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1. INTRODUCTION 
Asymptotic freedom,1.e. decreasing of the running coupling con­

stant at small distances; is one of the most important properties 
of quantum chromodynamics.Usually this phenomenon is connected with 
the properties of the renormalization group ~-function that is re­
normalization scheme (RS) dependent.At the present time we know the 
~ - function up to three loops for minimal subtraction (MS) schemes 
/1/ and for some specific massless momentum subtraction (MOM) sche­
mes 121. 

In practical applications MOM schemes turn out to be more .pre­
ferable than MS ones. But as is well known /3/ at the two-loop le­
vel the~- function for massless MOM schemes ts gauge dependent. It 
has been recently observed /2,4/ that gauge dependence 1s essential 
and can lead to the violation of asymptotic freedom. In MOM schemes 
with nonzero quark masses gauge dependence of the· ~- function 
·calculated by using the quark-quark-gluon vertex to define the 
coupling constant can appear even at the one-loop level~ So it is 
very interesting to investigate the influence of this gauge and the 
mass dependence on the behaVior of the running coupling constant. 
But up to now the~- function in a MOM scheme with massive fermion 
was calculated on ghost-ghost-gluon /5/ and 3-gluon vertices /6/. 
These~- functions at the one- loop level are gauge independent. In 
all above mentioned renormalization schemes ii has a singularity at 
low energies in any known order of the perturbation theory. 

In this article we give the description of one-loop calcula­
tions of the gauge dependent~- function with masses defined by the 
quark - quark - gluon vertex. We. considered the MOM scheme where 
radiative corrections to this vertex are absent at a synmetric 
momentum point. When masses of the fermion particles are equal to 
zero our results coincide with the results given in /7/.For 
infinite fermion masses according to /8/ only 11BSsless particles 
are contributing to ~- We analysed the behaviour of the running 
coupling com1Lm1L 1ll Lli1s ac.:llemc £01· Lhe model with five 11BSsive 
quarks in the framework of the "stopping" gauge formalism /9/ 
( see also /10/). It is found that due to the mass dependence this 
coupling constant for some values of the gauge parameter have no 
pole singular! ty . ·1n the whole range of ioomentum. 

The outline of this paper is as follows. In Sec.2 we describe 
our renormalization prescription. In Sec.a we present results of· 
the one-loop calculations of the quark-quark-gluon vertex. In 
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Sec.4~ the analysis of the behavior of the running coupling cons­
tant ls given. In Appendix A all one-loop integrals needed for cal­
culation of diagrams are given. In Appendix B for the comparison we 
write ~ functions determined by ghost-gluon and three-gluon 
vertices.In Appendix O asymptotlcs of some one-dimensional inte­
grals entering into the ~-function are given. 

2. THE MODEL AND RENORMALIZATION PRESCRIPTION 

We shall consider the Yang - Mills theory with massive fermions 
belonging to the representatlon.R of the gauge group G: 

1 µva 1 µ 2 µ_ 
l = - 4 Pµva p - 2a_(o Aµa.) - a ~a aµ~a + 

N . 

- gfabcOµlla ¾µ~c + r~~(lt µnµ- mj) <I>~, 
j=1 

Pµva = 0µAva - 0Jlµa + gfabc AµbAvc, 

Dµ<I>~ = ~µ<I>~ - igR~:k <t>l "µa , . 

( 1) 

where Aµa,~a and <I>~ are gauge, ghost and fermion fields respective­
ly, a ls the gauge parameter, and fabc are the totally ·antisymme­
tric structure·constants of the gauge group G. The indices of the 
fermion field <1>~ specify color (1) and flavor (j), respectively. 
The matrices Ra obey the following relations: 

[Ra,Rb] = lfabcRc, facdfbcd =O '5°'b 
A 

Ra Ra= CPI, tr(Ra,Rb) = T ~ab" 

In particular, the group invariants OA,OP and Tin the fundamental 
(quark) representation of SU(N) are:· 

N2-1 1 . 
CA= N, OP = ~ , T = 2 • 

The lagranglan (1) is renoI'l!BliZed by subtracting from each of 
its terms a counterterm of.the same type.So,the renoI'IIBlized lagran­
glan can be written as: 
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1 µv vµ· t = - • z ca A ~ a . .A.. ><a A - a A > R ,. 3 µ ·-va. . v µa a · a . 

