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I. INTRODUCTION 

Multiplicity distribution is the probability of production of 

n particles of a certain type in the inelastic interaction of two 

particles: P 
0
= a

0
/oin" fhe multiplicity distributions of all 

charged particles are cOmmonly studied. However, some problems 

arise in this case: the consideration of protons and rr ~sons 

together seems to be incorrect which is especially clear in 

interactions with nuclei; it is incomprehensible whether leading 

particles should be included in the disributions Ce.g., in a rr 

meson beam); there appears nonuniformity in the distribution due 

to charge conservation: all odd Cor all even) probabilities are 

equal to zero. 

In order not to solve these problems, let us consider the 

multiplicity distributions of negative hadrons (in fact, rr-mesons) 

for e+e- and PP interactions. They are one-to-one related 

distributions of charged particles: nch= 2nneg for e+e- and 

nc h = 2nneg +2 

to the 

for PP interactions. This equation is also used for 

(1) 

PP 

interactions at 546 GeV assuming that the probabilities of 

changing nucleon Cantinucleon) charge at this energy for each 

multiplicity in PP and PP are equal. 

further the multiplicity of negative particles is designated 

as n. 

The multiplicity distributions in e+e- annihilation at 

vs= 3+35 GeV Ill Cthe PLUTO data are taken from the paper of 

Althoff et al.J, in inelastic PP interactions at Plab= 1.5+2000 

GeV/c [21 and in inelastic PP interactions at fS= 546 GeV [31 are 

used for comparison. 

2. KNO SCALING 

Koba, Nielsen and Olesen have formulated the statement of 

independence of the multiplicity distribution shape of the energy 
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of primary particles [ 41. This statement was formulated for very 

high energies~ i.e. very large multiplicities, when one can 

operate with multiplicity distribution as with continuous 

function. Figure la depicts a possible picture of these functions 

for various primary energies. The area under each curve is equal 

to unity since it is the sum of all the probabilities: JP 0dn~ 
=Z P0 = 1. The average multiplicity C<n>= ~ nPn= JnPndn) increases 

with energy. 
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fig.l. Definition of the concept of similarity for a 

continuous function CKNO scaling). The normalized functions (a) 

are similar if after linear compression of each function along the 

horizontal axis proportionally to any of its horizontal 

dimensions, e.g. <n> Cb), and linear stretching along the vertical 

axis by the same factor Cc), they coincide at each point. 
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Each curve can be compressed along the horizontal axis 

proportionally lo any of .its horizontal dimensions, e.g. <n> as in 

fiq. lb (either a modal value or width etc.), and stretched along 

the vertical ax1s by the same factor in order to make the areas 

equal aqa1n Cfig.1cJ. lhe statement of KNO scaling consists in 

that the curves co inc ide al each point [51. Figure lc can be 

wr ltten in the form 

(2) 

where '~lz J is an enerqy-independent. function normalized by the 

r.onditJons 

J~(zJdz= I , C3J 

whlch follows from the equality of the sum of all probabilities to 

unity, and 

Jz~(zJdz= l4J 

because we compressed the functions P
0 

until the average value of 

each function reached unHy. Formula (2) imposes no restraints, 

except C3) and (4), on the shape of the function l.Jr(z). It is 

merely a definition of the concept of similarity for continuous 

normalized functions. 

3. CONTRADICTION 

For present-day accelerator energies the function Pn 1s 

essentially discrete: lhe condition <n>» 1 C<nch>>~ 2) is not 

fulfilled. For example, <n>~ 2 at Plab= 100 GeV/c and <n>~ 5 at 

2000 GeV/c, In this· case, irrespective of any physical 

considerations, formula (2) becomes mathematically incorrect 

because it contradicts the condition~ Pn= 1 as can be shown in 

fig. 2a. 

To obtain some multiplicity distribution having a given value 

of <n> from the continuous universal function WCzJ in fig.2a, the 

inverse operation to that in fig.l should be done, i.e. the scale 

z0 = l/(n) should be chosen on the z axis. Then the probability Pn 
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fig.2. Obla1ninq oJ the discrete multipliCity distribution 

from the c.onlinuous nor mali zed uni versa! function ~CzJ; 

(a)- accorrlinq to the commonly used rP.c:ipe P
0
=1/(n) IJ.'(n/(n)l, then 

Z P0~ 1; CbJ- according to the correct recipe. 

is equal to the area of the rectanqle which touches the curve ~Cz) 

by its left vertex at the point 7.= nz
0
= n/(n). The hE>iqht of the 

rectangle is 'J!(n/(n)J= <n>P n and its b~se is 1/<n>. For very small 

values of z
0 

Clarge <n>J thp ~u1u 1)f lhf' areas of UH?. rectangles 

Ctotal probability) equals the a1 ea under the curve, i.e. it is 

equal to unity. HowevP.r, w1lh increasinq z
0 

(with decreasing 

enetqy) these aree~s cannot, u:>rL<!nly, I'Pmain equal at each value 

of z
0

• Our "numer ica1 i11l~q1 at ion" becomes too rouqh. 

