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1. INTRODUCTION A

Asymptotic freedom,l.e. decreasing of the running coupling con-
stant at small distances, 18 one of the most important properties
of quantum chromodynamics.Usually this phenomenon is connected with
the propertles of the renormalization group p-function that is re-
normalization scheme (RS) dependent.At the present time we know the
f - function up to three loops for minimal subtraction (MS) schemes
/1/ and for some speclfic massless momentum subtraction (MOM) sche-
mes /2/.

In practical applicatlons MOM schemes turn out to be more . pre-
ferable than MS ones. But as 1s well known /3/ at the two-loop le-
vel the p- function for massless MOM schemes 13 gauge dependent. It
has been recently observed /2,4/ that gauge dependence is essential
and can lead to the violation of asymptotic freedom. In MOM schemes
with nonzero quark masses gauge dependence of the p- functlon
‘calculated by using the quark-quark-gluon vertex to define the
coupling constant can appear even at the one-locp level. So it 1is
very interesting to ilnvestigate the influence of this gauge and the
mass dependence on the behavior of the running coupling constant.
But up to now the g- function in a MOM scheme with massive fermion
was calculated on ghost-ghost-gluon /5/ and 3-gluon vertlces /6/.
These p- functions at the one- loop level are gauge independent. In
all above mentioned renormalization schemes d@ has a singularity at
low energles in any known order of the perturbation theory. '

In this article we give the description of one-loop calcula-
tions of the gauge dependent g- function with masses defined by the
quark - quark - gluon vertex. We . considered the MOM scheme where
radlative corrections to this vertex are absent at a symmetric
momentum point. When masses of the fermion particles are equal to
zero our regults coincide with the results given in /7/.Por
infinite fermion masses according to /8/ only massless particles
“are contributing to B. We analysed the behaviour of the running
coupling congtant lu this scheme for the model with five massive
quarks 1in the framework of the "stopping" gauge formalism /9/
( see also /710/). It 18 found that due to the mass dependence this
coupling constant for some values of the gauge parameter have no
pole singularity in the whole range of momentum.

The outline of this paper 1s as follows. In Sec.2 we describe
our renormalization prescription. In Sec.3 we present results of-
the one-loop calculations of the quark-quark-gluon vertex. 1In
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Sec.4. the analysis of the benavior of the running coupling cons-
tant 13 glven. In Appendix A all one-loop integrals needed for cal-
culation of diagrams are given. In Appendix B for the comparison we
write B functions determined by ghost-gluon and three-gluon
vertices.In Appendix C asymptotics of some one-dimensional ' inte-
grals entering into the g-function are given.
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2. THE MODEL AND RENORMALIZATION PRESCRIPTION

We shall consider the Yang - Mills theory with massive fermions
belonging to the representation R of the gauge group G:
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where A““,n and (pJ are gauge, ghost and fermion fields respective-
1y, a 1s the gauge parameter, and £9P¢ are the - totally - antisymme-
tric structure constants of the gauge group G. The indices of the
fermion field q)g specify color (1) and flavor (j), respectively.
The matrices R? obey the following relations:

[Ra',Rb] = 1ra.bcRc’ Iacdbed' =CA6a'b

a _
R* R? = Cpl, ir(R_,R,)

T O,

In partlcular, the group invariants C,,Cpand T in the fundamental
(quark) representation of SU(N) are: - ‘ B

N _N21 a1
C=N Cp="gr» T=2-

The 1agrangiaxi (1) 1s renormalized by subtracting from each of
1ts terms a counterterm of. the same type. so, the renormlized lagran-
glan can be written as: . . .
' 2

fp =~ % Zs(ap Apa »_.AavApa.)(a pAX -0 vA{)

- éz15fabc(a;‘1Ava'avA;ub YAD A}~ %2552 IabcImApbAchgA:

bcy = 1 2 :
-z 300 Hn, - 15Ia ‘oM, A, - 30 Zg(9), ah (2)
N : ' i
+ Ef[izzmi“i T p‘apq"% + 2,548 Ep'%(Ra)u; .Tp(piA];h—ZAJszpg(pg ]‘
I=1 -