- 1z gfabc(O A -o . .A.. )Aµ AV_ 1z ..2fabcfa.daA.. A J>)lAV 2 1 µ--va v µa ·o c 4 s!S · ·-µb"-Vc d'"e 

- Z a 11 a µ~ - Z gfabc {J Ti A ¾ - 1 Z ( a A µ) 2 
3 µ a a 1 µ ·ia ·o c 2a 6 µ a (2) 

N 

+ f [iz2Pj~~ t µ0µ<1>~ + z1Pjg ~~(Ra)1:k ·rµ<l>iAµa-Z4jmj~~<j>~ ]. 
j=1 

The counterterms can be absorbed into the parameters and fields of 
the lagranglan by redefining them. The new lagrangian written 1n 
terms of redefined "bare" fields: ' 

1/2 
')1a.B = Z3 "µa, 

and "bare" parameters: 

gB = ZJ!,, 

N1/2 
~aB = Z3 ~a' 

mjB= zmjmj, 

1/2 
<j>jB = z2Pj <j>j, 

1 1 a = Za a ' 
B 

(3) 

may ~e regarded as the 1n1t1al one with the same gauge symmetry 
provided the following identities hold: 

N N 

Z1/Z3 = Z1/Z3 = z1Pj/Z2Pj = Z5/Z1. ( 4) 

These relations lnuSt be satisfied for arbitrary RS and for arbitra­
ry flavor j. Prom (2) and (3) one can find that 

3/2 
z1 = zsz3 , 

2 2 
z5 = z3zs , 

N N 1/2 
z1= zsz3z3 , 

1/2. (5) 
z1Pj= zsz2Pjz3' Z4 = zIDjz2Pj' Z6= zaz3. 

In this paper we shall present the results of the one-loop calcula­
tion of the~- function defined as: 

2 
aa. . . a 1.n Zs 

~(g)=µ aµ21~,gB,~'E-f1xed = -2~ cf""l'nli2 1~,gB,~,E -fixed 

where 
-1 -1/2 

Zs= z1Pjz2Pjz3 , 

( 6) 

~g2/4x and E =(4-n)/2;n ls the space-time d1mens1on,1.e.the dimen­
sional regularization ls used. 
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OUr renormalization prescriptions ~e the following. The gluon 
and ghost fields are normalized by requiring their propagators to 
take on free field values at a specific Euclidean point. characte­
rized by a mass µ>O. This means that for the.gluon propagator 

'k ~ k kv !J.ab (k) = aa,b{[- g + ~ !J. (k2) + ~ !J. (k2)} µv . µv k2 T k2 L 
in our renormalization prescription: 

. . 2 1 
!J.T(-µ) = - µ2. 

Renormalization constant for the ghost propagator lf"b(k2) is 
determined from the requirement:. 

lf"b(k2) I = oa,b 12 
k2 = _ µ2 µ 

The conditions on the fermion propagator 

(jtJ (j 
stJ(k) = . kl . 

kl k A(k2
, {mi}) - mjB(k2, {mi}) 

are chosen so that at k2=-µ2 the residue of the pole or 
propagator is not changed by interaction i.e. 

the fermion 

and at k2=m2 
j 

A(k2=-µ2,{mi}) = 1, 

B(m~,{mi})=A(m~,{mi}) 

1.e mj in our consideration is a pole mass. 
The fermion-fermion-vector vertex function can be written as: 

µa µ a µa 
rij (P,P1> = t g(R )ji + gGij (P,P1> (7) 

µa 
where G1j (p,p1) is a contribution from 1PI diagrams.In this paper 
we used the following representation for.this 1PI vertex function: 

µa { . .... .... _u: 
Gij(P,P1)=(Ra)ji t~1+ ~2+ Iilfr3+ rllpr4+ yllp1rs+ JJ' ~ r5+ 

p11p1r7+ P';P re+ P';P1r9+ P11>1Pr10+ plf P1P r11+ P1tµ P r12} 
(8) 
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2 2 
where r 1 (1=1,2, •.• ,12) are scalar functiorts depending on p, p1 
and q2=(p-p1)2• From (7) and (8) we get: 

µa µ a 2 2 2 Nµa 
rij (P,P1> = gt (R )ji[1 + r1<P ,P1,q )] + rij (P,P1>· (9) 

Only r 1 has ultraviolet divergences.We define our reno:rnaliza­
tion prescription ·for the 1PI vertex r~ so that at some synmetric 
momentum point p~=p2=q2=-µ2 the renormalized function r 1 obeys ihe 
condition: 

r 2 2 2 Q 
1(P,P1,q>1 = 

p2=p~=q2=-µ2 
( 10) 

From this requirement we can express Z1F in terms of the non­
reno:rnalized function r 1B: 

Z-1 1 r 2 2 2 1F = + 1B(-µ ,-µ ,-µ) ( 11) 

In fact we can show that for our reno:rnalization prescription 
in all orders of perturbation theory the infrared behavior of 11(Q2) 
is connected with the infrared behavior of the gluon propagator. To 
prove this, we shall use the fact /11,12/ that for our RS, the 
invariant charge constructed from the quark-gluon vertex taken at 
the synmetry point q2=p2=p~ will coincide with the effective charge 
i1(Q2).So, we can write: (r =l+r ):\ 

