrary time. If the external field is absent, then the
absolute minimum is reached at W=V, =Censti.e., when the kinetic
energy assumes zero values, and N’olz :Q/g (coefficients Q and
@ are determined from thermodynamical properties of a superconductor).
Usually ‘{:13 normalized as lﬂl"a n¢[.'2, where fl4 is a number of
paired electrons per unit volume (in general ) ‘\\)]2 is a density of
Cooper pairs). .

Consider a ring made from a superconducting material and put on
the solenoid. If the ring temperature is T > To o where T,
is the critical temperature, the current in the ring dies down,

Let us stabilize the flux of the magnetic field for 1 > T .
Then, upon cooling the ring to T< T, it transforms into su-
perconducting state. Let us find the wave function of the ground
state of a superconductor in this case. Thus, using substitution
(5.4) (where € — 2¢ ) we rewrite Fg through gauge-invariant
variables ,_ and v and, then, we pass t% cylindgi_.c coordinates in
the kinetic energy operator which becomes h7,, (—%A?z - %'%.L‘tq,éz+
S P tthitg il ook i
= 8 a e -
nate s%ggn(,imz ’:%20/6 . is the magnetic.flux quantum (fluxon).
The only difference of the kinetic energy operator, as compared with

the case ')(th O , consiats in the charge of the rotation
energy of the condensate, therefore, the minimum is reached on function
h independing both of Z and % y 1.0.,

i 4 42 x 2
= gvd“x[—a thla‘gmh‘ ';Thﬁzz.\l’ph(”'%'%) ‘("’J-(s.a)

'Hence, the minimum of ¥y is reached when \\H’h lz: I\po,’- . The

phase of WP“ is only altered (see (5.6)). Assuming wave function
to be multi-valued we see that the function )

\VPM = “Po exp C’l‘,@ @/@‘D | (5.9)

realizes the minimum of :FS according to (5.5) the function is
multi-valued at {D #* 1integer x @0 therefore the angular momen-
tum of the Cooper pair can take all redl valuea. If the angular mo-
mentum is quantized with an integer, i.e., the wave function is one-
valued, then the function

15



= e {009 eo = [:43/ __]
\V_I’h Yo T ? % (5.10)
gives the minimum of Fg + Here ea is the integer to be chosen
from the condition of minimal FS L § / Q means rounding
) ) 0
of //§§o to the nearest integer. Between solutions (5.9) and
(5.10) there is an essential difference. The state with a nonzero
currgnt corresponds to solution (5.10), but there is no current for
state (5.9). In fact, the density of a superconducting current is

33 :Ee;n[“/p“elhv"gc'gz)\{/rh+ h‘C.] . (5.11)

The substitution (5.9) into (5.11) gives jg =0 , but for (5.10)
we find o .
vig =~ enh :
= S - 43 )
jg 0 am Te (eo /(Po>/
(5.12)

where ', 1s the ring radius, It follows from (5.12) that js can

have different directions in dependence on fa. . If @ = NQJO*-%CPO
where N 1is integer, the system turms out to be in the state with an
unsteady equilibrium as F§ is identical for both cases WM, =N
and WM,y = Nx4 . After "throwing down" the system into one of
winima the current ]y gets maximal in absolute value.

There is the Bloch theorem according to which [y has a
minimum at ]g = « We emphasize that the statement of this theo-
rem relates to the absolute minimum of fg . State (5.10) defines a
relative minimum which turns out to be steady. The appearance of the
current in the situation described above can be explained in a suffi-
ciently simple way. The magnetic flux passing through the supercon-
ducting ring should be quantized, i.e,, it should be divisible by ;&.
Thereby, after a passage of the ring into a superconducting state
the current arises in it, the magnetic field of which supplements the
total magnetic flux through the ring to an integer number of quanta
Although (5.12) way only serve as the first approach to the solu~
tion of Ginzburg-landau equations, nevertheless, it gives a correct
qualitative picture of the phenomenon, But for quantitave estimates
of the current, the known formula Ig :d(q)o t,-¢ )/]_ , where L
is the contour inductance, can always be used. This formula is exact
for superconductors [17] . We want to add the question to the presen~
ted reasoning: which real physical field wakes the Cooper pairs to
move thus creating a current? If we keep the field-theoretical inter-
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pretation of interating matter, then there is no other, locally
interacting with matter field (see (5.3), (5.8)), except j:Ph .

In conclusion of this paragraph we note that the behaviour of a
superconductor in the field of a solenoid was discussed in Ref. [ieﬂ
in connection with’ quaﬁtization' of the angular momentum. v
However, the authors of ref. ]jé]were not correct in their reasonings,
for example, their use of the’Coulomb gauge and also the use of sin~
gular gauge transformations (on the occasion of it see @3] were

incorrect.