The counterterms can be absorbed into the parameters and fields of
the lagrangian by redefining them. The new lagrangian written in
terms of rederined "bare"” fields:

1/2 - : w1/2 1/2
Ao = 23 Ayos Mg = Z3 My byp = Zppy 9ys
and "bare" parameters: )
- - -z 1
8 = 2,8 mys= ZpyMye 2" %a (3)
may be regarded as the initial one with the same gauge symmetry
provided the following identities hold: -

Z1/Z3 = Z1/Z3 = Z1FJ/Z2FJ = ZS/Z1. (4)
These relations st be satlisfied for arbitrary RS and for arbitra-

ry flavor j. From (2) and (3) one can find that

3/2 22 ~ ~ 172
Zy =22, » Zg = Z,Z, » Zy= LZ.05
2. . ‘ (5
Z1I"J= ZgZZFJZS ’ Z, = ZmZZFJ’ v Zc‘:.ZaZs' '

In this paper we shall present the results of the one-loop calcula-
tion of the p- functlon defined as:

8 1n Zg

Bal. .
=12 -
p(g)=p EﬁzlmB,gB,aB,a—fixed =20 gy 'mB,gB .05, € ~fixed (6)

where .
-1 -1/2 -
Zg= Z1FJZZFJ 3

a=g2/4% and € =(4-n)/2;n 1s the space-time dimension,i.e.the dimen-
sional regularization 1s used.



Our renormalization prescriptions are the following. The gluon
and ghost fields are normalized by’ requiring their propagators to
take on free field values at a Specific Euclidean point characte-
rized by a mass >0. This means that for the gluon propagator

ab [y _ sab -k k'l) Lk
B (0 = o[- g, + ) (k®) + '{:ziu )
in our renormalization prescription:

Bp(-p?) = - 1

= o~ =P .

a2 -

Renormalization constant for the gh ‘ b(k2
> ghost propagator D*?(x2) 1s
determined from the requirement: : ' : oo

DPP(K2) = ol
_ W o 2 T
The conditions on the fermion propagator
L)
g _ 67 6
Spi(k) = = bl !

k A%, mT)) - mB(KZ, (2))

are chosen so that at k®--p? the residue of the pole of the fermion
propagator 1s not changed by interaction 1.e.

s A(K%=—p2, 1) =1,
and at k<=m . '
J

2 2
B(my, (m;})=A(m3, {mf})

il.e my in our consideration is a pole mass.
The fermlon-fermion-vector vertex function can be written as:

. Ha a fa
Ty (PP = Whe(R) 5, + g6, (p,D,) (N

Ha
where GiJ (p,p,l') 1s a contribution from 1PI diagrams.In this paper
we used the following representation for. this 1PI vertex function:

}m : ~ -~ ~
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wherezl‘i(1=1,§,...,12) are scalar functions depending on p, P,
and q =(p-p1) . Prom (T) and (8) we get:

i ~ o
T,y (P:Py) = BIMRY 01 + T(p%, 05,00 + Ty (D) (9)

Only T, has ultraviolet divergences.We define our renormaliza-
tion prescription for the 1PI vertex I";“ 80 that at some symmetric
momentum point p2=p®=q®=-u? the renormalized function T, obeys the
condition:

LR =0 (10)
) p2=p1=q =—} .
From this requirement we can express Zﬂ, in terms of the non-
renormalized functlon T, p:

-1 2 2 2y
Z”.; = 1+ I‘,B("}l » =T, —H) (1

In fact we can show that for our renormalization prescription
in all orders of perturbation theory the infrared behavior of d(Q2)
is connected with the infrared behavior of the gluon propagator. To
prove this, we shall use the fact /11,12/ that for our RS, the:
invariant charge constructed from the quark-gluon vertex taken at
the symmetry point q®=p®=p? will coincide with the effective charge
a(Q%).S0, we can write: (fl=1+r1 ): ,