The chanqe of normal izalion wi lh enen.fY would mean the return 

of 'l' dependence on enerqy. Figure 2a approximately corresponds to 

the_ multiplicity distribution in PP interactions at ~lab= 100 

GeV/r.. The dl.stribution of all charged particles is exactly the 

same; only the probabilities are redenoted according to CD: 

P
0

-+P2• P1-+P4 and so on. Thus. if arithmetic is valid, an 
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P.Xperiment31 check of eq. (2) cannot yield a positive result Cat 

least up to ISR energies at a present-day accuracy of experimental 

data). 

fo test the hypothesis 'of similarity of multiplicity 

distributions, the concept of similarity for discrete functions is 

first to be defined. It should be consistent for <n>~ 1 and return 

to the ordinary form C2) for <n>» 1. 

4. GENERALIZATION 

An obvious generalization of the recipe of obtaining all 
multiplicity distributions from one universal function 'Kz) is 

shown 1n fig.2b where the partial probabilities Pn are merely 

equal to the 31'e3 under the curve within the interval z
0

• It is 

seen that the sum of probabilities is always equal to unity, and 

the figures a 

p = n 

and b coincide 
Cn+1Jz

0 f <l>CzJdz 
nz

0 

for z0~o. This can be expressed as [6] 

(5) 

Normalization conditions (3) and C4) for lf(z) certainly remain. 

Now one can guess the function llf(z) or obtain it from Very high 

energies, when the approximate formula (2) is valid 7 and calculate 

all multiplicity distributions by eq. C5J substituting various 

scales z
0

• 

Let us introduce a continuous parameter m= z/z
0 

which fills 

up gaps on the discrete n-axis in fig. 1a and which we would have 

to introduce before obtaining formula (2) in order not to 

integrate over the discrete parameter n. Then eq. C5J can be 

rewritten in the form 

where 

with 

p = n 
n+l 
f PCm)dm 
n 

PCmJ= l/<m> wCm/(m>J 
00 

<m>= JmPCm)dm= l/z
0 

• 
0 

(6) 

(7) 

(8) 

Thus, the discrete multiplicity distribution is presented as a 

histogram from the continuous function having KNO invariant 

properties. 
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One can say that the definition of the concept of similarity 

remained to be the definition for continuous functions. Only the 

recipe of obtaining the discrete distribution from the continuous 

function was changed. Instead of the inconsistent recipe actually 

used in (2) 

Pn= PCmllm=n (9) 

we deal now with the correct recipe (6). 

Almost the same method of obtaining multiplicity 

distributions from the continuous function, which was not yet KNO 

invariant, was used in papers [71. 

Eq. C5J can be presented in an integral form [b,8l 

00 00 00 

~ Pk= J PCmldm= f ~Czldz= oCnz
0

) , 
n n nz

0 

ClUJ 

00 

where Hz)= J WCz)dz is a universal function normalized by the 
z 

conditions 

HOJ= f Hzldz= I, (Ill 

which arises from the conditions (3) and (4). The partial 

probabilities are -expressed through this function simpler than in 

C5J 
(12) 

In contradistinction to W(z), the function Hz) allows one to plot 

multiplicity distributions for a variety of energies on one curve 

according to (10) if the dependence of <m>= 1/z
0 

on energy or <n> 

is known Csee [6,81 and also l9,10J). 

5 •. APPROXIMATE CONSEQUENCES 

For not very small values of <n>, from (6) - C8) one can 

obtain approximately l6,81 
n+l n+l 

<m>=JmPCmldm= ~ f mPCmldm~ ZCn+.5l f PCmldm=ZCn+.5lPn=<n>+.5. C13) 
n n n n n 

This is also seen from fig.2b since the area Pn lies between the 

abscissas nand n+l, therefore the abscissa n+.5 is to be assigned 

to the area P
0 

for an approximate calculation of the centre of the 
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continuous curve by the histoqram. An accurate calculation shows 

that for very different functions ll'Cz) this approximation 

( <m>= <n>+. 5) works well already from <n>2: • 3 which corresponds to 

Ptab~4 GeV/c in PP interacllons. 