. 1 1 
- 2 .,:;;2 2 2 -2 2 2 a.(Q )= w:1(Q, {m,},a,a.) !J.T(Q, {m,},a,a.) A (Q ,{mt},a,a.). (12) 

Peyrumn diagrams . contributing to the fermion-gluon vertex r 1 
and fermion propagator A due to nonzero masses of external fermion 

particles are finite for simll Q2 • This means that in (12) only !J.T 
is infrared dangerous. As is well known !J.T is gauge dependent and 
we may hope that for some gauges ii(Q2) will be nonsingular. In this 
point our definition of tt crucially differs from other definitions 
widely used in applications. Usually these definitions were based 
upon the vertices where all external particles were massless. So, 
including higher radiative corrections we get a ioore singular 
behavior at simll Q2

• 

At the one-loop level nonsingular gauges·can be found in the 
region a~13/3. We shall demonstrate such possibilities below using 
·concrete examples with different definitions of reno:rnalized coupl­
ing constant. 
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3. RESULTS OF THE ONE-LOOP CALCULATIONS 

The vertex renormalization constant Z1P in the one-loop 
approximation is determ1ned by two diagrams presented in fig 1. 

PA. PA 
ct) b) 

Fig 1. diagrams contributing to z1p 

To define Z1P, we calculate the coefficient or;µ in (9) for 
p2 = p~ = (p-p1)~ Intermediate calculations for r1 were rather 
complicated. To evaluate Z1P and~. the algebraic manipulation 
program SCHOONSCHIP /13/ written by M.Veltman_ was intensively used. 
OUr result for the renormalization constant Z1P is: 

z1p=1- ,& {cp[Act+aBct]- J CA[Act+¾+a(Bct+Bb)+a2Cbl} • ( 13) 

Here 

Act= -2 + ~(1+i.)in -i:$x - §(1+i.)M + ~ F(i.) 

Bet= NE+ 2 + §(1-A2
)M - inA + §(1-A2)in Jr - ~(1+2A)F(A), 

¾=-~NE- ~ - 2;,..265A+8 H+(~ - ~)inA+(A2_ ~A-1 + ¥)in,¾,;: 

3 1 2 1 [ i.-1J 1 1 [ 2 i.-1) 1 A Bb=- 2 NE- 2- 3(A + 4)H+ 3 5-A+ -r •nA+ 3 A -A-6 -2-r .nl+X 

Cb=~+ ~?JI+ <2
6k)i. ini. + ~(i.-1) [1- ¾]in Jr, (14) 

where A= m2/µ2, A=1+A+A2, NE= J -;+in4x~~. (;-Euler's constant), 
mis the pole mass of the external ferm1on particle of the chosen 
vertex, v is massive parameter introduced to make coupling 
constant dimensionless and 

6 

l 

( 

33 lo F(i.)= vl+4X in vH4X + 
' - ' 1'r+4X - 1 

·H = I~ in y~1+i.-y) 
o 1-y+y2 +Xy 

( 15) 

1 '• 
M ~ J _k_ in ·yp:...y)+A - "'t 

• .2 +A • , 9H, 
0 1-y+~ 

Subscripts ct and bin (13),(14)are related to the contribufr§~ 
from the diagrams a) and b), respectively., H .and M can be expi:~imm 
in terms of special functions but we find :that formulas wr1tt~ :!,,x 
terms•of-these quantities are more compact. Asymptotics of F(~llii&A 

. . . ' - . 
for small and large ;>,. are given in, Appendix C. ru:1 0--1, 

Renormalization constants z2P, z3 have ~en taken from [6,~1~:r1o 

z2P = 1 - 4~ Gp a [NE+ 1 - A - A2inA - (1~A2)in(1+A)l !lff~? 
~HI .,, . 

z _ 1 + ~ { c [<13-3a)N + 97 +a+ 1 a2] + 
3 - · 4X . A ~ E 3o 2 4 

T 
!l!O'Il . N 

+ ~ T f [-N8- § + 4Ap1+ in1'.p1+( 1-2Ap1)F(Ap1)] } , ;~rtVF 
l:1 :o88'Iq 

l C90b 
'2 2 1 where p1 = m1/m , m1 1s the po e mass qr 1th quark. q:.r0 ,1~ 

Now one. can_ determ1ne the ~-function. From (.6), ( 13), ( 16) nr,!Ul<;lt 
( 17) we get:_ ,I-eno 

: a.2{A [ A - ?i~) ~ A 8f i~) ] 9il'J: .q ~(CJ.,A)= i 3 GP M-2inm - + +a[-3+2U-i.inm + + • ·l qmxes 