Q)= aT3(Q3 (n3,a,0) A,(QF {m),0,0) A3(Q2, (n),0,00.  (12)

Peynman diagrams contributing to the fermion-gluon vertex r,
and fermlon propagator A due to nonzero masses of external fermion

particles are finite for small Q2. This means that in (12) only by
is infrared dangerous. As 1s well known A, 1s gauge dependent and
we may hope that for some gauges @(Q°) will be nonsingular. In this
point our definition of a crucially differs from other definitions
widely used 1in applications. Usually these definitlons were based
upon the vertices where all external particles were massless. 5o,
including higher radiative corrections we get a more singular
behavior at small Q2.

At the one-loop level nonsingular gauges can be found in the
reglon a»>13/3. We shall demonstrate such possibilities below using
‘concrete examples with different definitions of renormalized coupl-
ing constant.
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3. RESULTS OF THE ONE-LOOP CALCULATIONS

The vertex ‘renormalization constant Z in the
approximation 18 determined by two diagrams presented in fig 1.

q . ‘ 9

a)r b)

Fig 1. diagrams contributing to Z1F'

To define Z ., we calculate the coefficient of r“ in (9) for
p2 = (p—-p1 2 Intermediate calculations for I, were rather

complicated. To evaluate Z, and B, the algebraic manlpulation
program SCHOONSCHIP /13/ written by M. Veltman was intensively used.
Our result for the renormalization constant Z1P 1s:

! 1 2c 1),
Zyy=1- 75 {CplA,#aB,1- § G, +A,+a(B 4B, )+a ¢y} (13)

Here

T A= -2+ 3(14A)n T‘x S(1HMH + 3 F(M)

B,= N+ 2 + 5(1-A2)H - Inh + g1t A - (420 F(),

3 9 2AZ45M8 4. (5-2A  A-1 A2 6A-1 |, A-1 A
A== 5 Ng= 5 - SR8 e [272R - 2—1&]1"’”[—'3— + lingdx

B,=- 3 N~ 2- 3(A2+ 4)H+ 3[5 A+ T]lnM 3[7\2-7\- -zT]ln,,%x

1,1 2+M)A v 1 A ‘
Cp= 5 + gAH + InA + (x1)[1 ]”‘T‘x (14)
where A = m%/p?, A=1+A4A2, N= e r+ln‘xvz, (y-Euler's constant),
m 1s the pole mass of the external fermion particle of the chosen

vertex, v 1s massive parameter 1ntroduced to make coupling
constant dimensionless and

one-loop

VITAR + 1 28 1o
F(A)= vT7aK In-YiH2A + 1
¢ ) vIHdK - 1
1+x—u)
R = I n u( _ (15)
1- y+y2 ~ o
. A’ . s 5 B -~ & »
M [ 9L qn %73&1 . , ™ £
0I1 y+y2 ’ '

Subscripis a and b in (13), (14)are related to the contributfons
from the diagrams a) and b), respectively., H and M can be expregsged
in terms of speclal runctions but we find that formulas written I
terms of “these quantities are more compact. Asymptotics of F(xlhﬂtg
for small and 1arge A are given in Appendix C. g OeX

Renormalization constants ZZF,,Z have been taken from (6,Zl%do

. o i
a R Y -4 - (1-A2
Zyp =1 -5 Coa DN, +1 - A AZlmA - (19D Wn(140]  (18)
3 5
13-3a 1 2
Z3 =1+ ax { C [( )N + + .4 a. ] + .
‘ - meTt
+ 4T Zr - + 4Ap,+ InAp,+(1 2xp )F(Ap } Hogs
3 [ 3 pc L t L ] ansr
1 B8a0bh

where pt me/m? » M, 18 the pole mass of tth quark. quoTs
Now one can determine the B-function. From (6),(13), (16) ;and;:
(17) we BEt' 2I-sn0

