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1. INTRODUCTION
The multiplicity distributions of negative particles C(in
fact, n~ mesons) in PP interactions at energies from zero and at
least up to ISR ones are similar if the concept of similarity is
formelated consistently. Then, instead of the asymptotic
expression [1]
Po= 17<n> Hns<m>) 1
with the normalization conditions
T¥(z)dz= 1, Jz¥(z2)dz= 1 , 2)
which contradicts the equality T P =1 at finite energies ({fig.1a),

one should use an accurate formula (fig.1b) [2]

n+1
Pn= J P(mldm , 3)
where n
Plm= 1/<m> ¥Cmimy) , 4)
with
<m>= fmPCmddm e}

under the same normalization conditions (2).
The formula, which is more general than (3), can be written
as a consistent extrapolation of asymptotic expression (1) to

" finite energies (fig.1c)
n+l-¢ .

P= [ P(midm . (62

LA
It differs from (3) in the possibility of shifting the scale grid,
which cuts the KNO invariant function PFC(m) into partial
probabilities Pn. The shift £ must satisfy the following
conditions: £2 Q in order that P_1 may not appear and £¢1 if we
want that P should not be equal to zero.

Note, however, that, e.qg. for the reaction PP+ Doy whare

P0=F1=O, e satisfies the condition 2%¢£<4 and expression (6) should
be rewritten as

(PP+n h) n+e-¢ ’
- 7 T ptmddm 7
n=g

Here the step of scale grid equals 2 as all odd probabilities are

n

equal to zero due to charge conservation. At s£= 2 the result
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Fig.1. Obtaining of the discrete multiplicity distribution
from the continuous normalized universal function Wzl: (a)-
according to the commonly used recipe Pn=1/(n> Yins<n>) (11, then
Z Py= 1; (b)- according to the accurate recipe [2); (¢)- according
to the generalized accurale recipe which differs from the previous
one in the possibility of shifting the scale grid which cuts the
function P{m) into probabilities l’n.

coincides with the one of egq. (3} applied to PP- Dheg

Cnch=2nneg+2).
Such generalization (B) turns oul to allow the description of
the multiplicity distributions of #¥ and n” mesons for PP, NP and

NN interactions with the same funclion ¥(z) and enerqgy dependence
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Fig.2, Dependence of the average value of the discrete
distribution P, on the one of the corresponding continuous
distribution P(m)} for various shifts = The dashed lines

correspond Lo the approximation <m>= <{nd>+.5-£ (see (8)).

of <m>. From charge symmetry it follows that the distributions in
the PP, NP, NN+ n* reactions are identical to NN, PN, PP+ n~,
respectively. Therefore, 2 other parameters & are needed to
describe all these reactions (=0 for PP n~ . I21).

¥e have used for comparison the experimental data: PP”“neg
(nneg=CnCh-2)/EJ at Plab=1'5+2000 Ge¥/c (see refs. in [2]13;
g (nneg=Cnch—1)/8) at 1.25.400 GeV/c [3 - 131 NNsn
w2} at 6.1 GeVr/c {14}; PPant at 1.69 Gevsc 115 - 21).

c. APPROXIMATE CONSEQUENCES

For not very small <m>, from (5) and (6) one can obtain ({n>=

ZnP )z

NF-)nn "
C

g

Tneg™fe

n+l-¢ n+l-&
{m>= fmP(mldm= £ § mPCmd)dm & Z(n+.5-£) § Plm)dm=
n n-g n n-&

= Z(n+, 5«£IP = {m>+.5-¢ . (8
n n



As it follows from fig.2, this equality (dashed lines} works well
already from <m»>2 .7.1 which corresponds, as seen below, to Py .=
3.5 GeVsc for nucleon-nucleon interactions.

The curves of fig.2 are oblained by formulas (4)-(63} with the
function

¥z)= alz+ 14) e-b(z+.14)d , ()

vhere a and b obtained from (2) are egual to 1,29 and .618,
respectively. The PP " dala are well described by this function
[2]; in additien, the curves in fig.¢ are nearly independent of
the used funcltion.