. T 
2 . ·(SQ)~ 

+ #A[(a-1)(a+3)@ +[1+21? - i21cJiM-l~))+A(-2(1+2M)~+ 
1~11 
\OBJt 

[4-- -2A( 1+a) lH+( 1-4ai.>41Ul -( 1+a) (2~) ln1'.+[a(a+1 )+2M 1-a,rP n.i: 
TfY:J!til 

N 
2 f 12 i.2 2 F(A ) 

+ 6(*+a) nn i. ]]} _ ~lln _ 4T'\' [1- 6A + . .. Pi Pi ]}) _ m «l ;:s-A 3 L . Pi 1+ 4AP 
l=1 l 

At J..=O our result coincides with the well known one-loop formula 

.-'lDlfW 
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of asymptotic freedom 

· . a.2 11 4 
fl{ a.) = - 4i [ 3 CA - 3 TNf ] • 

Por A#O there is a nontrivial contribution depending on 
the gauge parameter. When A -- and p,#0, we get: 

2 • . 

fl{a.,A) =-& cA[.1i.- a+ 1f<~ + 13 a+ i12>) + O{~) • { 19) 

Thus,the leading contribution to fl is gauge dependent and, as can 
be seen from { 14), { 16), { 17)-, is determined only by IIBSSless 
particles. When a>13/3, asymptotical values of the fl function for 
A..0 and for A->m have di!ferent signs. As we shall see later, this 
obstacle will be very essential for the in!rared behavior of the 
running coupling constant. 

4. RENOR11ALIZATION GROUP ANALYSIS 

The e!!ective running coupling a in JIOMschemes is determined 
from the system of coupled renormalization group equations for 
running ii, a and iii. As was formulated in our renornal1zat1on 
prescription we used the pole IIBSS, which means that this parameter 
does not run i.e. it is a constant.To simplify the renornal1zat1on 
group analysis we shall use the nxed gauge formalism [9,101 1.e. a 
in our consideration will be also a constant parameter. At the 
one-loop level this prescription will not change z and consequently . . g 
p.The.tixed gauge torne.11am releases us from the d1ff1cUlt1ea with 
asymptotic freedom /4/. 

The renoI'IIB11zat1on group equation for the running coupling 
ci( Q2): 

dci (Q:) z = fl(ci(Q2>,fz> = -P1<fz> ra(Q2))2- fl2<Q~) [ci(Q2>)3- ••• (20) 
dln(Q /µ) l 
1n the one-loop approxination with constant a and m can be 
integrated explicitly [111: 

a. 
ci{Q2)= . 2 2 2 • 

1+ ~[[~A- ~f)zn{~2)+ _ct>(Q2) - $<µ2>] 

(21) 

where 

8 

! 
f 

" 
\ 
1 
\ 
i 

Nf • 

$(A)= - ~TL[4Apt+lnA+(1-2ptA)F(APt>)+(CF- ~A>{2a+~aA-8 F(A) 
t=1 

- §( 1+A) ( 4-a+aAHnf+T + ~( 1+A) ( 1-a+aA)M - 2aA} + · 

(22) 

+cA{r-2-6~-1 _ 3+A~2A~ + ~2]znJr + 5-2A+4a-2aA+a
2
lnA-

_ ·(filsg+2A
2
+ A

2
§4a- g,a2)H-M+ ~(3-2a-a2

) (tnA-2tnJ,)}-

In what follows we shall need limiting values of $(A) for A..0 and 
A->m. When A..0 and pt;,10 

Nf 

$(A)~§ R(1) [2cF(a-1) + (a+3)cA] + ~T Iinpt+ O(AlnA), (23) 
A➔O t=1 

1 
where /3/ R(1) = -2 J lnx ;J{ = 2.343907238690. In the consideration 

o 1-x+ · . 

ci(Q2 ) at small Q2 asympto_tic for $( A) when A->m wiil be needed: 
2 . 

~(A)~[~ - 4TN )tnA+ 21 -3a-2a C +(2a-4)C - 20TN +O(lnA) (24) 
"' <::: -A 3 f 4 A F 7J f T · 
A->m . 

In the case of quantum chromodynamics the SU(3) gauge group 
IIlUBt be taken with quarks belonging to the fundamental representa­
tion of. this group. We shall consider five-quark model with 
the following qll8;1'k IIBSses [61: 

mu= md = 40 MeV, 
m

8 
= 500 MeV, 

me =1400 MeV 
~ =4500 MeV .. 

At first we determine CX:(Q2
) by the . quark-gluon vertex with 

the fourth external quark. The behavior of ci(Q2) with the initial 
condition CX:(Q2=10Gev2)~0.19 for different ·values _of the gauge 
parameter is shown in fig.2. 