offT . §

B(a,A)= & {3 CF[M Zlnﬁ 1—%,[1 +al-3r20-Alngds + —1—557()]] J——
T

o
(5B

+ 138, [(a—1)(a+3) [gx sl - o1 clim-tnghn Jea f-20 1420000
0) B
B3
[%ﬁ ~2A( 1+a) 1+ 1-4an) 4ER) —(1+a)(2+%)lnk+iq(a+1)+?x(1 7r ak

ag
c 3 %

b} G 5 [ ane

1+ 4rp,

At A=0 our result coincides with the mell known one-loop formula




of asymptotic freedom

. a2 1 4
B =-2z [50, -5 ™ ] |
Por A#0 there i1s a nontrivial contribution’ depending .on
the gauge parameter, When A -o and p,#0, we get: :

2
Ban) ==g& ¢, [13 - a+T(5+1ga+12)]+0(l"7‘) 19

Thus, the leading contribution to B 18 gauge erendent and, a8 can
be seen from (14),(16),(17), 18 determined only by massless
particles. When a>13/3, asymptotical values of the p function for
A+0 and for A~»@ have different signs. As we shall see later, this
obstacle will be very essential for the infrared behavior of the
running coupling constant.

4. RENORMALIZATION GROUP ANALYSIS

The effective running coupling o in MOM schemes is determined
from the system of coupled renormalization group equations for
running &, @ and M. As was formulated in our renormalization
prescription we used the pole mass, which means that this parameter
does not run i.e. it 1s a constant.To simplify the renormalization
group analysis we shall use the fixed gauge formalism {9,101 i.e. @
in our consideration will be also & constant parameter. At the
one-loop level this prescription will not change Z and consequently
B-The .fixed gauge formalism releases us from the difficulties with
asymptotic freedom /4/.

The renormalization group equation for the running coupling
e

2 3 ,
a%r—li(%gz—z—) Bae3), ) = -p, (%) [aa?)] - pz(;"{g) [@@®] - ...c20)

in the one—loop approximation with constant a .and m can be
integrated explicitly £113:

, a S . '
Q%)= ” s 5 =, (21
1+ (o dmJunre o) - o]

where

oo e

iy o

N
b4
®(A) = - A7 Z[4Apl+lnh+(1 ~2p, MF(Ap,) | +(Cp e, {ﬁgﬁﬂ P(N)
. l.=1 '

- %(1+A)(4-a+a]\)lnx}7r + 3(140) (1-a+ah) ¥ - 2ax} +

(22)

A2-6A-1 _ 3+A+202 | A-12)y, A, 5-2Mda-20MaZ, o
+CA{[—_3_ ]lnm + ————r——‘lnx

——3——a+

- Fi%ﬁi ﬁ—g‘ia- %az]ﬂ—uu 12M(3-20-0%) [znx—zzn‘rﬁﬂ}.

In what follows we shall need limiting values of ¢(A) for A~0 and

A-o. When A-0 and p,#0 -
N

(A= R(1)[20 (a-1) + (@+3)C ] + BT Zlnp,.+ O(ALRA), (23)
A~0 7 =1

where /3/ R(1) = -2 j "inz 22‘1” = 2.343907238690. In the consideration
1-zt

&(Q® at small Q2 asymptotic for ¢(A) when A-o W11l be needed:

¢(A)=[%§CA— 3, J i+ 2-3'—3‘4}'—2£—CA+(2a—4)C —gTN w(l%) (e
A ’

In the case of quantum chromodynamics the SU(3) gauge group
must be taken with quarks belonging to the fundamental representa-
tlon of - this group. We shall consider five-quark model with
the following qugrk masses [6]:

m o=m, = 40 MeV, ' m, =1400 MeV

u d
m, = “500 MeV, m, =4500 MeV ..

At first ve determine @(Q®) by the ~quark-gluon vertex with
the fourth external quark. The behavior of oL(QZ) with the initial
condition &(Q®=10Gev®)=0.19 for different values of the gauge
parameter 1s shown in fig.2.
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F1g.2. The Q2 dependence of the effective running coupling
(determined by the gquark-gluon vertex with the fourth
external quark)for different values of the gauge

parameter.Dott‘ed line corresponds to the massleas caase.