From formuiae (4), () and (5) we get an approximate modified

KNO scaling [22, 23}

p = n+}—£P(dem ¥ PR | ¥ (Lt 2o
ntoole > m=n+. G- &ﬁ? ~Zis )
S mnsr Visysss) - (i)

The fitting of this expression for the NP data at 19.300 GeVrsco,
performed in 16!, yields o= .31Z.02 (for neqabive particles in our
designations).

For Lhe central moments: Hy= sem-<m>)9 Plmidm Lcontinuous
function P(m)) and D§= Zin=<n») Pn (discrete one Put one can

obtain the following approximate equality

_ n*l-g ) n+l-¢
W= 2 F (ee<m)¥ PCmddm ¥ Snd S-e-<nd-.5+209 1 PCmdm=
9 n n-¢ n n-e
= - @p=pd
E(n <n>)* P Dq , 11)

which results in an approximale proporticnality for the discrete
multiplicity distributions (22, 231

Dq o ({nd>+.9-2) , 12)
taking into account (83 and the known proportionality for
continuous XNO invariant functions: yé’q x <m>. The fitting of
(12) (for DB) for the NP dalta at 28.400 GeV/c, conduct in (8],

yields £=.33%.015 (for negative particles in our designations).



Comparing eqs. (3} and (6) (or figs.la and 1b}, one can
obtain  an  approximale expression for the multiplicity
distributions with «#0 through the distribution with the same PCm)
and £=0

PLe) & oplO4 (1-22PLO) (13)
The same ralio hetween the multiplicity distributions fer PP and
NP inleractions at equal energy has been obtained empirically in

paper {9]. In our designations it looks like

(NPan ) {PPF=-n ) {PP-n )
P negr o Py negs 4 (1-e)P neg- | (14)

The parameter £= .36+.03 for this ratio is obtained in paper [13]

by fitting it for the data at Plab= 100.400 GeVsc. Further we use

this value of = for NPas “neg'

3. NORMALIZATIONS

It 1s customary to normalize multiplicity distributions to
the inelasiic cross section Pnzgn/gin‘ However, such normalizatlion
becomes not quite natural at very low energies. For example, the
average multiplicity of n* mesons in PP interactions normalized to
Tin does not approach zero with decreasing energy and passes
through a minimum (=, 8} at Piap> € Ge¥rc and even increases with a
further decrease of energy down Lo Lhreshold {even though one
meson should be produced in order io realize inelastic collision).
In some multiple production models, e.g. a statistical one [24],
the parl of the elastic cross section passing through the
“inlermediate state” enters into the multiplicity distribution in
an equal in rights manner: the production probabilities of 0, 1,
2, +.on 7 mesons are calculated by a general formula.

In this paper the multiplicity distributions at very low
energies are normalized to 28 mbarns. This is the value of Oin in
PP interactions at Piap=c-8:6.6 GeVsc, and the inelastic cross
section decreases drastically with a further decrease of energy

(elastic scattering begins dominating for Lhe same impact



parameters). It should be noted that it will be essential only

for the conclusions of section 5.

The cross section of one-preng inelastic events Lo in NPT )
is often nol measured in NP interactions at high energies because
of experimental difficulties.The authors usually assume that it 1s
equal to .6..67 of &, in PP interactions following expression

(14). However, the calculation by tormulae (33, (b) and (93 with
NP+n___J (PP=n

£=.36 leads to P, PEIT = (153010 Py neq for the

interval of multiplicities corresponding to energies of 12.400
GeVsc. We are going to use this value for lack of an experimental
one, the more so it is as a yule kept within the error presented
by the authors.

4, COMPARISON WITH EXPERIMENT

Formula (6) can be presenied in an integral form

iyl 14] o]
iPL=  JP{ml)dm= S Wz)dz= 325} €19
n k n=g Cn-£)r<m> &Gﬁﬂ

a‘)
where ¥(z)= J¥(zldz is a wuniversal funciion as W(z), which s
z

independent, of lhe enerqgy and charge of interacting nuclecns and
the sign of charged n mesons normalized by Lthe condilyons srising
from (2)

0= 1 ; filzidz=1 ., (163
The partral probabilaties are expressed through this funcltion

simpler than through #(2)