9 



o( 

4i-
4 .. 5 

A~i 
4•6 

0.8 

a.5" 

0.4 

~ ~ '::¾, 0.0 1 1 1,, 1 a 1, 1,, 1 1 1 1, 1 t 
-15.0 -10.0 

L Q• 
n-

m'­t 

-5.0 0.0 - 5.0 

2 . 
F1g.2. The Q dependence of the effective running couplipg 

(determined by the quark-gluon vertex with the fourth 
external quark)for different values of the gauge 

parameter.Dott:.d line corresponds to the mas0sless case. 

In the region Q2 ,;;m2 

j 
a< 13 and a>a has a pole at some Q2=Q2 

-g 0 p 

<i(Q2 ) for a=~ goes to a const # o, when Q2~o, 

l 13 < a< a -g 0 goes to 0 when Q2--0 

where a0 can be determined numerically from (21). For the case 
under consideration a

0
"'4.55.To underline the significance of mass 

dependence,we have shown in fig.2 <i(Q2 )!or the case when all masses 
are equal to zero (dotted line). One can observe also that when 
<i(Q2 ) has a pole, its location depends on the value of the gauge 

parameter. To illustrate this depende~ce, we.present 1n the Table 
the location of the singularity_for several values of the gauge 
parameter a. 
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Table 
a -1.0 o.o 1.0 2.0 2.5 . 3.0 3.5 4.0 

ln Q2lm2 -8.25 -9.15 -10.15 -11.25 -.11.75 -12.45 -13.45 -16.05 ·p . 
Next we consider <i(Q2 ) determined by the. quark-gluon vertex 

with the fifth external quark. Putting 1n (21) l'll=m5 with the same 
1nit1alcond1t1on <i(Q2=10Gev2)<><0.19 we found that qualitatively the 
behavior of the running coupling 1a similar to the previous case. 
The Q2 dependence of a(Q2) 1a shown 1n F1g.3. 

- • 5 - '2 ...:g ...:5 ...:3. 

l Q2 
n-
~ -. 

F1g.3. The Q
2 dependence of the effect~ve running coupling 

(determined by the quark-gluon vertex with the fifth external 
quark) for different values of the gauge parameter. 

There 1!3 the region 13/3,:;; a ,:;; a0 where <i(Q2
) has no infrared 

singularity but ror a>a
0 

and a<13/3 it has a pole. _In comparison 
with the previous case there are also significant differences. 
F1rat_or all, here 0o~ 9.75 1.e. the region of a where <i(Q2 ) has. no 
singularity for small momenta is wider. Secondly, in some region of 
a close to a=13/3,the maximum value of <i(Q2 ) 1a rather small. For 
example., when a=13/3, this maximum value is approximately 0.30 
at Q2 =0.136 Gev2 • 

l_l 



Some remarks about the renormalization group with running ga~­
ge. In this case the behavior of a: as Q2--0 will essentially depend 
on the initial value for a •. When the initial value a=13/3 at the 

• one loop level effect~ve charge will be the same as in the fixed 
gauge formalism with the same a. For other initial values running a 
will go to zero or to infinity and consequently this will lead to 
~~e singularity in ci(Q2) as Q2--0. At the two-loop level and higher 
the s1 tuat1on may be,. more complicated. 

When Q2 goes to infinity, at the one-loop level-· in both the 
cases ci:(Q2) decreases for any value of the· gauge parameter. For 
large Q2we can approximately write: 

ci:(Q2)<>< 4~ (25) 
2 Q2 . m2 m2 

(11- 3Nf)lnA2 + O(Q2 ln Q2 

The value of A is gauge dependent. For example, when a=13/3 and a: 
is defined by the quark gluon vertex with the fourth external quark. 
then A""24 Mev,1f it is defined by the fifth quark,then A "" 36Mev. 
Of course, these A do not correspond to the location of the pole 
for a: at small Q2, they characterize its ultrav1olat asymptot1cs. 

From the definition (12) we can obtain some general information 
about the behavior of a: in the whole region Q2• When Q2;;, m2 

2 2 2 
f3t<fg2> ""-13i<o> + ocfg2iriq2>. (26) 

In the "stopping" gauge formalism [91 l3 1(0)=l3~·and 132(0)=13~, 1.e. 
at that level 13<0 and~ in this region is asymptotically free. 
When Q2~ m2,the behavior of~. as" mentioned_ above, is determined 
by ~T' and consequently we can conclude that 

_ m2 . _ . _ Q2 Q2 . 
l3(<1,-2) ""-<1 ;

3
(<1,a) + 0(-2ln-2),. (27) 

Q m . m. 
where ;