For the central moments: u = JCm-(m))q PCm)dm (continuous . q 

function) and D~= ::tn-<n>Jq P n (discrete one) the result proves to 

be still simpler because the addition .5 to nand ·<n> cancels (the 

central moments are independent of the peak position on the 

abscissa axis) 
n+l n+l 

"q= :~ flm-<m>Jq Plmldm"' :.:Cn+.~-<n>-.5Jq I PCmJdm= 0~. l14J 
n n n n 

Therefore thP. known propm tionality fat continuous KNO invariant 

functions u~/q o:: <m> leads to an approximate proportionality for 

discrete distributions 

oq a c <n>+. 5) ll5J 

which results in the Wroblewski relations 1111 when passing to all 

charged particles in PP interactions according to (1) 

ch Oq o: L<nch>-1J. C16l 

For e+e- annihilation, eq.C15J yields o~h o:: ((nch>+D. 

From L5J, C?J and l13J we also get 

P ~ PL J 1 - 1 .,,,n+.5)~ 1 ·'·( n+.5) 
n"" m m:::n+. 5 - m 'i' l"\iii) ...,_ ~ 'i' 'Gi"J'+.5 ll7J 

which results in "improved KNO" 1111 taking (1) into account: 
1 °ch -! 

p nch = <nch>-1 'II (znch>-1) 
ll8J 

5. COMPARISON WITH EXPERIMENT 

As seen from fig.2b, if we have an experimental multiplicity 

distribution at some energy, we can obtain a distribution for a 

lower energy corresponding to z~ which is twice as much. In this 

case P~= P0
+P 1; Pi= P2+P3; P2= P4tP5 and so on. The same can be 

repeated for ZQ=3z0
: Pn=P3ntP3n+l+PJn+2 and so on. A comparison of 

the points obtained by this method fi'om ISR data with those at 

lower energies is made in figs. 3 and 4. One can see that they 

coincide down to the lowest energies. By the way, note that 
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(n) 2 

Fig. 3. Compar1son of the experimental multiplicity 

distributions with the d1str ibutlons calculated from those 

obtained for higher energies according to the recipe P~=P20+P2n+l; 
Pn= P30+P30+1+P30+2 and so on (see fig.2bJ. 

another recipe follows trom for mula C?"l! P~= ~P20; Pn= '3P30and so 

on, and the sums of the obtained probabihties cannot be exactly 

equal to 1. figure 4 show<> the Wr ohlewski straight lines and also 

the lower limit::. of values of [)q (l)q is mintmum for a given value 

of <n> when only two ne1qhbouring prob.1h1Jitles P0 are not equal 

to zero [ lGJ). 

The ratios L<n>+.:i)/02 and for pp inelastic 
+ -interactions at Plab= 3.,.2000 GeV/c and for e e annihilation at 

Ys= 3 . .;-35 GeV are presented in figs. 5 and 6. Contrary to the 

commonly used variables C = <nq)/(n)Q, these ratios should go q 
fastly to the plateau with increasing energy as seen from eqs. 

f14) and 05). The presented errors are calcuLated under the 
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3 
o -OJ.Iculoted from ISR dolo ~y. 
•-expenment 2+2006eVIc / 

2 I PP~n,..g I /. o 

~· · .. ~ 
~-' n/c-P' /DL 

/ _/<. ""'"' 4/. c:Y .,.P')-0. /. y • 
oro#' /•• oY0 Dz 

~ "' ./' /.: 

~-
0 <n> 3 

fig. 4. D = C~ Cn-<n>Jq P J1/q q n versus <n>. The calculated 
points are obtained as in fig.3. 

assumption of normality and independence of the published errors 
of the cross sections. The curves are obtained according to 
formula C5J by substituting the functions 

e-bCz+.14J 2 
W(zlpp= aCz+.14J 

wCzlee= aCz-.17)3 e-bCz-.17l2 

(19) 

