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Two quadratic forms represent the basis of the theoretical 
constructions of contemporary geometry and physics. The main 
geometrical notion - an interval - is a quadratic form. The 

Hamilton operator is a function of square of momentum; relati­
vistic relationship between mass, energy, momentum is represen­
ted by a quadratic form. Finally, in Mechanics and"in Geometry 
it is these groups of mo~ion which are pf great importance 
that remain an unchanged invariant - a certain quadratic form. 

The fact that in the fundamental theoretical derivations 
a quadratic form has a domina~t role results from the human 
manner of thought operating mainly by the binary system: 
"yes-no", 11 right-left11

, 
11positive-negative11

, etc. Accordingly, 
positive and negative charged particles and antiparticles, 
two-projection (half) spin, two-dimensional phase space, dis­
tance between twO particles, 2-particle interaction, parity 
and so on appear in theory. 

The .interconnection between relativistic relationship of 
energy-momentum-mass and such notions as particle-antiparticle, 
left and right, half spin operator was discovered in the fra­
mework of the Dirac theoryll/. 

Let us assume that there exists 3-charged state of particle. 
The quarks/2/ possessing 3-colour charge try primarily to play 
role of such particles. Further, it is naturally believed by 
analogy that the particles of one tricharged group are related 
to each other similar to particles and antiparticles in the 
Dirac theory. 

Due to the idea of the Dirac theory for a description of 
these hypothetical particles the forms one degree higher than 
in conventional theory, namely, cubic forms, should be applied. 
The idea of composing a physical theory based on polylinear 
forms has been suggested in/3,4,5,6/. In this paper we repre­

sent one of the ways of constructing such a theory. The hypo­
thetical world being described by this theory, might be called 
the triad world. For brevity sake, we avoid strict determina­
tions and proofs and present the main properties of space 
triad world and describe trends of constructing Quantum Mecha­
nics of particles moving in this space. 

1. G e om e t r y o f t r i ad W· o r 1 d (Trigeometry) 
possesses very interesting properties. It contains analogy of 
notion of straight line, plane (surface), intercept (of a 
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a straight line), angle between two (or three) straight line, 
triangle,so on. But in trigeometry "straight line" passes 
through three dots, accordingly, only by means of three dots 
an interoept may be separated from a "straight line"; "triang­
le11 has four sides and four angles, moreover, the angle is 
a complex value. In.Euclidean geometry (that is naturally for 
dyad world) there exist only two opposite directions; in triad 
world we have three riatural opposite directions. Each direction 
in dyad world has appropriate signs(+) or(-). Solutions of 
the equation x 3 - 1 = 0:(1, e,e 2 ) play the role of a three­
digit unit in triad case. 

Let R be a set of positive real numbers including zero. Sup­
pose that an .element of R can be contrast to any point on tri­
geometry straight line. An intercept on this line gives rela­
tionship between three points x

1
, x

2
, x

3
c;R, xlJ. >x 2 >x 3. Deter­

mine the length of the intercept as an express1on of the form 

(1) 

When x 2 = x 3, expression (1) turns to the ord·inary form for 
intercept length bounded by points (x1 , x2 ) on the ordinary 
straight line. 

In trigeometry the figure to be analogous to a right triang­
le consists of three perpendiculars (A, B, D) and a hypothe­
nuse (C). For such a figure a relationship is valid (analogy 
of Pyphagore theorem): 

(2) 

Introduce three functions: 

G
0

(a,/3):=1/y, G
1
(a,i3):=aly, G

2
(a,i3):=/3/y, (3) 

where a= B/A, 13= D/A, y = C/A. These functions are analogous 
to functions Cos¢, Sin¢. It is clear that 

3 3 3 G0 + G1 + G2 - 3 G0 0 1 G2 = 1. 

As has been shown by Greav~s171 , one can specify the exponent 
function 

(4) 
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The summing formulas of parameters at exponent multiplication 
have the following form: 

The plane in trigeometry triplane is tridimensional mani­
fold. On the triplane the transformations such as rotation, 
remaining invariant cubic form, can be set: 

1(3): =P
1
3 +P~ +P~ -3p

1
p2p3 . (5) 

These transformations might be set by using cyclic number re-
presentation: 

P{+p~O+p~8 2 =(0 0 +80 1 +8
2
0 2 )(p1 +p28+p 38

2
) (6) 

The generalization of tridimensional cubic form (5) in the 
case of higher measurements can be efficiently used with the 
help of Dicson algebra basis /8 • 9 -' , since Dicson algebra with 
respect to cubic form ~lays the role like Clifford algebra 
with respect to the quadratic forms14'. 

2. D i c s o n a l g e b r a o f c u b i c d e g r e e. 
The cyclic algebra of N > 2 degree was discovered by Dicson/9/ . 
That is why we call it Dicson algebra and denote by sign 
Dic(N). Elements Dic(N) are defined by relations: 

UV=VU0, 

e is algebraic unit, F is a commutative field, the characteris­
tic of the field is not a divisor of N, 0 is a primitive root 
of equation x N- 1 = 0. As is easily seen, Dic(N) is a genera-
tion of quaternion algebra. As is shown in/4/ one can get mat- • 
rix basis for linearization of theN-forms, using u,v ~Dic(N).· 
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Let us observe in more detail the neighbour of quaternions -
the algebra Dic(3). 

