

обьединенный
 институт
 ядерных исследований
 дубиа

E2-89-364
A. I. Golokhvastov

ACCURATE MULTIPLICITY SCALING IN ISOTOPICALLY CONJUGATE REACTIONS

Submitted to "Zeitschrift für Physik C"

1. INTRODUCTION

The multiplicity distributions of negative particles (in fact, π^{-}mesons) in PP interactions at energies from zero and at least up to ISR ones are similar if the concept of similarity is formulated consistently. Then, instead of the asymptotic expression [1]

$$
\begin{equation*}
P_{n}=1 /\langle n\rangle \Psi(n /\langle n\rangle) \tag{1}
\end{equation*}
$$

with the normalization conditions

$$
\begin{equation*}
\int \Psi(z) d z=1, \quad \int z \Psi(z) d z=1, \tag{2}
\end{equation*}
$$

which contradicts the equality $\Sigma \mathrm{P}_{\mathrm{n}}=1$ at finite energies (fig. 1 a), one should use an accurate formula (fig. 1b) (2]
where

$$
\begin{equation*}
P_{n}=\int_{n}^{n+1} P(m) d m, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
P(m)=1 /\langle m\rangle \Psi(\mathbb{m} /\langle m\rangle), \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
\langle m\rangle=\int m P(m) d m \tag{5}
\end{equation*}
$$

under the same normalization conditions (2).
The formula, which is more general than (3), can be written as a consistent extrapolation of asymptotic expression (1) to finite energies (fig.1c)

$$
\begin{equation*}
P_{n}={ }_{\substack{n+1-\varepsilon \\ n-\varepsilon}} \mathrm{P}(\mathrm{~m}) \mathrm{dm} . \tag{6}
\end{equation*}
$$

It differs from (3) in the possibility of shifting the scale grid, which cuts the KNO invariant function $P(n)$ into partial probabilities P_{n}. The shift ε must satisfy the following conditions: $\varepsilon \geqslant 0$ in order that P_{-1} may not appear and $\varepsilon<1$ if we want that P_{0} should not be equal to zero.

Note, however, that, e.g. for the reaction $\mathrm{PP}+\mathrm{n}_{\mathrm{ch}}$, where $P_{0}=P_{1}=0, \varepsilon$ satisfies the condition $2 \leq \varepsilon<4$ and expression (6) should be rewritten as

$$
\begin{equation*}
P_{n}^{\left(P P \rightarrow n_{c h}\right)}=\underset{n-\sum_{n-\varepsilon}^{n+2}-\varepsilon}{ } P(m) d m . \tag{7}
\end{equation*}
$$

Here the step of scale grid equals 2 as all odd probabilities are equal to zero due to charge conservation. At $\varepsilon=2$ the result

Fig.1. Obtaining of the discrete multiplicit.y distribution from the continuous normalized universal function $\psi(z)$: (a)according to the commonly used recipe $\mathrm{P}_{\mathrm{n}}=1 /\langle\mathrm{n}\rangle \Psi(\mathrm{n} /\langle\mathrm{n}\rangle$] [1], then $\Sigma \mathrm{P}_{\mathrm{n}} \neq 1$; (b)- according to the accurate recipe 12 l ; (c)- according to the generalized accurate recipe which differs from the previous one in the possibility of shifting the scale grid which cuts the function $\mathrm{P}(\mathrm{m})$ into probabilities P_{n}.
coincides with the one of eq. (3) applied to $P P \rightarrow n_{n e g}$ $\left(n_{c h}=2 n_{n e g}+2\right)$.

Such generalization (6) turns out to allow the description of the multiplicity distributions of π^{+}and π^{-}mesons for PP, NP and $N N$ interactions with the same function $\Psi(z)$ and energy dependence

Fig.2. Dependence of the average value of the discrete distribution P_{n} on the one of the corresponding continuous distribution $P(m)$ for various shifts ε. The dashed lines correspond to the approximation $\langle m\rangle=\langle n\rangle+5-\varepsilon$ (see (8)).
of 〈m>. From charge symnetry it follows that the distributions in the $P P, N P, N N \rightarrow \pi^{+}$reactions are identical to $N N, P N, P P \rightarrow \pi^{-}$, respectively. Therefore, 2 other parameters ε are needed to describe all these reactions $\left(\varepsilon=0\right.$ for $P P \rightarrow \pi^{-}$[2]).

