
J9- 3s-9 

p 85 

I. Porchescu 1 , Kh. Namsrai 2 

Ofih8AMH8HHbiM 
MHCTMTYT 
RABPHbiX 

MCCJ18AOB8HMM 

AYfiHa 

E2-89-359 

ON THE DYNAMICAL GENERATING FUNCTIONAL 

IN THE STOCHASTIC QUANTIZATION METHOD 

Submitted to 11 lnternational Journal 
of Theoretical Physics 11 

1 Institute of Applied Physics, Academy of Science 
of Moldavian Soviet Socialist Republic, Kishinev, 
USSR 

2 Institute of Physics and Technology, Academy of 
Science of Mongolian People's Republic, Ulan-B~tor, 
Mongolia 

1989 

e_ 

t 



1. Introduction 

In recent years, there has been a considerable interest in a 
new method proposed by Barisi and Wu /l/ for quantizing of Euclidean 
field theory. This is due to the fact that stochastic quantization 
(SQ) scheme seems, first, to offer some advantages / 2- 7/ over conven
tional ones, particularly in dealing with constrained systems, and 
second, to give a new vision of the problem of quantum behaviour. The 
basic idea of SQ is to consider the Euclidean path integral "measure" 
exp(-S[•J)dix] ( SC<J -Euclidean action) ae the stationary dist-
ribution of a stochastic process (SP) governed by Langevin equation 
(LE). The system relaxes to stationary state for large fictions "ti
me" ?! • The prescription of the SQ method formulated by Parisi and 
Nu /l/ is the following: 
I. One supplements the field if(x) 
of "time" ?:-' • 

with an additional fictions axis 

II. In the classical field equation 

~~ l 
'J'(~if(K'i:')) = 0 (,) 

two new forces, a Gaussian white noise '1! (K?: ) and a "friction" 
force L cf(x'C') • have been introduced: 

'()'C' 

r~'C'if(x'<')+ ~~(xe') = rcxn, (2) 

whera :Z. ('l'(,t-), if; (xr)) is the Lagrangian density. 
The wbite noise 

<"!Cxn>r = o (3) 

Cf(x?)?(xt?'') /;P "" c,1, ()(2'- 'Z'') S"'(x-•1) 

modulates nonequilibrium quantum fluctuations while the ''friction" 
force is responsible, first, for evolution to equilibrium distribu
tion, and, second, for the fact that nonstationary fluctuations are 
a result of stochastic forces at all preceding "time" superposition 
/41. 
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III. Given some initial conditione, one has to solve the LE (2). To 
emphasize the noise dependence explicitly the solution is indicated 
by 'f'r • Many "time" stochastical correlation functions of t/7 (j(: ?') 
are defined by performing Gaussian average over noise ? 

< lfz ex" r;) ... t11 c x" z:.. > >r (4) 

IV. The central assertion in the SQ method is that the Euclidean Green 
functions may be obtained from large "time" limit of single "time" 
average ( 4): 

S4/iflexp(- S[<~'J) cf'(x,):~'-tf(x.) 
S"fif]exp(- S[if'J) 

(5) 

The paper is organized as follows: in Section 2 we consider the sing
le "time" average to show the leading part of the single "time" pro
bability distribution density (POD) in solving SP er,odicity problem. 
In Section 3 we briefly review the works by Gozzi /B • In Section 4 
we propose a pure probabilistic interpretation of the generating-func
tional building problem. 

2. The SP "ergodicity11 in the SQ method. 
Fokker-Plenk formulation 

In this section, the single 11time" stochastical correlation func
tions will be considered. They are formally obtained with respect to 
functional integration over a single "time" probability distribution 
density (PDD) P(lf','l:) /12/ 

< ifyl"'~') ... 'fr(x" r) ) 1 = Jd ['i'J P( ~' r) 'l'(x,). !f(x" ) , 
(6) 

where 

(7) 

The single "time" functional bv -function implies, for example, lat
tice space approximation at "time" 7 : 

<;;[tt-'IH~-'J] == [7 S'( 'f'(x> -'l'z cxo). (8) 

Single "time" PDD satisfies the Pokker-Plank equation (PPE): 

( 9) 
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Additionally, we have to give some initial conditione 

( 10) 

where C are constants. It is obvious that there are two equivalent 
formulations of the SQ method based on LE (2) and on FPE (9). We may 
reformulated in the FPE language the main assertion of the SQ method 
implying consideration of the Euclidean path measure as the statio
nary distribution of the SP (3) 121 

f., PC <F/n = !V "''P (- s f<I'J). < 11> 
r-= 

Let us consider in detail the "ergodicity" problem (11) 111 , 131. 
Equation (9) may be viewed as the SchrOdinger equation in imaginary 
"time" with non-Hermitian Hamiltonian: 