3 
(<1,a) is the anomalous dimension of the gluon propagator 

that is gauge dependent. At the two loop level in the "stopping" 
gauge formalism we get: 

j (<1 a>~[1353a0 _ 4™.] tt +[[3s~~32~3a
2
-3a

3
+ 39+4a-3a

2
R( 1,]c2+ 

3 ' A 3 f ~ · 12 9 A 

' 
+[26-19a+3a

2 
+ -26+32a-6a

2
R(1))CACP+[-2~ + ~ R(1))CPTNf+ 

2 

[ -; 1~-2a
2 
_ 24+8a R( 1) )cA TN.£] 1~ir . + 3 g (28) 

12 

In the region urul~ consideration Hf should be COIIBidered as a num­
ber of oessless quarks. At least 1n this approX1mt1on cbooo1ng a 
we can nelce ; 3 («,a)<O and therefore tor sm11 Q2 our p Will be po­
s1t1ve,i.e. a: will decrease as Q2--0.But as was seen at the one-loop 
level the intermediate region Q2< µ2 1s dangerous. AB Q2 decreases, 
the term p¾'Qport1onal to l31lnQ2iµ2 1n the denominator or• ii gives 
a negative contribution, and before the leading term from 4>(m2tQ2) 
cancels it, the denominator becomes zero.Th:1a 1s the reason tor the 
singularity when a>a0 • Choosing a and taklng vertex With the 
heav~est external quark one can try to avoid t:tie s1ngul8!'.'ity. . 

Using nonlocal terms to fix the gauge we can improve infrared 
properties of ii. Anomllous dimension or the gluon proJE8Btor 1n all 
orders or perturbation theory can be l!Bde proportional to its one­
loop coefficient. This gauge-fixing term will differ from that pro­
posed in /9/ to "stop" the-gauge. For example, 1n our case the 
nonlocal gauge fixing term proportional to <1 Will be determined 
from the two-loop condition on ;

3
• In /9/ the term or the same 

order was obtained from the one-loop correction to the gluon 
propagator. As a consequence, we get rmming a, but the gauge 

13 8 THf 
a*=~ - 3 c 

•• 
(29) 

will not run because in this gauge ; 3(<1,a*)=O for all orders or the 
perturbation theory. So,accord1ng to (27) when a=a* 

rTJf 2 ' 2 

Pt~2] "" o~ ln ~]. 

Q2--0 
and possibly a: will go to a constant in all orders or perturbation 
theory.Note here that at the one-loop level in both the considered 
examples a: has the smllest maximum value r or a=a*. Possibly, to . 
improve infrared behavior of ci, it will be useful to introduce 
an appropriate dependence of the gauge-fixing term on m2;µ 2 • 

5. CONCLUSIONS 

As follows from the above consideration, the singular behavior 
or perturbat1vely defined «(Q2) in the infrared region is not an 
inevitable property or QCD. Unfortunately, at the present moment we 
can rigorously confirm this statment only at the one-loop level.But 
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we do not see any essential difficulties at higher orders.In the 
near future we shall present a detailed two-loop analysi~. One-loop 
investigation showed that for two considered cases a is smaller 
when a heavier mass is taken.From this point of view we can improve 
the situation using running masses because they increase as Q2➔o. 

Gauge dependence of a used.for the perturbative,decomposition 
of physical quantities can make a feeling of ~issatisfaction. 

But in this connection we must remind that QCD has no natural. Pl'!Y-: 
sical definition of a and in this sense all RS are equal. Neverthe­
less we argue that·our RS is more.equal than others.The first argu­
ment is that.all physical quantities at small Q2 are limited. So 
1t is rather unnatural to use·the singular decomposition parameter. 

Of course at small Q2 nonperturbative effects are essential and 
must be·taken into account. One sort of nonperturbative effects is 
caused by the difference between the perturbative vacuum and physi­
cal one. To include this kind of nonperturbati ve corrections, one 
should add terms proportional to the quark and gluon condensates.· 
The factors of these condensates are calculated perturbatively. 
This means that going to small Q2 we must be confident that radia­
tive corrections in that region are ·small enough. So,our second ar­
guirent is that for a self-consistent treatment of such nonperturba­
tive effects it is desirable to be in the weak coupling regime.From 
this point of view our RS can be also more useful and ·preferable 
than others. 
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Appendix A 
We present here integrals needed for the calculation of diagrams 

given on fig.1 (below~nk:-t(2v) 4 -n ~2 -~nk). 