We have used for comparison the experimental data: $P P \rightarrow n_{n e g}$ $\left(n_{n e g}=\left(n_{c h}-2\right) / 2\right)$ at $P_{l a b}=1.5 \div 2000 \mathrm{GeV} / \mathrm{C}$ (see refs. in (21); $N P \rightarrow n_{n e g}\left(n_{n e g}=\left(n_{c h}-1\right) / ट\right)$ at $1.25 \div 400 \quad \mathrm{GeV} / \mathrm{C}\left[3-131 ; N_{n} \rightarrow n_{n e g}\right.$ $\left(n_{n e g}=n_{\mathrm{ch}^{\prime}}\right)$ at $6.1 \mathrm{GeV} / \mathrm{c}$ [14]; $\mathrm{PP} \rightarrow \pi^{+}$at $1+69 \mathrm{GeV} / \mathrm{C}$ [15-21].

2. APPROXIMATE CONSEQUENCES

For not very small $\langle m\rangle$, from (5) and (6) one can obtain $(\langle n\rangle=$ $\Sigma \mathrm{n} \mathrm{P}_{\mathrm{n}}$):

$$
\begin{align*}
& \langle m\rangle=f_{m P} P(m) d m=\sum_{n}{\underset{f}{n-\varepsilon}}_{n+1-\varepsilon}^{n P}(m) d m \approx \sum_{n}(n+5-\varepsilon)^{n+1-\varepsilon} P(m) d m= \\
& =\sum_{n}(n+5-\varepsilon) P P_{n}=\langle n\rangle+5-\varepsilon . \tag{8}
\end{align*}
$$

As it follows from fig. 2, this equality (dashed lines) works well already from $\langle m\rangle \geq .7 \div 1$ which corresponds, as seen below, to $P_{1 a b}=$ $3 \div 5 \mathrm{GeV} / \mathrm{c}$ for nucleon-nucleon interactions.

The curves of fig. 2 are obtained by formulae (4)-(6) with the function

$$
\begin{equation*}
\Psi(z)=a(z+.14) e^{-b(z+.14)^{2}} \tag{9}
\end{equation*}
$$

where a and b obtained from (2) ate equal to 1.2"t and . Min8, respectively. The $P P \rightarrow H^{-*}$ data are well described by thas function [2]; in addition, the curves in fig.e are nearly independent of the used function.

From formulae (4), (6) and (8) we get an approximate rondified KNO scaling $12 \mathrm{c}, 231$

$$
\begin{align*}
& P_{n}=\left.\int_{n-\varepsilon}^{n+1-\varepsilon} P(m) d m \approx P(m)\right|_{m=n+.5-\varepsilon}=\frac{1}{\langle m\rangle} \Psi\left(\frac{11+. j-\varepsilon}{\langle m\rangle}\right) \approx \\
& \approx \frac{1}{\langle n\rangle+.5-\varepsilon} \Psi\left(\frac{n+.5-\varepsilon}{\langle n\rangle+.5-\varepsilon}\right) . \tag{10}
\end{align*}
$$

The fitting of this expression for the NP data at $19.300 \mathrm{GeV} / \mathrm{c}$, performed in $\{6\}$, yields $\varepsilon=.31 \pm .02$ (for neqative particles in wh designations).

For the central moments: $\mu_{q}=\int(m-\langle m\rangle)^{q} p(m) d m \quad$ continuous function $\mathrm{P}(\mathrm{m})$) and $\mathrm{D}_{\mathrm{q}}^{\mathrm{q}}=\mathrm{Z}(\mathrm{n}-\langle\mathrm{n}\rangle)^{\mathrm{T}} \mathrm{P}_{\mathrm{n}}$ (discrete one F_{n}) one can obtain the following approximate equality

$$
\begin{align*}
& =\sum_{n}(n-\langle n\rangle)^{q} P_{n}=D_{q}^{q} \text {, } \tag{11}
\end{align*}
$$

which results in an approximate proportionality for the discrete multiplicity distributions $[22,231$

$$
\begin{equation*}
\mathrm{D}_{\mathrm{q}} \propto(\langle n\rangle+.5-\varepsilon) \tag{12}
\end{equation*}
$$

taking into account (8) and the known proportionality for continuous KNO invariant functions: $\mu_{\mathrm{q}}^{1 / \mathrm{q}} \propto\langle\mathrm{m}\rangle$. The fitting of (12) (for D_{2}) for the NP data at $28 \div 400 \mathrm{GeV} / \mathrm{C}$, conduct in 181 , yields $\varepsilon=.33 \pm .015$ (for negative particles in our designations).