Uz- ,_ j«df) P(tP, '[) c, (12) 

where 
A ;,2, S'S ' "' A p ')( p -:p "- -c 

?;<f ~if ( 13) 

If we set: 

( 14) 

a simple calculation leads to SchrOdinger equation in imaginary "time" 
with the Hermitian Hamiltonian: 

(L + S«x~l )Ycf,n = 0, (}"(: 
( 15) 

where A '"· H p + 21 c "') 

U(lf) cost :L s-~s J.(- e:; S" 'I'"" - Jf ');if 

416) 

by "gauge" transformation ( 14) we have associated Hermitian Hamilto
nian (16) with the known energetical bend with non-Hermitian Hamilto
nian (1)). More detailed analysis of the correlation between "gauge" 
transformation (14) end energetical bands of operators (13,16) is 
given in works /11,13/. 
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If we denote the complete set of eigenstatee of H by )/~ 

' 
H 'Y..(<f)- 1.:n'f" (<!') 

( 17) 

we may write for the solution of (15): 

Q'O 

'Vtif,r) = aoexp(- i SC<~'J) t- 2'. (I" r.,q 'I') exp(-n.). <1a> 
f1 =I 

If we suppose thet f., > 0 f_or h >- .1. then for large "time 11 

limits of ly{tf,?:) ar.d P(<P1 ?:) wa get: 

fj~n;,lf/(tf'/() - Oo e.xF(- ~ S['l']) (19) 

2-->v-c 
P(f,?-) = Oo exp (- 5[<f]). 

We fix the normalization by: 

and arrive finally at: 

exp (- S['l']) 

5d['I'J e.xp (- S[lfJ) 

(20) 

(21 ) 

(22) 

as has been shown in / 21. In this section we have intentionally con

sidered the simplest case of application of SQ method - scaler field 

theory with nondegenerate vacuum to show the leading part of PDD in 

solving the "ergodicity" problem in the SQ method. The essence of our 

approach (Section 4) consists in isolating single 11 time" PDD from 

the dynamical generating functional expression. But, first, let us 

consider the Gozzi /B/ approach in constructing this expression. 

). Dynamical generating functional 

In this section we briefly review the works/B/ from the point of 

view of constructing the generating functional for the many "time" 

noise averages. To evaluate the latter let us consider, f'ollawing(81, 
the generating functional: 



(23) 

where P('P,O) is some initial probability, 6[<1'- If! J and 9:!['1'] 
imply a lattice approximation of space supplemented by "time" axis: 

~[tfJ-=nlldif(x'O, (24> 
'i" X 

Ll[r-rr.J ~ cn'il(<fc,n-'Pr('n)_ (25) 

' ' 
After formal transformation 1101 

Mlf-lf7 1 := b r ~ + ;s<p.- n II ~~II (26
) 

and the r integration we have the following expression: 

(27) 

Performing the integration of the term 

S<f ~~ <li. 3[if('t)] - S[lf(o)] 
0 

we get for Z [:r] : • 

Z[J}=5d[<f'(oJ]d[<f'C~J]~L'i'] P(<P,o )eJcp{f(S['flo)J- 3['fi<JJ) + (28) 

r]JT ( jtf <:£ FP(-/:)J} . 
0 

To understand the physical meaning of (28) we consider a simplest 
one-dimensional quantum mechanical system /31. The kernel of the evo
lution operator is given by a path integral over all trajectories X (i) 
from the initial state Xo co X (<c) to the final state >f ~XU!) 
of the exponential S [;; J where S is the classical action 
functional: 

(29) 
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If we consider vacuum expectation values of the position operators 

in the Heisenberg picture 

' ' ' 
,Q(~ hex!'{- ~H J Q e-xp{ 1

: j. 
where H is the Hamiltonian of a given quantum system, it is pos

sible to obtain the following expression: 

where 

'!!, (xoio) = ( 'fc IXoT-o > 
ii,'(x_rt.! ). = <x4 t4 1 Yo>. 

(30) 

(31) 

Comparing (30) with (28) and taking into account (17) we see an ana

logy between the Fokker-Plank dynamical ensemble and the quantum sys

tem. We can also derive the second conclusion: to get the Euclidean 

measure 'vi (Cf) we have choose the initial probability density in 

the form: 

Pllf,c) ~ !V"'xp(- S['f] ). (32) 

The physical meaning of (32 ) is clear: we put the system from the 

beginning in the stationary (equilibrium) state and the presence of 

the Langevin dynamics does not modify it /B/. Implying that vacuum 

of H (16) is 'fo('i') = v.p (- i S[~J) Gozzi named (28) the vacuum

-vacuum generating functional. 
Though this approach is elegant, it seems for us that the factor 

P(if,C) is introduced "by hand" in expression (23) for the generat

ing functional; therefore, in the following section we propose a pro

babilistic approach to construct it. 