Cfor z$.17: w=OJ. C20l 
Here .14 and .17 are free parameters and the coefficients a and b 
obtained from C3J and (4) are respectively equal to 1.25~ and .618 
for PP and 13.16 and 2.565 for e•e-. The curves of fig.3 are 
obtained in the same manner. Several different one-parameter 
functions 1 which describe the data well too, have been found for 
both cases (see also [81). However, all of them contain -z2 in 
the exponent [91. The presented functions are chosen due to 
integration simplicity. They differ from those obtained in [ 131 
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1.2 IPP~nneg 3 + 2000 GeV/c I 

1.1 2 

" 
ljJ(Z)=a(Z+,14) eb(Z+,14) 

1,0 

'~-~t??....L?Y-1 ~y ! v t f .9 D:J 
02 

.8 
2 3 4 5 

(n) 

Fig. 5. Ratios which should go fast! y to the plateau with 

increasing energy if the "Accurate Multiplicity Scaling'' is valid. 

The curves are obtained by formula C5J Cfig.2b) with 'IJ(z) 

presented in the figure. The coefficients a and b calculated from 

the conditions (3), C4J are equal to 1. 251 and . 618, respectively. 

only in shifts along the z-axis C-.14 and +.17). Calculating the 

+ - t curves fore e, P0 was se to zero 

experimentally which is essential 

though. 

since it was not measured 

only for the lowest energies 

It is interesting that according to Polyakov•s paper [ 141, 

where KNO scaling for e+e- annihilation was first predicted, the 

increase of <n>a s 1/ 4 should be obtained from such a fall of ~(z) 
2 

for large z Ce-z ). 

The Collider point at ~= 546 GeV is presented in figs. 7 and 

8 along with other data. No data on inelastic interactions at 200 
and 900 GeV have been published Conly non single-diffractive). 
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Fig.6. The same for e+e- interactions. for z~.17 WCzJ=O. The 

coefficients a and b are equal to 13.15 and 2. 565, respectively. 

1.6 
PP--nchiiNELI 

2+2000 GeVIc 

1.5 

1.4 

1.3 

1.2 

1.1 

1.0 L_ . .L_.c__L_.L_-L_.L 

2 6 8 10 12 20 30 40 

F . 7 ccch)l/q lg. • q = <nih>l/q/(nch> versus <nch>' The curves are 

obtained from the scaling for negative particles as in fig.5 when 

passing to all charged particles according to Cl). 
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.S o I }u ;,, 
,) ¢ p l I I ______L___j 

l//1111111/ll/111111111 

81012203040 
<nch> 

fig.8. Percentage of t>vents having '\:h..': 2<nch) tor C.3<nl-h)J 

versus <nch>. The curves are obtained as 1n fig. 1. Jumps ot the 

function occurs when 2<nch> t 2. :i<nch> becomes equal to an even 

integer since the next P does not alre.:idy enter 1nto this sum. 
nr:-h 

The quantities cq in fig./ are I aised to Lhe 1/q power rot 

stretchinq the scale at small q. lhe curves are obtained usinq the 

sam>:' scalinq funr::Unn ( 19) for neqaU ve particles when passing to 

charqed patl.ir;l~:c"::, <;cr.ordrnq ''' i.ll i~.,.:.Jinq (~JJ cannot be 

simultaneously tJ8rfrnm..,d fl'll rrl-!'q.:11.JV!::! and ctr.~rqed paltlcles in PP 

wterad.ions duto to shift +r. 111 ilJJ. ~.)LdrsLg:al and systematic 

errurs fur 546 GeV <:~r ~· added quadr .:d.iudl y. An evHlence for 
~r . .:'llinq violaUon IS. ~Pen fur the Cu!J1der P.nerqy Cup to 3.5 

etro1s for C5). 

~ HJUI R 8 show:. lhe pPt :.1-'nlatw ot 8V!:o'nts with mul Uplicity 

wh1ch IS 2 C2.5) tlme'> a:nrl mrJtf• a<, la1ql-:' -'l~ the averaqe one. Jumps 

or lhe curve occur with r 1s1nq <nch> wht:m 2<nch> l2.5<nch)) 

becomes equal to an even 1nteqer s1nce lhe next partial 

p1obabilily P
0 

rJoes not already enter into this sum. lhe errors 
ch 

fur the Collider point ar·e calculated taking into account the 
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errors of <nch>: 2<nch>= 55±1. 3. Therefore the sum should include 

events from nch2:54 at the lower bound of the error and from nch~58 

at the upper one. The same is for 2.5<nch>= 68.8±1.7 C68 and 72). 

Apparently, the height of the tail varies insignificantly at this 

variation of <nch>. 
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