Comparing eqs. (3) and (6) Cor figs.1a and 1b), one can obtain an approximate expression for the multiplicity distributions with $\varepsilon^{\circ} \boldsymbol{O}$ through the distribution with the same $P(m)$ and $\varepsilon=0$

$$
\begin{equation*}
P_{n}^{(\varepsilon)} \approx \varepsilon P_{n-1}^{(0)}+(1-\varepsilon) P_{n}^{(0)} \tag{13}
\end{equation*}
$$

The same ratio between the multiplicity distributions for PP and NP interactions at equal energy has been obtained empirically in paper [9]. In our designations it looks like

$$
\begin{equation*}
P_{n}^{\left(N P \rightarrow n_{n e g}\right)} \approx \varepsilon P_{n-1}^{\left(P P \rightarrow n_{n e g}\right)}+(1-\varepsilon) P_{n}^{\left(P P \rightarrow n_{n e g}\right)} . \tag{14}
\end{equation*}
$$

The parameter $\varepsilon=.38 \pm .03$ for this ratio is obtained in paper [13] by fitting it for the data at $P_{l a t}=100.400 \mathrm{GeV} / \mathrm{C}$. Further we use this value of ε for $\mathrm{NP} \rightarrow \mathrm{n}_{\text {neg }}$.

3. NORMALIZATIONS

It is customary to normalize multiplicity distributions to the inelastic cross section $P_{n}=\sigma_{n} / \sigma_{i n}$. However, such normalization becomes not quite natural at very low energies. For example, the average multiplicity of π^{+}mesons in PP interactions normalized to $\sigma_{\text {in }}$ does not approach zero with decreasing energy and passes through a minimum ($\simeq 8$) at $\mathrm{P}_{\mathrm{lab}} \simeq 2 \mathrm{GeV} / \mathrm{c}$ and even increases with a further decrease of energy down to threshold (even though one meson should be produced in order to realize inelastic collision). In some multiple production models, e.g. a statistical one [24], the part of the elastic cross section passing through the "intermediate state" enters into the multiplicity distribution in an equal in rights manner: the production probabilities of 0,1 , $2, \ldots n$ mesons are calculated by a general formula.

In this paper the multiplicity distributions at very low energies are normalized to 28 mbarns. This is the value of $\sigma_{i n}$ in PP interactions at $P_{\text {lab }}=2.8 \div 6.6 \mathrm{GeV} / \mathrm{c}$, and the inelastic cross section decreases drastically with a further decrease of energy Celastic scattering begins dominating for the same impact
parameters). It should be noted that it will be essential only for the conclusions of section 5 .

The cross section of one-prong inelastic events (σ_{0} in $N P \rightarrow \pi^{-}$) is often not measured 10 NP interactions at high energies because of experimental difficulties. The authors usually assume that it is equal to $.6 \div 67$ of σ_{0} in PP interacitions following expression (14). However, the calculation by tormulae (3), (6) and (9) with $\varepsilon=.36$ leads to $P_{o}^{\left(N P \rightarrow n_{n e q}\right)}=(.53 \pm .01) P_{o}^{\left(\hat{P P} \rightarrow n_{n e q}\right)}$ for the interval of multiplicities corresponding to energies of $12 \div 400$ $\mathrm{GeV} / \mathrm{c}$. We are going to use this value for lack of an experimental one, the more so it is as a tule kept within the error presented by the authors.