The generatrix elements can be realized with the help of 
matrix representation 1

10/ : 

( ~ 1 0 ) u:= 0 1 
0 0 

v:=(~~~) 
0 0 1'12 

The matrix basis of Dic(3), including a unit matrix E, consists 
of 9 elements 

2 2 2 2 1 a
5 = a 1 , a 

6 
= a 

2 
, a 7 = a 3 , a 

8 
=a 4 • 

The 
sp (a~ ) 
can be 

matrix system lak I is linear-independent, complete and 
= 0, k = 1,2, ... ,8. Any matrix A(3x3) given in field F, 
expended in basis Ia~ I 

Let two matrices are given 

where f
1 

(a), f 2 (b) are cubic forms and 

Basis (2.3) allows to obtain the linear transforms of cubic 
form 
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4 
I(a,b) ~I(A) :~( 2 

n=l 

where 

Proposition 

Let: 

8 
1r:=TT + l: r; a , 

0 k~ 1 k k 

rr:=rr
0 

Then the cubic form I(a,b) is invariant relatively to transfor­
mations 

(7) 

The transform (7) consists. of 7-parameters. As quality matrix 
of transformation one can obtain: 

The cubic form I(a,b) consists of coordinates of two 4-dimen­
sional orthogonal (in a common sense) subspaces. Form (5) is 
generalized nothing more not less than in such a way at the 
further growth of space dimensionaling in trigeometry. 

3. C u b i c q u a n t u m m e c h a n i c s c o n s t -
r u c t i o n p r i n c i p a l. The Cubic Quantum Mechanics 
is a Quantum Mechanics of particles moving in the spa­
ce of trigeometry. This means that the invariant 
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values of the theory need a trilinear form. A wa­
ve functions of free state is described by an exponentional 
function (4). Accordingly, the notion of "unitary" is exchan­
ged. 

If in Quantum Mechanics the observable has a discrete spect­
rum of eigen values, then its linearity operator is a matrix 
A. In this case 

AtjJ = >. t/J , 
n n n 

UA= D (>.) U, 

where t/1
0 

is an eigen vector, U - unitary matrix, D(i\) - diago­
nal matrix of the eigenvalue. Any unitary matrix has the expo­
nential representation 

U:=exp(i¢), u-1 =exp(-i¢), uu-1
=E. 

Analogy of unitary matrices in Cubic Quantum Mechanics (3 -

unitary matrices) is 

U
1

=Exp(O¢). 

Fundamental elements of Quantum Mechanics are angular mo­
ment, spin and creation and annihilation operators. Let us con­
sider the analogies of those notions in Cubic Quantum Mecha­
nics. 

Determinations 

1. 3-linearity anticonunutator of 3 given operators: -b
1

, ·b
2

, b
3 

is 

2. 3 - linearity commutator between 3 operators is defined as: 

Since we introduce the notion of a trilinear anticommutator, 
the Hamilton operator can be defined by analogy with the ordi­
nary oscillator in a following way: 
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The operators b 1> b 2• b 3 affected by the given state function 
may be defined by the following formulas: 

g--
b<l) ~vnd<ll 

1 n n+ 1 

Using the formulas, it is easy to find spectra of operators N: = blb2b3, H(3) 

N<ll~n<ll, H(3)<11~(n+ 2 + 82 )<11 n n n 3 n 

Here b +: = b1 plays the role of the creation operator·; and 
b-: = b2b 3, the role of annihiligation operator. Note that 

the operators of a trispin are elements of Dicson algebra: 

:l:k~eha/3. 

The corresponding analogues of the operators of angular moment 
can be obtained by using boson operators 

In this case a triangular moment has the form: 

As we suppose that the moving of particle occurs in the 
trigeometry space, the dependence of energy and momentum must 
be in the fOrm invariant with respect to transformations (7). 
The direct analogue of the energy operator of Pauli equation 
is the following expression: 

4 
L pp =0. 

i=l 1 1+4 
(8) 

The cubic form is the analog of relativistic relation between 
energy, momentum and mass: 
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In this 
At c ~ oo 

analogs 
ten/5/ . 

8 3 3 
L a p ) +(me) 

k= 1 k k 

(9) 

case the expression &0 =me 3 corresponds to rest energy. 

expression (9) transforms into (8). Accordingly, the 
of the Klein-Gordon and Dirac equations can be writ-

In the frames of Quantum Field Theo·ry electric charged par­
ticles are described by means of the complex wave functivns. 

In the Cubic Quantum Mechanics tricharged states will be des­

cribed by Greaves numbers. According to the Dirac theory the 

Charges and the rest of masses of different signs correspond 

to particles and antiparticles. In Cubic Quantum Mechanics the 

charges and rest of mass of particles interrelating to each 

other as antiparticles have factors 1, e, e2 . 

One of the possible areas of application of Cubic Quantum 
Mechanics is hadron physics, whose fundamental objects (quarks) 

possess tricolour state. 
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