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1. INTRODUCTION

Multiplicitv distribution is the probability of production of
n particles of a certain type in the inelastic interaction of two
particlest P = o770 The multiplicity distributions of all
charged particles are commonly studied. However, some problems
arise in this case: the consideration of protons and m mesons
together seems to be incorrect which is especially clear in
interactions with nuclei; it is incomprehensible whether leading
particles should be included in the disributions Ce.g., in a =n
meson beam); there appears nonuniformity in the distribution due
to charge conservation: all odd Cor all even) probabilities are
equal to zero. )

In order not to solve these problems, let us consider the
multiplicity distributions of negative hadrons (in fact, 1 mesons)
for efe” and PP iﬁteractions. They are one-to-one related to the
distributions of charged particles: n_ .= anneg for e*e” and

n.p= 2nneg+2 ({)
for PP interactions. This equation is also used for PP
interactions at 546 GeV assuming that the probabilities of
changing nucleon (antinucleon) charge at this energy for each
multiplicity in PP and EP are equal.

Further the multiplicity of negative particles is designated
as m

The wmultiplicity distributions in ete” annihilation at
¥S= 3.35 GeV (1] (the PLUTO data are taken from the paper of
Althoff et al.), in inelastic PP interactions at P) = 1.5.2000
GeVsc [2] and in inelastic l;P interactions at vS= 546 GeV [3] are
used for comparison.

2. KNG SCALING
Koba, Nielsen and Olesen have formulated the statement of

independence of the multiplicity distribution shape of the energy



of primary particles [4]. This statement was formulated for very
high energies, i.e. very large multiplicities, when one can
operate with multiplicity distribution as with continuous
function. Figure 1a depicts a possible picture of these functions
for various primary energies. The area under each curve is equal
to unity since it is Lhe sum of all the probabilities: JPndn=
=z Pn= 1. The average multiplicity (<{nd= T nP = fnP dn) increases

with energy.
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Fig.1. Definition of the concept of similarity for a
continuous function C(KNO scaling). The normalized functions (a)
are similar if after linear compression of each function along the
horizontal axis proportionally to any of its horizontal

dimensions, e.g. <n> (b), and linear stretching along the vertical

axis by the same factor (c), they coincide at each point.



Fach curve can be compressed along the horizontal axis
proportionally to any of ils horizonial dimensions, e.g. <n> as in
fiq. b Ceither a modal value or width etc.), and stretched along
the vertical axis by the same factor in order to make Lhe areas
equal again (fig.lc}. The statement of KNO scaling censists in
that the curves coincide at each point [5]. Figure 1c can be
writien in the form

Pp= 17<n> dlnsind) , €2)
where #z) is an energy-independent function normalized by the
conditions

f¥(z)dz= 1, . 3
which tollows from the equality of Lthe sum of all probabilities to
unity, and

Jz¥(z)dz= 1 C4)
because we compressed the functions I until the average value of
each function reached unity. Formula (2) impeses no restraints,
except (3) and (4), on the shape of the function ¥(z). It is
merely a definition of the concept of similarity for continuous
notmalized funclions.

. 3. CONTRADICTION

For present-day accelerator energies the function Pn is
essentially discrete: Lthe condition <md>» 1 (<nch>» 2) is not
fulfilled. For example, <n>> 2 at Piap™ 100 GeVc and <nox> 35 at

2000 GeVrc, In this' case, Iirrespective of any physical
considerations, formula (2) becomes mathematically incorrect
because it contradicts the condition I P, 1 as can be shown in
fig.2a.

To obtain some multiplicity distribution having a given value
of <n> from the continuous universal function ¥(z) in fig.2a, the
inverse operation to that in fig.1 should be done, i.e. the scale

z,= 17<n> should be chosen on the z ;xis. Then the probability Pn
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Fig.2. Obtaining of the discrete mulliplicity distribution
from the continuous mnormalized universal function ¥z);
(al)- according to the commonly used recipe Pn=1/<n> ¥{ns<n>), then

z Pnz 1; €b)- according to the correct recipe,

is equal to the area of the rectangle which touches the curve ¥z)
by its left vertex at the point z= nz = n/<n>. The height of the
rectangle is ¥(n/<n>)= <n>Pn and its base is 1/<n>. For very small
values of z, Clarge <n>) the sum of the areas of the rectangles
(total probability) equals the area under Lhe curve, i.e. it is
equal to unity. However, wilh increasing z, (with decreasing
energy) Lhese areas cannol, cerluinly, remain equal at each value
of Z., Our “numerical integration" becomes too rough.

