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1. Introduction

In recent years, there has been a considerable interest in a
new method proposed by Parisi and Wu /" for quantizing of Buclidean
field thecry. This is due to the fact that stochastic gquantization
(5Q) scheme seems, first, to offer some advantages 2=/ over conven-
tional ones, particularly in dealing with constrained systems, and
second, to give & new vision of the problem of quantum behaviour. The
basic idea of 3Q im %o coneider the Euclidean path integral "meagure"
exp (._g[x])d[}-] ( S} - Buclidean action) as the stationary dist-
ribution of a stochastic process (SP) governed by Langevin equation
(LE}. The system relaxes to stationary state for large fictions "ti-
me” 2’ . The prescription of the 5Q method formulated by Parisi and
W /1 is the following:
I. Ope supplements the field VT*) with an additional fictiona axie
of "time" 7 ,
II. In the cleasgical field equation

S‘__S_,_‘.-f[&_ __?ﬁﬂ_._q_o (1)
two new forces, a Gaussian white noise (x> and a "friction”
forceg—‘?;- Y (x¥) o have been introduced:

LG ) + %&%;(Xﬁ’)ﬂ?(kf), @

where o (CF(J(?‘) A (x?’)) is the Lagrangian demsity.
The white noise

KVZGe) >y =0 o
SPCE)7 () 3 = 2F §(e=7) S-x)

modulates nonequilibrium guantum fiuctustions while the "friction™

forece is responsible, first, for evolution to equilibrium distribu-
tion, and, second, for the fact that nonstationmary fluctuestions are
a4;esu1t of stochastlc forces at all preceding "time" superposition



IT1T. Given some initisl conditions, one has to solve the 1LE (2). To
emphasize the noise dependence explicitly the solution is indicated
by 0% + Many "time" stochastical correiation functions of 4% (x2)
are defined by performing Geauseian average over noise 77 :

; ey (4)
<£!P7(Xi?3).-. (/7?'(/6-6") >7 . .
IV. The centrel aesgertion in the S35Q method is that the Euclidean Green

functions msy be obtained from large "time" limit of single "time"
average (4):

brr <60, b6 0 jd[l?]exp(—sm) P .. #(xn) (5)
ny LY. A = a - s E B

f 7 4 i 4 55{[‘{)]2)(/3(“ 5£(Pj)

The paper is organized as followg: in Section 2 we consider the ming-
le "time" average to show the leading part of the single "time" pro-
bability distribution density (PDD) in solving SP ergodiclty problem.
In Section 3 we briefly review the worka by Gozzil /8 . In Section 4

we propose a pure probabilistic interpretation of the genersting-func-
tional building problem,

2. The SP "ergodicity" in the S5Q method.
Fokker-Plank formulation

In this section, the single "time" stochastical correlation func-
tions will be considered. They are formally obitained with respect to
functional integration over a gingle "time"™ probabillty distribution
density (PDD) f)(¢i?) 112/

< % Wy (10D = SdfeIDie2) w(xa).. (0 ),

where

(6)

Pler) = (3[e-Hplp, 85

o
The single "time" functional S ~function implies, for exemple, lat-

Fod

tice space approximation at "time" 7 :

-] = 17 ORI (8)
Single "time" PDD saetipfies the Fokker-Plank equation (FPE):
2 prer) = {2 S 4__&33 4
Q?IW") _S P TH) & ¢ix) pLet). )



Additionally, we have to give some initial conditions

DL{O)- ‘FCJ (10)

where C  &re constants. It is obvious that there are two equivalent
formulations of the SQ method based on LE (2) snd on FPE (9). We may
reformulated in the FPE languasge the main assertion of the SQ method
implying consideration of the Euclidean path measure as the statio-
nary distribution of the SF (3) /2

fm Pl o) = Nexp (-S¢]) ()

Let us consider in detail the "ergodieity" problem (11} /11, 13/
Equation (9) may be viewed as the Schrodinger equation in imaginary
"time" with non-Hermitian Hamiltonisan:

(2 + Jwdt JPa) = o,

=P /525;,59 ) /3:*5*?%‘ (13)
If we get:
P(2) = W(@¥)exp (- £5043) 8)

a simple calculation leads to Schrodinger equetion in imaginery "time"
with the Hermitian Hamil$onian:

(25 + S )Mo = o, (15)
where - .
"= P& Z/(‘P) {16)

FS\* 5
5/( )*—(w o *ai? S ¥E

by "gauge" transformation (14) we have associated Hermitian Hemilto-
nian (16) with the known energetical band with non-Hermitisn Hamilto-
nizn (13}, More detailed analysie of the correlation between "gauge"
transformation (14} and energetical bands of operators {(13,16) is
given in works /11,13/