I L R (5.4 .
Pn— A(WJ ! —(":l)— s (]f)
For the function ¥z) (9 )
b I
i(x)= SE hlz+.14) . (18)

Unlike ¥z}, the function #(2) allows one to plot the multiplicity

X
disti itbutions Cintegral: o Pk) for a variety of energies and
n

reactions on one curve according to (15) as shown in fig.3. For
- - + e
NP+nneq £=.3b and for PPan LNNanneg) ez 7e.
AL very low enerqgies (when only P(J and Pl are not  egual te
zero) these distributions satisfy the scaling (6) automatically
and the points lie exaclly on the curve independently of the used

function ¥(z) and parameter z. This 1s clear from fig.lc where cne



can always choose such a scale that the function ¥(z) is divided
into areas which are equal to given ﬁ) and % . Therefore, these
points are not presented in fig.3.

Figure 4 presents a more sensitive comparison, namely the
comparison of the ratios of the moments of the distribulions for

NP-:~ which should go fastly to the plateau with increasing (n»
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Fig.3. Dependence of the integral probability I P, on
n

(n-£)s7<m> for various nucleon-nucleon reactions (see (153-018)).

(according to (123). Such ratios for PPsn .. are given in 2],

Figure 5 shows fa=Dg—<n> versus <n>. The cugves in figs.4 and 5
are obtained by eqgs. (4), (B) and (9.
5. ENERGY DEPENDENCE
Note thal only the validity of the scaling of multiplicity
distributions allows us to say how “the number of produced

particles" increases with energy without a detailed description of
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Fig-4. Ralios which should go fasily to the plateau with
increasing energy (according to (12}). The curves are ohtained by
eqs. (4)-(63 with ¥z presented in the figure. The coefficients a
and b calculated from (2) are egual to 1.251 and .618,

respect ively.
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Fig.5. Correlation function fa= Dg-(n> versus <n>. The curves

are obtained as in fig.4.



the distribution for each energy. If the scaling were not valid,

the modal value of muitiplicity could increase, e.g. as 1ln s, and

Ve
the averange value as Sl 4.

The scale parameter <m>(s) in formula {4) determines the
stretching factor for the "unit” distribution ¥(z) to obtain the
desired multipiicily distribution. Therefore, it is this parameler
that is a natural, linear characteristic of the number of
particles produced at a given energy., In the asymptotic formula“
(1), <n»(s) is such a scale parameter which coincides with (m> at
asymptolic energles. )
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Fig. 6. Energy dependence of <{m> for various nucieon-nucleon

reactions. In the Fermi thermodynamic model the wmultiplicity of =«

mesons is proportional to the quantity F,

Figure 6 presents the <m> dependence (obiained from <n>
according to (8) and fig.2) on the quantity

F= (/5-2Mp) 34 ()14 (19

with MP the nucleon mass. In the Fermi thermodynamic model the

mulliplicity of n mesons in nucleon-nuclecn interactions over an

energy range of 10.1000 GeV/c should be proportional to this

quantity (23], As seen, the scale parameter <m> for all our



reactions PP, NP and NN» n~ (r%) in the interval of energies from
threshoid up to 400 GeVrsc has Lhe same enerqgy dependence
<= .81 F Gev 172 | (20

174 is commonly used in

It is surprising that the quantily s
liew of F and the multiplicity of charged particles instead of
that of n mesons for comparison with the thermodynamic model
although each of these errors is larger than the deviation of the

experimental data from the model observed usually by the authors.
It is true that in the first paper of Fermi [24) this formela has

been alsc written with some error 2B, 27).

The enerqy dependence of ({n>-u«), the scale parameter of the
modified KNO scaling Pz 170<nd=a) W (n-ci(<n>-o3), has been also
obtained 1n paper [28l. The value of a> +1 {for all charged
particles) aliows the authors of (23] and {28! to interpret it as
the number of leading particles and (<n>-2) as the number of
actually preduced particles. In owr case such an inlerpretation
leads to that Lhe number of actually produced negative particles
m, €.g. in PP interactions, 1s by approximately .5 larger than the
number of produced particles., However, this could take place at
the stage of particles productiion when they still interact between

themselves (see [29] as well).
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