T - J dnk 
l[(k+p)2-m2](k2)a 

nA , 
T - J d k kµ - . rO 
ua.µ - [(k+p)2-m2J(k2)a = Pµua 
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nA k k 
J =Jdkµ-,, = 3 ~ 

a.µv [(k+p)2-m2J(k2)tt - gµvJtt + PµPv-Ja 

Itt<m,m1) 
J 

dnk · 
= [(p+k)2~m2JC(p1+k)2-m~J(k2)tt 

nA 'k 
l ( m, m ) =J d k µ = 0 . 1 

a.µ 1 . [(p+k)2-m2J((p
1
+k)2-m~J(k2)tt - Pµltt(m,m1) + p1µItt(m,m1) 

nA k k 
I v<m,m1)=J-'d::....:::k~~:l:µ'-'-,,~-=----
a.µ [(p+k)2-m2JC(p +k)2-m2J(k2)tt 

. • 1 1 

= gµv1~(m,m1)+PµPv1~(m,m1)+p1µP1v1~(m,m1)+(pµP1v+P1µPv)I~(m,m1) 

I<X./3 J dnk 
-.[(p+k)2-m2][(k+p-p1)2Jtt(k2)p 

I<X,/3µ fdnk kµ 
= --~~-----=---.,,......- = 1o + 1 

[(p+k)2-m2J[(k+p-p
1
)2Jtt(k2)p - P <X./3 P1µI<X,/3 

1 _fdnk kµkv 
<X.13µv -Jc(p+k)2-m2J[(k+p-p

1
)2Jtt(k2)p 

_ 3 4 5 ( . )16 = gµif<X-13 + PµPif<X,/3 + P1µP1Vl<X./3 + P1µPv+PµP1V <X-13 ·• 

To find r1, we calculated in the Euclidean space-time the following 
coefficients taken for p2=p~=(p-p1)2= -µ2• · 

J1 = NE+2+AlnA-(1+A)ln(1+A) 

J2 = J2 ~ [NE-A!M+(A-1)!n(1+A)J 

J~ = ~ [-NE-2-A-(A+2)AlnA+(1+A) 2ln(1+A)] 

J~ = i2 C1+Aln T¼x-1 

Io(m,m) = NE+2-F(A)-lM 

I 1 (m,m) .= i2 M 
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I2(m,m) = ~4 if+Xr2 [-N€-F(A)-lM+2ln(1+A)l 

I( ) -I( )-1 1 A 2A 
2 m,o - 2 o,m - µ4 n+X> [-Ne+ A lM- -r ln(1+A)l 

I~(m,m)=I~(m,m), I~ = Ipa. , Iaj3 = I~, I 0a. = Ja. 

I~(m,m) = -µ2(1+A)l~(m,m) = 3fi2[-(1+A)M-F(A)-(1+A)ln ~] 

3 1 ~ 20 ·1 ( 1 I 1(m,m) = ~ (1+"')µ I 1(m,m) + 4 10 m,m) + 4 

3 1 ) 1 ) I 2(m,m) = I 1(m,m + 2 I 1(m,m 

I - 1 11 - µ2 H, 112 = I 2(m,o), 1~o = J2 + J~, 

1~1 + 1~1 = $2 [-(1+2A)H + 2AlnA -2(1+A)ln(1+A)l 

1° = 12 [2H + A-1 AlM + 1+3A-A
2
ln(1+A)l 12 3µ -X- --X--

1~1 = 121 + 1~2 

3 1 I o 1 1 -~ 1
12 

= 
4

( 11+ 111+ 111 ) = 6µ2 ((1-A)H +Alu."' - (1+A)ln(1+A)l 

1~1=¼ [N€+3+ §A(1-A)lnA- §(1-A2 )ln(1+A)+ ~] 

13 = .J.-2 C-H - (1+2A)A lnA - 2(1AA2)ln(1+A)l. 
22 uµ A 

Appendix B 
In this appendix.for completeness we present the renormalization 

group ~-function with masses for MOM schemes where the renormalized 
coupling constant is determined by ghost-ghost-gluon and 
three-gluon vertices in the one-loop approximation. 

a) ~-function on the three- gluon vertex [6]: 
Nf 

~= - ' ( ~ CA - ~ T L [1 - n(Apt) ]] 
f.=1 

wllere 

Hl 

1 . 1/3 3A2 ] 
h( A) = 1.8A Jc!?: ;( f£~)'!k + 2 Jdy p( y) [ ~+y - Ti.Ty) 2 , 

'• O 0 

{ 

2v3""' arctg v:r 1- V1-4Y 
p(y)= 1+3 vT-'"4Y 

g!_ 
v:r 

1 for O ~ Y ~ 4 

fo!' ¾ ~ Y ~ J 
b) ~- function on the ghost-ghost-gluon vertex [SJ: 

a.2 [ 11 • 4 \ [ 12 A
2
p~F(At)]] 