If we denote the complete set of eigenstates of !q by ¥y,

AY @ = Fuv(®

17)
Va(#2) = () exp (- &£ )
Yo (¥) = exp (- % 5[‘”)
we may write for the solution of (15):
. ‘ = y
W(62) = Qoexp(- £ SLe1) + > An¥a (9) exp(-TEn ) (18)
poi
If we suppose that Eio >0 tor h>L  then for large "time"
limitas of \f\/(‘f’,?') and p(‘ﬁ,?’) we get:
giwlf\/((ﬁ,?’) = O exp (- %5[‘?3 ) (19)
Cow Ple7) = Qo exp (= OLED). (20)
g =
We fix the normalization by:
b Safe1P(4,7) = 1 (21)
and arrlve finally at: )
’ -97r¢]
exp ( o)

, ( EAve e —

f‘_}"; P e) = Sd(el exp (- 3(#1)
aa has been shown In /2/. In thie section we have intentionally con-
gldered the simplest case of application of 5Q method - scalsr field
theory with nondegenerate vacuum to show the leading part of FDD in
asolving the "ergodicity” problem in the SQ method. The essence of our
appreach (Section 4) coneists in isolating single " time" FDD from
the dynamical generating functlonsl expression. But, first, let ue
conaider the Gozzl approach in conatructing this expression.

3. Dynamicel generating functional

In this section we briefly review the worksls/ from the point of
view of consiructing the generating functional for the many "time"
noise everages. To evaluate the latter let ue consider, rollawingla/,
the generating functional:



Z [0 = SRUADIZIPWGOIN[ -ty Jexp (T8, 23)

where p( ‘P,O) is some initial probability, Z.\[lf-— ‘Pag] and B [¥]
imply a lattice approximation of space supplemented by "time" sxisg:

R = [1440)
Al¥-¥, ] = ﬂgg(‘”"?)-- fp (x22) (25)
/10/

After formal tranaformation )
P Y
M%) =AT 0+ 571 55 )

and the ? integration we have the following expression:

EAYS
[

Z[;T]:SQ[&F]P('%O)MP{”Sdf(—JfF+-gi(‘*‘a“'%S{{B)é‘ g;)j_ (21)

(TN

Performn%ng; the integration of the term
Sy . . :
J¥Erat = 3[e)] = S[W)]

o
we get for Z[T]:

®

Z{T]=§d[¢e)]d] tf@)}m[rfjp(mpo)e,xpf (3[to)]- S[?’{f)j) (28)
Floeloe -z}

To understsnd the physical meaning of (28) we consider a simplest
one~dimensional quantum mechanical system 37, The kernel of the evo-
lution operator is given by a path integral over all trajectories x‘(é)
from the initial state Xo= X (£.) to the final state K= x(tp)
of the exponential S[x ] where S 1s the cleesical action
functional:

Sty [Xeto > = Solf ]ex[){—— 2

(29)




If we consider vacuum expectation values of the position operators

in the Heisenberg picture

A f: " }";
b i
4 )= exp{~ T ex —_
Q) ;{*jQ p{hg,
where PJ ig the Hamiltonisn of a given quantum system, it is pos-
sible to obtain the following expression:

<o[T{(}(h),,, Q({h)} ]o> ={drdXg Wk te) Y (rete) = (30)

SG‘ [&J @x/) ﬁ )x(ﬁ .‘.,K{'ih)’
where

W (hoe) = Wi |xoto >
Woatr) = <ulpl e >,

Comparing (30) with (28) and taking into account (17) we see an ana-
logy between the Fokker-Plank dynamical ensemble and the quantum syse-
tem. We can also derive the second conclusion: to get the Buclidean
measure ¥ (¥) we have choose the initial probability density in

(31)

the form:
p(lP ¢) = Nexp(- S[¥] ) (32)

The physicel meaning of (32 ) is clear: we put the system from the
veginning in the stationary (equilibrium) state and the presence of
theALangevin dynamics dees not modify it /B/. Implying that vacuum

of H (16) 1e Y (¥) = EA/>(~~é-Sf¢l) Gozzi named {28) the vacuum-
-vacuum generating functional.

Though this approach is elegant, it seems for us that the factor
P(¥¢) is introduced "by hand" in expression (23} for the generat-
ing functional; therefore, in the following section we propose & pro-
bhabilistic approach to construct it.