In the reglon Q2<m® -

a < —3 and a>a, has a pole at some QE=QIEJ

a(Q?) for a-= 1% * goes to a const # 0, when Q%-0,
13 2
[ —3<a_< a, goes to 0 when Q-0

" where a, can be determined numerically from (21). For the case

under consideration a,~4.55. To underline the significance of ma=ss
dependence, we have shown in fig.2 d(Q%)for the case when all masses
are equal to zero (dotted line). One can observe also that when
d(Q2) has a pole, 1ts location depends on the value of the gauge
parameter. To illustrate this dependence, we present in the Table

the location of the singularity for several values of the gauge

parameter a. )
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Table
a -1.0 | 0.0 1.0 | 2.0 2.5 [.3.0 3.5 4.0

n Q%/m?|-8.25 [-9.15 |-10.15]|-11.25/-11.75|-12.45]|-13.45|-16.05

Next we consider d(Q®) determined by the’ quark-gluon vertex
with the rifth external quark. Putting in (21) m=m; with the ‘ same
initial condition a(02—10Gev )=~0.19 we found that qualitatively the
behavior of the running coupling 1s similar to the previous case.
The Q% dependence of @(QZ) 1s shown in Fig.3.

a=s Q=3 0.06 ofs

_ﬁg ]:Yzl r_[g‘f L _16 |‘l7-_|5l—| 6 il T 3 L] '( é I 1 é
e
"

Fig.3. The Q? dependence. of the effective running coupling

(determined by the quark-gluon veriex with the fifth extermal
quark) for d':lfferent values of the gauge paramster.

There 13 the reglon 13/3< a < g, where Q) hes no infrared
singularity but for a>a, and a<13/3 1t has a pole. In comparison
with the previous case there are also significant  differences.
First of all, here g,= 9.75 i.e. the reglon of a where @(Q%) has no
singularity for snﬂll momenta 1s wider. Secondly, in some region of
a close to a=13/3,the maximm value of &(Q®) 18 rather smll. For
example, when a=13/3, this maximum value 1s approximately 0.30
at Q2=0.136 Gev®.
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Some remarks about the renormalization gfoup with ruming gau-
ge. In this case the behavior of d as Q%40 will essentially depend
on the initial value for a. When the initial value a=13/3 at the
one loop level effective charge will be the same as 1n the rixet_i_
gauge formalism with the same a. For other initial values running @
will go to zero or to infinity and consequently this will lead to
thevsingulari"ty in @(Q%) as Q2+0. At the two-loop level apd higner
the situation may be.more complicated. : ,

When Q? goes to infinity, at. the one-loop level - in both the
cases @(Q?) decreases for any value of the :gauge parameter. For
2 approximately write: -
large Q“we can ppa(Qz)g Y “2‘ 2 . 25
(11- e + o tn o)

The value of A 1s gauge dependent. For example, when ¢=13/3 and a

is defined by the quark gluon vertex with the fourth external quark.

then A~24 Mev,1f 1t 18 defined by the fifth quark,then A = 36Mev.
Of course, these A do not correspond to the location of the pole
for @ at small Q2, they characterize its ultraviolat asymptotics.
From the definition (12) we can obtain some general information
about the behavior of & in the whole region Q2. When Q%> m®
_agg% = -B,(0) + 0(8311%'5)- (26)
In the "stopping” gauge formalism [9] ﬁ1(0)=ﬁ!:‘S -and 52(0)=ﬁ‘2‘5, 1.e.
at that level P<0 and & in - this reglon 1s asymptotically free.
When Q%< mz,the behavior of @, as : mentioned above, 1s determined
by A’r’ and consequently we can conclude that .
2
5(&%2) = -3 7y(&a) + 0(%21@%2.).*- @
where Y, (a,a) 1s the andmalous dimension of the gluon propagator
that 18 gauge dependent. At the two loop level in the “stopping”
gauge formalism we get: -, : o