6. Conclusion

As a matter of fact, the field ;f?h can produce a mecharical
influence. Consider two simple-(but difficult in experimental reali-
zation) examples. Let the frame made from a suitable material be hung
up in a vertical plane and the toroidal solenoid be run through the
frame (the toroidal solenoid should be taken to exclude the return
magnetic flux). Moreover, let the external constant homogeneous mag-
netic field B, be run through the frame. Put the frame so that
the flux of B, through it would bve quantized. Then, after cooling
this frame to 1‘<:'rk the frame begins to oscillate if the flux
inside the solenoid is not quantized. The frequency of small oscil-
lations is W :(Ts Doxt /‘_[Y/2 , where 1Lg¢ is the super-
conducting current in the frame, §§2#+ is the flux of B,
through the freame and T 4is its inertial woment with respect to
the hanging axis (oséillatibns of the frame with a current in the
external magnetic field). Besides, the turning scales can be used for
observing mechanical recoil in the superconducting ring when a super-
conducting current appears after cooling. When the Cooper pairs bggin
to move coherently, the atomic frame of the ring gets a recoil in
according to the conservation of angular momentum. So, oscillations
of the turning scales will arise, the amplitude of which will be
ﬂﬁrIgﬁgjﬂoe@rq y ™M is the ring wmass, W, 1is the natural
frequency of the turning scales, Mg is the electron mass.
Certainly, in technical aspects it is more easy to observe elect-
romagnetic displays of ph by using SQWID's. Moreover, the Aha-
ronov-Bohm effect should be interpreted as the result of scattering
a charged particle by the field g]fPh , as follows from (5.3).
Baged on the simplest ides of short-range interaction, i.e. the
transfer of interaction by s field we should point out, in the analysis

of the above-mentioned effects what physical (i.e., independent of gauge)

field influences charged particles. We have demonstrated, using both
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the principle of gauge symmetry and postulates of quantum mechanics,
that Just the field "Ph can be the only transmitter of interac-
tion. In this connection, we would like to recall the paper by T.T.Wu
and C.N.Yang [20] in which they have introduced the "minimal"™ desc-
ription of electromagnetic interactions in terms of a nonintegrable
phase factor <g> (,’5; ({E) . Again, keeping the idea of short-range
interaction and locality, one should point out what field is respon-
sible for the appearance of this phase factor in the wave function .
In other words, how the stokes theorem works in electrodynamics,
when:by going around the solenoid over a closed contour we find
the flux of a magnetic field inside the solenoid (see (3.1)). The
reference to mathematical reasons (milti-valuedness of the functions
:f beyond V in (3.4) of this does not turn out to be convin-
cing from a physical view point because one can take a real physical
system as the contour, for example, the superconducting ring descri-
bed above. It seems to be incredible thatthis nonintegrable phase
factor of a wave function of a charged particle appears by a Jump,
for example, when crossing same plane (such gauge can be chosen for
the vector potential [51 ). Thus, the existence of the physical
(gauge-independent) field distributed in vacuum throws light upon
these problems. . ’ ‘

Acknowledgements

We are indebted to G.N.Afanasev, A.B.Govorkov and B.Markovski

for the interest in our paper and helpful remarks. We should also
like to thank T.Mishonov and J.Chervonko: f£or the very useful dis-
" cussion of several theoretical problems of supercondition.,

We express our gratitude to B.V.Vasiliev and V.N,Polushkin for
the discussion of some SQWID experiments.

References:

1. Fock V.A., Zeit. Phys., V.39, 1927, s.226.

2. Weyl H., zeit. Phys., V.56, 1929, 5.330.

3. Yang C.N., Mills R.L., Phys.Rev., V.96, 1954, p.191.

4. Ehrenberg W., Siday R.E., Proc.Phys.Soc. V.62B, 1949, p.8;
Abaronov Y., Bohm D., V.115, 1959, p.485.

5. Skarzhinsky V.D., Proceedings FIAN, v.167,1986,p.139(in Russian).

6. De Witt B., Phys.Rev. V,125, 1962, p.2189.

18

7.

8.
9.
10.
1.

12.
13.

14.
15.
16.

17.
18,
19.
20.

»

Dirac P.A.M., Lectures on quantum mechanics Yeshiva University
N.Y., 1964. .

Mandelstam S., Ann. Phys., V.19, 1962. p.l.

Kazes E. et al. Phys. Rgv. v.27D, 1983, p. 2388.

Lee D, et al, Phys.Lett. V. 96A, 1983, p.393.

Prokhorov L.V. Yadern. Fiz. (USSR), v.35, 1982, p.229;

Uspehi Fiz,.Nauk (USSR) V.154, 1988, p. 299.

Kochin N.E., Vector calculus and elements of tensor calculus,
Moscow, AN SSSR, 1951 (in Russian). :
Vlasov A,A. Macroscopic electrodynamics Moskva, -Gos, Th.-Lit.,
1955 (in Russian).