The change of normalization with energy would mean the return
of ¥ dependence on enerqgy. Figure 2a approximately corresponds to
the multiplicity distribution in PP interactions at Pyap= 100
GeV/r. The distribution of all charged particles is exactly the
same; only the probabilities are redenoted according to (1):

PoaPa, Pl-;P4 and so on, Thus, if arithmetic is wvalid, an



experimental check of eq. (2) cannot yield a positive result (at
least up to ISR energies at a present-day accuracy of experimental
data).

To test the hypothesis ‘of similarity of multiplicity
distributions, the concept of similarity for discrete functions is
first to be defined. It should be consistent for <n>x 1 and return
to the ordinary form (23 for <n>»» 1.

4. GENERALIZATION

An obvious gemeralization of the recipe of obtaining all
multiplicity distributions from one universal function ¥(z) is

shown in fig.2b where the partial probabilities Pn are merely
equal to the area under the curve within the interval Zge It is
seen that the sum of probabilities is always equal to unity, and

the figures a and b coincide for z,+0. This can be expressed as [6]

(n+1)zo
Pn= i ¥zldz . . 5)
nz

0

Normalization conditions (3} and €4) for ¥(z) certainly remain.

Now one can guess the function ¥(z) or obtain it from very high

energies, when the approximate formula €2) is valid, and calculate

all multiplicity distributions by eq. (5) substituting wvarious
scales Zge

let us introduce a continuous parameter m= z/z, which fills

up gaps on the discrete n-axis in fig.la and which we would have

to introduce bhefore obtaining formula (2) in order not to

integrate over the discrete parameter n. Then eq. (%) can be

rewritten in the form

n+l
Pn= I PCmddm , 40

where n
PCml= 1/<m> ¥(m/<m>) (7}

with @
<mp= fmPC(mldm= 1/20 . (8

0
Thus, the discrete multiplicity distribution is presented as a

histogram from the continuous function having KNO invariant

properties.



One can say that the definilion of the concepl of similarity
remained to be the definition for continuous functions. Only tLhe
recipe of obtaining the discrete distribution from the continuous
function was changed, Insteadof the inconsisteni recipe actually
used in (23

P,z PUm) o » (93
we deal now with the correcl recipe (6).

Almost the same method of obtaining nultiplicity
distributions from the continuous function, which was nol yet KNO
invariant, was used in papers (7],

Eq. (5) can be presented in an integral form (6, 8]

co
PUmddm= | $(z)dz= @(nzo) , (10

P, =
k
nz,

opg
B -8

@
where #(z)= J ¥(z)dz is a universal function normalized by the
z

conditions

#C0)= J %(z)dz= 1, (11>
which arises from the conditiens (3} and (4). The partial
probabilities are -expressed through this funclion simpler than in
53

Pn= @(nzo)- @((n+1)zo) . (12
In contradistinction to ¥(z), the function 2(z) allows one io plot
multiplicity distributions for a variely éf energies on one curve
according to (10) if the dependence of <{m>= 1/z, on energy or {n>
is known (see (6,8] and also [S,101).

5. APPROXIMATE CONSEQUENCES
For not very small values of <n>, from (6) - (8) one can

obtain approximately [6, 8]

n+l n+l
{my=fmPCm)dms = [ mPCm)dmy Z(n+.5) P(m)dm=2(n+.5)Pn=(n>+.5. (13)
nn n n n

This is also seen from fig.2b since the area P lies between the
abscissas n and n+l, therefore the abscissa n+.5 is to be assigned

to the area Pn for an approximate calculation of the centre of the
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continuous curve by the histogram. An accurate calculation shows
that for very different functions % (z) this approximation
{<my>= <ny+.9) works well already from <n>2 .3 which corresponds to
Plab24 Ge¥sc in PP interactions.

For the central momenis: iyt Jm=¢m>)9 Ptmddm  Ccontinuous
function) and Dg= Stn-<n»9 P, (discrete one) the result proves to
be still simpler because the addition .5 to n and <{n> cancels (Lhe
central moments are independent of the peak position on the

abscissa axis)

n+l n+l
vz 2 fln-<mp9 POnddmy Zn+ 5-<n0-.5%  J Pmddm= D3 . (14)
g nn n n q

Therefore the known proportionality for continuous KNO invariant
functions ua/q o {m> leads Lo an approximate proportionality for
discrete distributions

Dq o (<n>+.9) , (15}
which results in the Wroblewski relations (11] when passing to all
charged particles in PP inleractions according to (1)

peMer Céngy>-1). (16)
For ete” annihilation, eq.(15) vields Dgh @ (<ng >+,

From (63, (7) and (13) we also get

~ Pf 1 gty 1 n+. 3 .
PP _ s = 7o YEED® aovs Yapses) o (17
which results in "improved KNO“1E11] taking (1) into account:
1 “ch
Py = o5 Y1) - (18)
Ben “en”” ¢ Neh )