4, Dynamical genersting functional.
Probabiligtic approach

It is the aim of thie sectiorn to build the generating functional
of the SO method from the assumption that large "time" limit of noise
average is equivalent to the quantum one without of additional "by
hand" introduction of the factor (W o) 8/. Due to the leading
role of the Markov property we would like to do a brief survey of the



Markov process theory /14"16/. By definition a SP iy Markovien under
the condition that if a present gtate is known, any additional infor-
metion about the history of 2 process ia nonessential for future pro-
gnostication‘ of the process behaviour. Thus, if the present is known,
then peet and future are relatively independent . In particular,

for a process governed by the Langevin equation to be Morkovian the
-~

correlations of noise ? have to be Y -correlating at "time" .
The Markev process is described by only two probability functionals:
single "time" PDD and two "time" conditional PDD. By definltion:

.)(’(JZ.-..‘, anhﬂ;‘.,')xh): P(K_«_',,,,‘) x‘,.)/D(XxH;.,.gx., ) . (33)
For the Markov ST we have

P(Xs] X2%...t Xn) = P (x] Xa) (34)
P(xalxs) = §dxe Plufxe) P ] x2) BT
P(h) = jdxap(ﬁfxz,)p(xa) . (36)

This implies that M Ch >k

Equations (35-36) are named the Chapman-Kolmogorov equations, res-
pectively for the two "time" conditional PDD and single "time" PDD.
We have to note that (36} is not the consequence of the Markov pro-
perty but is a general property of the Joint PDD:

e Plasxasxs) = P(xi3x3), an

Let us go back to huildiﬁg the generating functional. A starting
point will be the following expression for the generating functional:

=[] = §arelple] exp (J¥), (38)

where probability density functional:

p[‘f’,i‘] = <A[‘P' %] >?14/ (39)

can be written in the following form

pler]- ﬁfﬁﬁ}(ﬂﬂfﬁ;.“;%’c‘;) | (40

Y =@(x) , 7525



and p,,,(.,,) is the N-dimensional joint PDD. Using the definition
(33-37) for (40) we have

Pr (B85 080 ) = PORIGR) . (ol | o) P(BE), )

where

Per) = < I5(0x)- xe) >, -
Plerjgr)= <ILEEOD -G )80t - 4, (nz)>,
{4 7%) '

For the functicnal (43) we have an obviouas boundary condition:

Plerjgr) = S[¢- %5 ] (42)

The boundary condition for the joint FDD (41) ie the following:

(43)

Al s )= S6-%] . ¥4, - w1 P(RE). G

The 8Q prescription implies two operations over the many "time" sto-

chagtical averages <‘-f?(,\;21) lf%,(x,,ﬁ,)>7 ; namely
Y b Levl Doy

=2
2) . -
i Loy
By means of (45) the firet operation automatically isolates the sing~
le "time"™ PDD while the second one ig responsible for the relaxation
to equilibrium state. To express the conditional FDD (43) through
tl}_e path integral we have to note that the "H amiltonian" operator
2 (12) associated with P(PZ[ % 7; ) 1o von-Hermitien. After tne
“gauge" transformation

Bleriez = wiler| ‘&ﬁ)exp{—ﬁ(sfw(r)] - wao)j) } (46)



we get the Fokker-Flauk equation with the Hermitian "Hamiltonian™ (16).
The boundary condition for W  ig the same as for L (s

‘, £ o
W/ (prigr) = STP-4 1, D
g PP
Associating with the Hermitiamn "Hamiltonian" a Lagrangian ;Qj accor-

ding to the well-known prescription /1

e P ; ) “IH
__(% :./O(P—ff, ’L(,p-;ﬁTnﬁ:—n%/D, (48}
where f{ ig the classical Hamiltonian function, we get for the lﬁ/
following path integral expression

Wz 4) = N[ exp{~ jdf 525@)} , 49)

where &S 2
2 L2 1% L 3’5)
;Z‘“)Siw)“é'gw*?(%? : (50

Using (49-50), we arrive finally &t the following path integral eip—
ression for the generating functional of the SQ method which coin-
cides with the 8/ vacuum-vacuum form of the generating functional

23] = (e dfv@] @] P4, 0)ex pl- 350 + £ S[ﬂo)J’j " (51)
¥ |
* @*Pir‘ [~ av)

3
v}

5. Conclusion

We have conaidered the simplest case, gealar field theory 5SQ, to
build the generating functional., We think that the esgential moment
of the procedure is isolating of single " time” probability. This is
true also in Zwanainger's scheme 1 : hente this approach may be re-
garded also a&s an alternative to Alvarez-Estrada and Munoz-Sudupe
functional approach to the gtochastic quantization of the Euclidean
Yang-Miils field theory.
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