. e e i . 2
30, _ Ay 1.0, [(38a-32930%-30°, 39+4a-3a%; 1))c2s
¥a(a,a)=[13.39 - Bmf]ﬁ +[[ T2 + g R( )] a*

2 —6a2 (2848 . 16-16a
+[Eotgataa” , 26 R(1) 0,0+ (B35 + 195302 ren) o TN,

T 1-h-20® 24480 A 2
+[ et - = R(1)]GATN£]16'1[2 : (28)
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In the region under consideration N, should be considered as a mm-
ber of massless quarks. At least in this approximetion choosing a
we can make Y,(,a)<0 and therefore for small Q2 our B will be po-
sitive,i.e. @ will decrease as Q2-+0.But as was seen at the one-loop
level the intermediate reglon Q%< p” 1s dangerous. As Q2 decreases,
the term proportional to B,1nQ%/u° in the denominator ofe & glves
a negative contribution, and before the leading term from ®(m2/Q2)
cancels-1t, the denominator becomes zero.This is the reason for the
singularity when a>a,. Choosing a and taking vertex with the
heaviest external quark one can try to avoid tle singularity.
Using nonlocal terms to fix the gauge we can improve infrared
properties of & Anomalous dimension of the gluon propagator in all
orders of perturbation theory can be made proportional to its one-
loop coefficient. This gauge-1ixing term will differ from that pro-
posed 1in /9/ ‘to "stop” the gauge. Por example, 1n our case the
nonlocal gauge rixing term proportional to o will be determined
Ifrom the two-loop condition on ¥T3- In /9/ the term of the same
order was obtained from the one-loop correction to the gluon

propagator. As a consequence, we get running @, but the gauge

™
i3_8""r .
“%=F-3 , (29)
: S ) A
will not run because in this gauge T,(d,a,)=<0 for all orders of the
perturbation theory. So,according to (27) when a=a,

Bi[%':] - o['%z n :l;]
Q20

and possibly @ will go to a constant in all orders of perturbation
theory.Note here that at the one-loop level 1n hoth the considered
examplesy& has the smallest maximm value f or a=a,. Possibly, to .
improve infrared behavior of @, 1t will be useful to introduce
en appropriate dependence of the gauge~fixing term on m"’/,,2 .

.
Y

¥
5. CONCLUSIONS . .

As follows from the above consideration, the singular behavior
of perturbatively defined &(Q2) in the infrared:region 1s not an
inevitable property of QCD. Unfortunately, at the present moment we
can rigorously confirm this statment only at the one-loop level.But

13



we do not see any essentlal difficulties at higher orders.In the
near future we shall present a detailed two-loop analysis. One-loop
investigation showed that for two considered cases @ 1s smaller
when a heavier mass 1s taken.Prom this point of view we can improve
the situation using running masses because they 1increase as Q240
Gauge dependence of @ used for the perturbative decomposition
of physical quantities can make a feeling of dissatisfaction.
But ‘in this connection we must remind that QCD has no natural phy-
sical definition 6f @ and in thls sense all RS are equal. Neverthe—
less we argue that our RS 1s more equal than others.The first argu-
ment 1s that all physical quantities at small Q2 are limited. So
1t 18 rather unnatural to use the singular decomposition parameter.
Of course at small Q2 nonperturbative effects are essentlal and
must be ‘taken into account. One sort of nonperturbative effects 1s
caused by the difference between the perturbative vacuum and physl-

cal one. To include this kind of nonperturbative correctlons, one

should add terms proportional to the quark and gluon condensates.:
The factors of these condensates are calculated perturbatlvely.
This means that going to small Q% we must be confident that radia-
tive corrections in that region are 'small enough. So,our second ar-
gument 1s that for a self-consistent treatment of such nonperturba-

tive effects it 1s desirable to be in the weak coupling regime.From

this point of view our RS can be also more useful .and ‘preferable’