B. COMPARISON WLTH EXPERIMENT

As seen from fig.2b, if we have an experimental multiplicity
distribution at some energy, we can obtain a distribution for a
lower energy corresponding to zg which is Lwice as much. In this
case P6= P0+P1; Pi: P2+P3; Pé: P4+P5 and so on. The same can be
repgated for z;=3z: PH=P3n+P3n+1+P3n+2 and so on. A comparison of
the points obtained by this method from ISR data with those at
lower energies is made in figs. 3 and 4. One can see that they

coincide down to the lowest energies. By the way, note that



Fig. 3. Comparison  of the  experimental muftiplicity

distributions with the distributions calculated from those

obtained for higher energies acecording to the recipe PP, +Po, 11

Pﬁ= P3n+P3n+1+P3n+2 and §0 on (see fiq.2bl.

another recipe follows trom fotmula (2): Pﬁ: 2Pans Pﬁz 3P3nand  so
on, and the sums of the nbtained probabilities cannot be exactly
equal to . Figure 4 shows the Wrohlewski straight lines and also
the lower limits of values of Dq (Dq is mintmum for a given value
o1 <n> when only iwo neighbouring probahilities Pn are not equal
to zero (12]).

The ratios (<n>+.5)/D,  and Dq/!)2 for PP inpelastic
interactions at P .= 3.2000 GeV/c and for e*e” annihilation at
v$= 3.33 GeV are presented in figs. 5 and 6. Contrary to the
commonly used variables Cq= <nq>/<n>q, these ratios should go
fastly to the plateau with increasing energy as seen from egs.

(14) and (15). The presented errors are calculated under the
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Fig. 4. Dq= CE_(n—(n))q Pn)l/q versus <n>. The calculated

points are obtained as in fig.3.

assumption of normality and independence of the published errors
of the cross sections. The curves are obtained according to

formula (5} by substituting the functions

2
W2) o= alz+. 14) e blz+ 140% : (19

Wz) = alz-. 1723 B
Here .14 and .17 are free parameters and the coefficients a and b
obtained from (3) and (4) are respectively equal to 1.25% and .618
for PP and 13.16 and 2.565 for e'e”. The curves of fig.3 are
obtained in the same manner. Several different one-parameter
functions, which describe the data well tob, have been found for
both cases (see also [81). However, all of them contain --z2 in
the exponent [9]. The presented functions are chosen due to

integration simplicity.'They differ from those obtained in {13)
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Fig.95. Ratios which should go fastly to the plateau with
increasing energy if the “Accurate Multiplicity Scaling"” is valid.
The curves are' obtained by formula (53 (fig.2b) with W(z)
presented in the figure. The coefficients a and b calculated from

the conditions (3], (4) are equal to 1.291 and .618, respectively.

only in shifts along the z-axis (~.14 and +.17). Calculating the
curves for e+e', Po was set to zero since it was nol measured
exper imentally which is essential only for the lowest energies
though.

It is interesting that according to Polyakov's paper [14],
where KNO scaling for ete™ annihilation was first predicted, Lhe
increase of <o s174 should be obtained from such a fall of ¥(z2)
for large z (e 2 ).

The Collider point at vS= 546 GeV is presented in figs. 7 and

8 along with other data. No data on inelastic interactions at 200
and 900 GeV have been published Conly non single-diffractive).
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obtained from the scaling for negative particles as in fig.5 when

passing to all charged particles according to (1.
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ch
function occurs when 2<ngy,? (2.5¢n > becomes equal to an even

integer since the next PrI does not already enter inte this sum.
ch

The quantilies Cq in fig.7 are raised to the 1sg power for
stretching the scale at small gq. The curves are obtained using the
same scaling function (19} for negative particles when passing to
charged particles according to 011 twcaling (91 cannot  be
simultaneously performed for negative and charged particles in PP
interactions due to shilt +¢ i (11), Statistical and systematic
errors for 546 GeV aie added qguadratically. An evidence for
scaling violalijon is seen for the Coilider energy (up to 3.5
etrars for CS)‘

bigure 8 shaws the percentage of events with multiplicity
which 15 2 (2.5) tames and moste as larqe as the average one. Jumps
ol the curve occur with rising <nch) when E(nch> LE.S(nCh>)
becomes equal to an  even integer since the next partial

probability Py W does not already enter into Lhis sum. The errors
.

for the Collider point are calculated taking into account the

12



errors of <nch>: 2<nch>= 55*1.3. Therefore the sum should include

events from nch254 al the lower bound of the error and from nch258

at the upper one., The same is for 2'5<nch>= 63.811.7 (68 and 72).

Apparently, the height of the tail varies insignificantly at this

variation of <nch>.
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