4. COMPARISON WITH EXPERIMENT

Formula (6) can be presented in an integral form

$$
\begin{equation*}
\stackrel{D}{n}_{\infty}^{\infty}{ }_{k}=\int_{n-\varepsilon}^{\infty} P(m) d m=\int_{(n-\varepsilon) /\langle m\rangle}^{\infty} \Psi(z) d z=\Phi\left(\frac{n-\varepsilon}{\langle m\rangle}\right), \tag{15}
\end{equation*}
$$

where $\Phi(z)=\int_{z}^{\infty} \Psi(z) d z$ is a universal function as $\Psi(z)$, which is independent of the energy and charge of interacting nucleons ard the sign of charged n mesors normalized by the conditions arising from (2)

$$
\begin{equation*}
\Phi(0)=1 ; \quad f(z) d z=1 . \tag{16}
\end{equation*}
$$

The partial probahilities are expressed through this function simpler than through $i(z)$

$$
\begin{equation*}
P_{n}=\left(\frac{n-\varepsilon_{j}}{\left.z_{m}\right\rangle}\right)-\left(\frac{n+1-c}{\langle m\rangle}\right) . \tag{17}
\end{equation*}
$$

For the function $\Psi(x)$ (9)

$$
\begin{equation*}
f(z)=\frac{a}{z b} e^{-h(z+14)^{2}} \tag{18}
\end{equation*}
$$

Unlike $\Psi(z)$, the function $f(z)$ allows one to plot the multiplicity distirbutions (integral: $\underset{n}{\underset{\sim}{2}} \mathrm{P}_{\mathrm{k}}$) for a variety of energies and reartions on one curve according to (15) as shown in fig. 3. For $N P \rightarrow n_{n e q} \varepsilon=.36$ and for $\mathrm{PH}_{\text {t }}{ }^{+}\left(N N \rightarrow n_{n e g}\right) \varepsilon=.72$.

At very low energies (when only P_{0} and P_{1} are not equal to zer(ر) these distributions satisfy the scaling (6) automatically and the points lie exactly on the curve independently of the used function $\Psi(z)$ and parameter ε. This is clear from fig. 1c where one
can always choose such a scale that the function $\Psi(z)$ is divided into areas which are equal to given P_{0} and P_{1}. Therefore, these points are not presented in fig. 3 .

Figure 4 presents a more sensitive comparison, namely the comparison of the ratios of the moments of the distributions for $N P \rightarrow \pi^{-}$which should go fastly to the plateau with increasing <n>

Fig. 3. Dependence of the integral probability $\sum_{n}^{\infty} P_{k}$ on $(n-\varepsilon) /\langle m\rangle$ for various nucleon-nucleon reactions (see (15)-(18)).
(according to (12)). Such ratios for $P P \rightarrow n_{n e g}$ are given in [2]. Figure 5 shows $f_{2}=D_{2}^{2}-\langle n\rangle$ versus $\langle n\rangle$. The curves in $f i g s .4$ and 5 are obtained by eqs. (4), (6) and (9).

5. ENERGY DEPENDENCE

Note that only the validity of the scaling of multiplicity distributions allows us to say how "the number of produced particles" increases with energy without a detailed description of

Fig. 4. Ratios which should go fastly to the plateau with increasing energy (according to (12)). The curves are obtained by eqs. (4)-(6) with $\Psi(z)$ presented in the figure. The coefficients a and b calculated from (2) are equal to 1.251 and .618, respectively.

Fig. 5. Correlation function $f_{2}=D_{2}^{2}-\langle n\rangle$ versus $\langle n\rangle$. The curves are obtained as in fig. 4.
the distribution for each energy．If the scaling were not valid， the modal value of multiplicity could increase，e．g．as $\ln s$ ，and the average value as $s^{1 / 4}$ ．

The scale parameter $\langle m\rangle(s)$ in formula（4）determines the stiretihing factor for the＂unit＂distribution $\Psi(z)$ to obtain the desired multiplicity distribution．Therefore，it is this parameter that is a natural，linear characteristic of the number of particles produced at a given energy．In the asymptotic formula （1），$n>(s)$ is such a scale parameter which coincides with 〈m＞at asymptotis energies．

Fiq． 6 ．Energy dependence of $\langle m\rangle$ for various nucleon－nucleon reactions．In the Fermi thermodynamic model the multiplicity of π mesons is proportional to the quantity F ．