) han others.
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Appendix A

We present here integrals needed for the calculation of diagrams

glven on fig.1 (belowd k=-1(2v)4™ 12 Md™%).

ak
J = |———————
o Jl[(k_'_p)z 2](k2)a .

d% k, o
J = I = Dy
ap [(P+p)“ m21(k2)% K

14

ny k
7 o [d% kv

C e
I (m,m) = dk
ar -'l[(p+k)2: 210 (p,+K) 2-m21 (k)%

ng ;k
Ty(mm,) =[4X___u

(P 2-mP10 (p+k) 2-mB1 (k5)® =Py d(m'm ) # Pyl g (mym,)

"k Kk
L(p+k) 2-m?)1 (p,+k) 2-m?1 (k2)%

Ia_uv( n, m1 )=

= 3 4 )
BuyTa MM )+By Py Ty (M ) 4D, B, T0 (m,m, ) +( BuP1ytPy P I5(mm, )

1, -[d%
op [(p+k)2—m2][(k+p—p1)2]a(k2)5
Tapy Idnk a = pIdg +
L(p+k) 2-m®10 (kep-p,) 21%(k2)F ~ © 0P Prplag
_[2% Kk,
Togyy =]

C(p+k) 2-m?10 (k+p-p,) 21%k2)P

=g 13 4
= 8lag + PuPulag + PyuPyylag + (PypPy*ByuP) Igg -

To find T,, we calculated in the Euclidean space-time the Iollowing
coetticients taken for p®=pZ=(p-p,)2= -p2.
J, = NoA2+AlnA-(1+A) In( 1+A)

1, 1
J2 = 12 Ty Ng-Mad(A-1)1n(140))

oy
[=}
]

1
1 = 7 [-Ng-2-A-(A+2) Mlnd+( 142) 2l 14A)] .
o _ 1 A

J2 = pz [14+Aln T?I]

Io(m,m) = Ne+2-F(A)-lnA

1
pz .|

I1(m,m)'

15



I(mm = jo rrgy2 [-NgB(M)-Inke2ln(144)]

Ip(mo) = L(o,m) = }114 H%X) [-N+ & 1A~ 2} a1+
19(mm=Iy(mm, Iy =Igy - 19 = B Toa = Ja

i?(m,m) = P10 IY(m,m) = 3-2[ ~(1HMB-P(A) - (140 In 1250

B(mm = — (HORPISmM £ § Totmm) + 7

(mm = IXmm + 3 I1(m;m)

I, = %2 H, . I,,=1Iymo0), I3, =J,+J3 1, =1, +15,

121 + 111 = 3%2 [-( 1420 H + 2AlnA -2(1+A) In(1+A)]

2
19, - 3%2 t2H + A aumn + THBA-A1n( 1422
3 _1 0 1 _
Iip = g{Iyt Iyt Iy =

Bﬁz [(1-A)H +AlnA - (14A)In(14A)]

12 =1 [N 43+ 20(1-A)InA- 2(1-A2) In(1+A)+ SAH)
1174 "¢ 3 3

12, = Bﬁz [-H - (1X2*)* iy - 2052 Jin(14M)1 .

Appendix B

In this appendix,for completeness we present the renormalization
group p-function with masses for MOM schemes where the renormalized
coupling constant 1is determined Dby ghost-ghdst—gluon and
three-gluon vertices in the one-loop approximation.

a) p-function on the thrée—‘gluon vertex [6]:
2 LS |
- (0,41 [1-no])
£=1
where

16

1/3

_h(x) 181 jdz —(%i-yf% +2 jdy p(y)[ 312 o

2V 3 arc}g.v 3 115—1—12—51 for 0 <y < ]
p(y)= AN | K
2% t 1 1
e rzs¥s<g
b) B- function on the ghost-ghost-gluon vertex [5]'
‘ 2 12 AZp2 12 A%fR(A, )
g=-%& [Meg 47 1 - 6Ap
ax [ A 3 Z [ t 1+ 4;\.p ]]

Appendix C

Asymptotics for the quantitles F(A), H and ¥ (see (14)).