Shiekh A.Y., Preprint Imperial College, TP/84-85/7,Inp¢on, 1984.
Konopinsky E.J., Am. J.Phys. V.46, 1978, p.499. ]
Peshkin M, et al., Ann.Phys. V.12, 1961, p.4263; V.16, 1961,
p.177; Peshkin M., Phys.Rep. V.80, 1981, p.375.

Fock V.A., Phys.Zs. d. Sowjetunion Bd. 1, 1932, p.215.

Iiang J.Q., Ding X.X., Phys.Rev, Lett. V.60, 1388, p.B36.
Tonowura A., Pukuhora A., Phys.Rev.Lett., V.62, 1989, p.ll3.
Wu T.7., Yang C.N., Preprint ITP-SB 75/31, N.Y., 1975.

Received by Publishing Department
on June 9, 1989,

19



You can receive by post the books listed below. Pric

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?

and registered postage.

D2-84-366

D1,2-84-599

D17-84-850

D11-85-791

D13-85-793

D4-85-851

D1,2-86668

D3,4,17-86-747

D9-87-105

D7-8768

D2-87-123

D4-87692

D2-87-798

D14-87-799

D17-88-95

E1,2-88426

Proceedings of the VII International Conference on the
Problems of Quantum Field Theory. Alushta, 1984.

Proceedings of the VII International Seminar on High
Energy Physics Problems. Dubna, 1984.

Proceedings of the IIT International Symposium on Selected
Topics in Statistical Mechanics. Dubna, 1984 (2 volumes).

Proceedings of the IX Ail-Union Conference on Charged
Particle Accelerators. Dubna, 1984. (2 volumes)

Proceedings of the International Conference on Computer
Algebra and Its Applications in Theoretical Physics.
Dubna, 1985.

Proceedings of the XII International Symposium on
Nuclear Electronics, Dubna, 1985.

Proceedings of the International School on Nuclear Structure
Alushta, 1985.

Proceedings of the VIII International Seminar on High
Energy Physics Problems, Dubna, 1986 (2 volumes)

.

Proceedings of the V International School on Neutron
FRYSICS. Alusnta, 1986,

Proceedings of the X All-Union Conference on Charged
Particle Accelerators. Dubna, 1986 (2 volumes)

Proceedings of the International School-Seminar on Heavy Ion
Physics. Dubna, 1986.

Proceedings of the Conference "Renormalization Group-86”.
Dubna, 1986.

Proceedings of the International Conference on the Theory
of Few Body and Quark-Hadronic Systems. Dubna, 1987.

Proceedings of the VIII International Conference on the
Problems of Quantum Field Theory. Alushta, 1987.

Proceedings of the International Symposium on Muon
and Pion Interactions with Matter. Dubna, 1987.

Proceedings of the IV International Symposium
on Selected Topics in Statistical Mechanics. Dubna, 1987.

Proceedings of the 1987 JINR-CERN School of Physics.
Varna, Bulgaria, 1987,

Orders for the above-mentioned books can be sent at the address:

Publishing Department, JINR
Head Post Office, P.O.Box 79 101000 Moscow, USSR

es — in US §, including the packing

11.00

12.00

22.00

25.00

12.00

14.00

11.00

23.00

25.00

25.00

25.00

12.00

12.00

10.00

13.00

14.00

Jdy6oBux B.M., lllaGanos C.B. E2-89-417

Hpononbﬂo-nonepeqﬂaﬂ KOMIIOHEHTa BEKTOPHOI'O
MOTEHIINAJIa B KJIACCUYECKOM 3N1eKTpOANHaAMHUKEe

B knaccHuecko# 31eKTpOAHHAMHMKE B paMKax o6o06lueHHOMH
raMuIbTOHOBOH nHMHaMHMKH Jlupaka [OOKa3aHO CylIeCTBOBaHHe
dusnueckoil (KaJIMOPOBOYHO-UHBAPHUAHTHOM) CTerneHH CcBoGomabI y
BEKTOPHOro MOTeHUHasIa, He CO3[a0LIEero 3JIEKTPOMArHHUTHBIX TOJIeH.
Jana xanubpoBOYHO-MHBapHaHTHad (QOPMYJIIMPOBKa 3JIeKTPOIMHAMMU-
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Transverse-Longitudinal Part of a Vector Potential
in Classical Electrodynamics

Existance of a physical (gauge-invariant) degrefe of .freedom gf
the vector potential generating no electromagnetic flelds 1s pr_oved. in
classical electrodynamics within the Dirac generahze(.i Hamiltonian
dynamics. The gauge-invariant form of electrodynal'mcs of chqged
particles is given within which the question of ob§erv1ng the obtamgd
degree of freedom is discussed. It is shown that .1t causes an electric
current in a superconducting ring put on the solenoid.

The investigation has been performed at the Laboratory of Theo-
retical Physics, JINR.
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