4. Dynamical generating functional. 
Probabilistic approach 

It is the aim of this section to build the generating functional 

of the SQ method from the assumption that large "time" limit or noise 

average is equivalent to the quantum one without of additional "by 

hand" introduction of the factor P{l.fl, C) IB/. Due to the leading 

role of the Markov property we would like to do a brief survey of the 
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Markov process theory / 14-16/. By definition a SP is Markovian under 

the condition that if a present state is known, any additional infor

mation about the history of a process is nonessential for future pro

gnostication of the process behaviour. Tbus, if the present is known, 

than past and future are relatively independent / 161. In particular, 

for a process governed by the Langevin equation to be Markovian the 

correlations of noise 1!' have to be '8" -correlating at "time" t'. 

The Markov process is described by only two probability functionals: 

single "time" PDD and two "time" conditional PDD. By definition: 

For the Markov SP we have 

P(x,J Xa) ••• ~ x .. ) == P (x,lx;c) 

P(x,lxo,) =Sdx,p(x;lx•)P(~alx>) 

P(:<;) ~ jaxz.P(~i/xo)P(><<) 

This implies that t"'.t > ("~ :> • ~. )t',.. 

<33) 

(34) 

(35) 

(36) 

Equations (35-36) are named the Chapman-Kolmogorov equations, res

pectively for the two "time" conditional PDD and single "time" PDD. 

We have to note that (36) is not the consequence of the Markov pro

perty but is a general property of the joint PDD: 

(37) 

Let us go back to building the generating functional. A starting 

point will be the following expression for the generating functional: 

z:; [::J] = 5lCC~ 1 P ['1',~] exp (Jif ), (38) 

where probability density functional: 

p r I', r] c= < Ll r <P- <l'-z] ). 

written in the following form ~4/ 
(39) 

can be 

P[ ({', ?: ] -= e m {Jy ( 'll EJ j • • • ; If., ?;., ) 
,V~= 

(40) 

I["" lf(x:) ~ z;; _,;;,Z';;;; ?' 
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and P11(.,~) is theN-dimensional joint PDD. Using the definition 
(33-37) for (40) we have 

where 

P(lfl) = < Q8'(rf(x<)- cfz!xt)) ':7 
~lP'{~~r)_-=<frcxrJ)~(<f(x.l;- <lr (xJ;)))~ 

PC <f',;z.1 ) 
For the functional (43) we have an obvious boundary condition: 

The boundary condition for the joint PDD (41) is the following: 

(42) 

(43) 

(44) 

The SQ prescription implies two operations over the many "time" sto
chastical averages ,(_ lfr(x,r,) ... tfr(x.?;.) )1' ; namely 

1) f.m <_ ••• >r 
l't ';:::; {.'-' 

2) !.;.;:, <:. ••• >y 
By means of (45) the first operation automatically isolates the sing
le "time" PDD while the second one is responsible for the relaxation 
to equilibrium state. To express the conditional PDD (43) through 
the path integral we have to note that the "H amiltonian" operator if (12) associated with P(if'?) ~(!)is non-Hermitian. After the 
"gauge" transformation 

(46) 
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we get the ·Fokker-Plank equation with the Hermitian "Hamiltonian'' (16). 

The boundary condition for o/ is the same as for P (44) 

(47) 

cy fP 

Associating with the Hermitian "Hamiltonian" a Lagrangian •?0 accor-

ding to the well-known prescription / 11 / 

(48) 

where /-1 is the cla~sical Hamiltonian function, we get for the ~ 

following path integral expression 

(49) 

where 
-~c) ; "~s 

Xr .i(.)" 1-"-
(1) = - 'f - - ·-"- + 

t( "''i;'<f'-
(50) 

Using (49-50), we arrive finally at the following path integral exp

ression for the generating functional of the SQ method which coin

cides with the /B/ vacuum-vacuum form of the generating functional 

5. Conclusion 

We have considered the simplest case, scalar field theory SQ, to 

build the generAting functional. We think that the essential moment 

of the procedure is isolating of single " time" probability. This is 

true also in Zwanzinger'e scheme/17/; hence this approach may be re

garded also as an alternative to Alverez-Estrada and Munoz-Sudupe/9/ 

functional approach to the stochastic quantization of the Euclidean 

Yang-Mills field theory. 
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