When A-o up to the order O(inA/A)
- 1 1 1 1
(A= 21 + - +
[ 122 12022 T 82002~ 50400 27720x5]

e -t ad M R R e

Ma-ly T _ 2 , 169 _ 2672 .
+ 2 3t A " T1aoEAD
A 12a% 5% 560A%  11025A°

When A - O up to the order O(ASlmA)

.

L N CRRT: 150x‘]

B(A) = [1422-222+ 42%- 10A%+ 280°)Unaen[20n- 1922+ 33 22~ 5§§'A4],

H = -R(1)-AlnA[1- da+iar-l A4)nf1+ 3t A% 2330

1

M= -R(1) - 2AmA[1- § A+ 32 B A% 4 Rt

+2A[1+ 3 a- 2% + T a3 1087 52,

5 4],
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- a2
BnusHMe MACC KBapKOB Ha vHppaKpacHoe noeeaeHne 2,(Q%) 8 KXA

NpoeefeHo BuunCneHwe penopnrpynnoaoﬁ B-(pyHKyMM B OAHONETNEBOM npubnume-

HMM B MOM CXeMe C MACCUBHHMW KBApKamu. Ana onpeaeneHun peHopMupoaqnnoﬁ KOH—
CTAHTH CBA3M MCNOMb30BaHa KBapK=rMNOHHAR pepwnHa. B-OyHKUWA COAEPHUT HETPU™
BMaNbHY 3aBUCHMOCTB OT MAcC KBapKOB w1 KanMbpoBOUHOro NapameTpa -a . Undpa-
KpacHoe noBefeHve IGPEKTUBHON KOHCTAHTH CBA3W 2(Q2) , B NpeanoxeHHOR CXeme
PEHOPMUPOBKH, CYIECTBEHHHM o6pa3oM 3aBMCHT OT suGopa a. fposeaeH peHOPMIpYn=
AOBO aHanua ANR MOAENM C NATHO COPTaMu kBapkoB. 0GHapyweHo, YTO AnA HEKOTO=
pux kanubposox Geryiwas KOHCTaHTa CBA3M HE WMeeT CUHIYNApHOCTEN BO BCEM Awana~
3707 IPPEKT CYWECTBEHHLIM ob6pa3om CBA3aH C HeTpUBMANbHONM 33BUCK™
pkos. M nonaraem, 4To MCNONb3yeMan HaMu CXema
Ba NO CPAaBHEHMD C APYFVMM CXeMamn, NOCKONbLKY
KOTOPHE KOHEWHH NPU Manbix vM=

v

30He Q2.
MOCTbIO B-OYyHKUUW OT Macc KBa
PEHOPMUPOBKM MMEET NpeumylecT
a8 Heli a OTpawaeT noseaeHwne PUIUUECKNUX BENHUUMH,
nynbcax. -

paGota BunonxeHa B flabopaTopuu TeopeTH4eckon Puanku OHAH.

TMpenpimr O6HEAMHEHHOTO MHCTUTYTa AREPHAIX uccnenosaxuit, JlyGHa 1989

Dung L.V., Phuoc H.D., Tarasov 0.V. £2-89-415
The Influence of Quark Masses on the Infrared Behavior of a (Qz) in QCD

on in the MOM scheme is calculated in
the one loop approximation by using the quark-quark-gluon vertex to define
the renormalized coupling constant. It has nontrivial mass and gauge depen-
dence. The infrared behavior of the effective coupling constant @ in this
scheme essentially depends on the choice of the gauge parameter. We have
analysed the situation with five flavours. 1t was found that for some gauges
the running coupling constant does not have pole singularity in the whole
range of momentum. This effect s essentially connected with mass dependence
of the pg-function. We suppose that our renormalization prescription is
preferable than others because here a reflects the behavior of physical
quantities which are finite at low energies. ’

Renormalization group B-functi

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR. ’
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