Figure 6 presents the 〈 m 〉 dependence Cobtained from $\langle n\rangle$ according to（8）and fig．2）on the quantity

$$
\begin{equation*}
F=\left(\sqrt{s}-2 M_{p}\right)^{3 / 4}(\sqrt{s})^{-1 / 4}, \tag{19}
\end{equation*}
$$

with M_{p} the nucleon mass．In the Fermi thermodynamic model the multiplicity of π mesons in nucleon－nucleon interactions over an energy range of $10 \div 1000 \mathrm{GeV} / \mathrm{c}$ should be proportional to this quantity［25］．As seen，the scale parameter 〈m＞for all our
reactions PP, $N P$ and $N N \rightarrow \pi^{-}\left(\pi^{+}\right)$in the interval of energies from threshold up to $400 \mathrm{GeV} / \mathrm{c}$ has the same energy dependence

$$
\begin{equation*}
\langle m\rangle=.81 \mathrm{~F} \mathrm{GeV}{ }^{-1 / 2} . \tag{20}
\end{equation*}
$$

It is surprising that the quantity $s^{1 / 4}$ is commonly used in lieu of F and the multiplicity of charged particles instead of that of π mesons for comparison with the thermodynamic model although each of these errors is larger than the deviation of the experimental data from the model observed usually by the authors. It is true that in the first paper of Fetmi [24] this formula has been also written with some error 126,271 .

The energy dependence of $(\langle n\rangle-\alpha)$, the scale parameter of the modified KNO scaling $P_{n}=1 /(\langle n\rangle-\alpha) \Psi((n-\alpha) /(\langle n\rangle-\alpha))$, has been also obtained in paper [28]. The value of $x=+1$ (for all charged particles) allows the authors of $\{23]$ and $\{28]$ to interpret it as the number of leading particles and $(\langle n\rangle-\alpha)$ as the number of actually produced particles. In our rase such an interpretation leads to that the number of actually produced negative particles m, e.g. in PP interactions, is by approximately .5 larger than the number of produced particles. However, this could take place at. the stage of partic.jes production when they still interart between themselves (see [29] as well).

KEFERENCES

1. 2. Koba, H. B. Nielsen, P. Olesen: Nuc. Phys. B40, 31/ (1972)
1. A.J. Golokhvastriv: IJNR Fi?-89-349 . Dubna (1989)
2. 1.5 GeV/c: C. Besliu et al.: Sov, J. Nucl. Phys. 43, 446 (1986)
3. to GeV/c: B.V.Batyunya ef al.: Sov. J. Nucl. Phys. 47, 64 (1988)
4. 11.f, GeV/c: D. Horhman et al.: Nucl. Phys. B89, 383 (1975)
5. 19 Gev/c: V. Bakken et al.: Nuovo Cim. 49A, 525 (1979)
6. 19 GeV/c: E.G. Boos et al.: Sov. J. Nucl. Phys. 16, 169 (1972)
7. $28 \mathrm{GeV} / \mathrm{C}: ~ J$. Hanlon et al.: Phys. Rev. D19, 49 (1979)
8. 100 (eeV/c: J.E.A. Lis et al.: Phys. Rev. D16, 3127 (1977)

9. 6 (GeV/c : B.V.Batyunya et al: Czech. J. Phys. B36, 1273 (1986)
10. 1.2 GeV/c: F. Shimizu ot al: Nucl. Phys. A385, 571 (1982)
11. 2. 2 GeV/c: A.M. Eisner et al.: Phys. Rev. 138B, 670 (1965)
1. 2. 8 Gev/c: E. Pickup et al.: Phys. Rev. 125, 2091 (1962)
1. $4 \mathrm{GeV} / \mathrm{c}: \mathrm{L}$ L. Bodini et al.: Nuovo Cim. 58A, 475 (1968)
2. 6. $6 \mathrm{GeV} / \mathrm{c}:$ E.R. Gellert: LBL-749. Berkeley (1972)
1. 12.; 24 (gev/c: K. Holt et al.: Nucl. Phys. B103, 221 (1976)
2. 69 GeV/c: V.V. Ammosov et al.: Nuovo Cim. 40A, 237 (1977)
3. A. Wroblewski: Acta Phys. Pol. B4, 857 (1973)
4. A. f. Buras, J. Dias De Deus, R.Mфller: Phys.Lett. 47B, 251 (1973)
5. E. Fermi: Progr. Theor. Phys. 5, 570 (1950)
6. E. Fermi: Elementary Particles, p. 83. New Haven (1951)
7. M. Kretzschmar: 2. Phys. 150, 255 (1956)
8. E. Fermi: Collected Papers, v.2, p. 479. Chicago, Roma (1965)
9. R. Møller: Nucl. Phys. B74, 145 (1974)
10. M. Blažek: Z. Phys (3i3, 309 (1986)