~ = - 4i -g CA - 3 TL 1 - 6Apt + ---~ . 
l 1+ 4Apl 

Appendix C 
Asymptot1cs for the quantities F(A), H and M (see (14)). 
When A->m up to the order 0( lnAIA) 

F(A)"' 2[1 + _1 ___ 1_ + _1 ___ 1_ + __ 1_] 
12A 120A2 840A3 5040A4 27720A5 

lM[ 1 1 1 ] 1 [ 3 1 . 23 19 ] 
H ,,,_-:;: 1 - 2A :I" 4A3- 5A4 - A 1 + 4A - A2 + 48A3 + 150A4 

M ,,, _ .! + _7_ _ __g_ + ~ _ 2672 
A 12A2 5A3 560A4 11025A5 

When A ➔ O up to the order 0(A6 lM) 

F(A) <><-(1+2A-2A2+ 4A3- 10A4+ 28A5)lnA+A(2+A- i.g A2+ ~ A3- ~ A4
), 

H "'-R(1)-AlnA(1- J A+ i A3-; A4)+A(1+ ¾A~ A2+ ~ A3+ ~ A4
), 

I 

M"' -R(1) - 2AlnA(1- ~A+ 3A2
- ~ A3 + ~ A4)+ 

+ 2A[1+ i A- 2A2 + ~ A3- ~ A4
). 
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3yHr n.B., C1>1,10K X.A., Tapacoe O.B. _ 2 
Bm1AH11e_ Mace KBapKOB Ha 11H¢paKpac_Hoe noeeAeH11e a 9 (Q ) e KXA 

E2-89-415 

npoeeAeHo e1,1411cneH11e peHopMrpynnoeoH 8-¢yHKU"" e OAHoneTneeo~ np116n11*e­
H1111 B MOM cxeMe C MaCC11BHblM11 KeapKaMH. AnA onpeAeneHHA peHOPMl1POBaHHOH KOH­
cTaHTbl CBA311 11cnonb30BaHa KeapK-rnKlOHHaA eepw11Ha. tJ-¢yHKUl1A coAeP*"T HeTp11-
e11anbHYKl aae11CHMOCTb OT Mace KBapKOB 11 Kan116poB04HOrO napaMeTpa -a. HH¢pa­
KpaCHOe noeeAeH11e 3¢<lleKTl1BHOH KOHCTaHTbl CBA311 ~(Q

2
) , B npeAflO*eHHOH cxeMe 

peHOPM11POBKl1, cy~eCTBeHHblM o6pa30M 3ae11c11T OT Bbl6opa a. npoeeAeH peHOpMrpyn­
noBOH aHan113 Afl" MOAen11 c nATbKl copTaM11 KeapKOB. 06Hapy*eHo, 4TO AflA HeK0To­
p1,1x Kan116poBOK 6ery~aA KOHCTaHTa CBA311 He 11MeeT CHHrynAPHOCTeH BO eceM AHana-
30He Q 2 • 3TOT 3¢¢eKT cy~eCTBeHHblM o6pa30M CBA3aH C HeTp11e11anbHOH 3ae11c11-
MOCTblCl t3-¢yHKU1111 OT Mace KBapKOB. Mbl nonaraeM, 4TO 11cnonb3yeMaff_HaMl1 cxeMa 
peHOPMHPOBKH HMeeT npeHMy~ecTaa no cpaBHCHHO C APYrHMH cxeMaMH, nOCKO.nbKY 
8 HeH Q OTpa>KaeT noaeAeHHe ¢113HL1eCKHX ae.n111.1HH, KOTOpble KOHe\.lHbl np1,1 ManblX 11M-

nynbcax: 

Pa6oTa e1,1nonHeHa e na6opaTop1111 TeopeT114eCKOH ¢11311K11 OHRH. 

IlpenpHHT O61>eAHHeHHOrO HHCTHTYTB RAepHblX uccnenosamdl. Jty6Ha 1989 

Dung L.V., Phuoc H.D., Tarasov O.V. 
The Influence of Quark Masses on the Infrared Behavior of a (Q

2
) 

E2-89-415 
in QCD 

Renormalization group fl-function in the MOM scheme is calculated in 
the one loop approximation by using the quark-quark-gluon vertex to define 
the renormalized coupling constant. It has nontrivi~l mass and gauge depen­
dence. The infrared behavior of the effective coupling constant ii in this 
scheme essentially depends on the choice of the gauge parameter. We have 
analysed the situation with five flavours. It was found that for some gauges 
the running coupling constant does not have pole singularity in the whole 
range of momentum. This effect is essentially connected with mass dependence 
of the t3-function. We suppose that our renormalization prescription is 
preferable than others because here a reflects the behavior of physical 
quantities which are finite at low energies. ' 

The investigation has been performed at the Laboratory of Theoretical 

Physics, JINR. 
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