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1. Ir:troduction 

The irte:rest in part:cle creation from vacuum, by an external 
scalar field, is provoked prirr.arily by comsomological inflationary 
models. In all the models considered (see e~g. reviews /1/ ) expo­
nential expansion is driven by a scalar field X (i), providing the 
effective equation of state p-::.- £ • At the end· of inflation 
the only nonvanishing field in the Universe is the scalar field 

JL (t) , while the density of other forms of matter is expo­
nentially damped. The ordinary matter is created due to the coherent 
oscillations of X around its equilibrium _point. That leads to 
the customary fridman universe. This process is called the Universe 
heating up or reheating. It was discussed in refs. /2-4/ ,but deta­
iled calculations of the particle creation probability were r.ot per­
formed there. 

The aim of this work is to present simple analytical formulae for 
particle creation probability for different cases, which could be. 
realized in the early Universe, and also to discuss some cosmological 
implications 1 such as the Universe reheating, bariogenesis, the effect 
of particle creation on the Universe evolution. 

Particle creation from vacuum by an external field is a well 
investigated problem of the quantum field theory (see e#g. the took 
/5/ )_ Electromagnetic fields of different kinds, configurations and 
intensity have been considered in literature, while the case of an 
external scalar field is not yet well studied. It differs from the 
vector field case by some specific features, as for example, the 
fact that the interaction of a particle v1i th scalar field can be 
regarded as a contribution to the particle mass. Hence, on one band, 
the creation probability must increase with rising field strength, 
and on the other band it decreases as the mass increases. This comp­
lex behaviour is reflected in the results obtained below. 

The Bogolubov canonical transformation method can be used for the 
description of the particle creation processes (see e#g. ref./5/ ). 
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In the next section we will apply this 'method for the scalar fjeld 
case in analogy with the electromagretic one. This forn,alism redu­
ces the calculation of creation probabilities to solution of second 
order ordinary differential equations. 

In sec. 3 tbe creation probability is calculated in the case when 
perturbation theory is valid. 

In sec. 4 another method for the d~scription of particle creation 
processes is presented based on calculation of the irr,acinar,y part of 
the action functional • This method is especially sed tat:le fr1r gua­
siclasaical approximation in the imaginary tir:1e f:Jrmalisrr,. As v:ill 
be shovm, the results, obtained in quasiclassical approximation are 
in good accordance v;.i.th those obta~r:ed in the opposite case, \Vhen 
the perturbation theory is valid. 

2. Method of Bogoliubov transformation. 

Ne will consider the case of time dependent space-homogeneous 
external scalar fi.;;ld .1,.(-t):: .t.af (t) , interacting with fermions 

\I)Cx.) (or bosons (,f?(X) ). The Lagrangian density and the corresponding 
field equations have the form: 

.t =H \f(OL)'t..tq,_"'(:x.) -?.;.ifl>c)l(,~\f('"D--h .. JX')4i4' (1) 

l'- 't' c\, - ()Ylo +X )J lf CxJ ~o- <2l 

It is convenient to express the solution of the equation (2) 
through the solution of the second order differential equation: 

the 

if~,...., C: 
Substituting lfps(x) ~e- (f'(fY,t)o, 

eigen-vectors of the matrix '({ 0 
, we 

equation of the form: 
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v1bere ill (t): P1 
-t (Y11o-t q.X,)~ + ,vJ- ,u;(~oh eM 

a _');; Git · 

Equation (3) is an oscillator type equat:i._on ;·:ith a complex tirr.e­

dependent frequercy .. Analo, ·ous equation is octained for the toson 

creation, but in that case the frequency is real .. The field opera­

tor expansion in t8rms of creation and armibilation operators with 

definite mom.entun: has the form: 

(4 ) 

Here are correspondingly positive and 

negative frequency solutions of the Dirac equation defined in such 

a way that they coincide v:ith positive and ner:ative-frequency 

asymptotics of the soluticms -,:hen t-'P-Cl.!' and the particle crea­

tin.'~ part of the field switches off (i.e .. when the field becomes 

static) .. 

After some transforn1ations the bamil tonian of the ferrdon 

(boson) field in external scalar field can te written in the form: 

( 5) 

where E- (f1,i:) and can be expressed through 

'if l .. ) ~ l-) • 

't-~f.~)·~- i.fl[lf'(~\ql<. .. )- ~l.,,if, .. 'J/12,(,:~)~)/.Q, 

Hf,l:)L .... \F(f".~)l%. ""i. 
(6 ) 

At infinitely large negative t the Hamiltonian is 1tdia1-:onal 

operator, while in the presence of nonstationary fiel~d..,!!.Jis not .. It 

can be diar,onalized at any tdven tirr.e by the Bogoliubov transforma-

tions realizing the transition from operators 0:<±) 1 
a_(~ to 
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ti::1e depender.t operators bL1:) ( 1:-) with censer-ved anticommutator (ir fert~ionic case) or cuc-,mutator (in bosoniC case) 
relations. 

(-) 
C:vps 

• J·,:ir.us 
The Hamiltonian can te d::_agonalized 

t!-_.c±)(-t) , provided the followimr Dr' 

si ... r. is for the bosonic 
in terms of 6f~t) Ct} 
conditions are fulfilled: 

(T) 

case. 
and 

l1;inus sign is for bosons. f+ 
In terrr:s of operators b-) (t) the Hamilfoniar. takes the form: 

~''• C-t> fJ l.l.Jp_\lo(p',i:)[ ~; .. 1 (-t)~-~\<n: b~;-1 (-t) b_f;c"j 
I:J-=' lt) are operators of 

on or annihilation at moment i . If 
at t:-1on:ent t then 

the physical particles creati-
1 ot > is physical vacuum 

0. 

In other words, an intF~ractin.' quantum field (fermionic or bosonic 
one) car. te represented in the san,e ,.;ay as a noninteractin,· field, 
provided the necessary redefinitj_on of the concepts of particles 
and the vacuum ntate is carried out. Diagonalization of the Hamilto­
nian is equivalent to exact solution of the Heisenterf~ equation of 
~at on. It allows to express any matrix element through the 
Bo ... :Dliubov transforrQation coefficients. Thus, the atsolute probabili­
ty of the pair creation is Wp(-1:)~ ih(-t:)/ 1 

, while If= lj>p /cl1;j
2 is 

the relative probability for creation of particle pair with a defi­
nite momenturr:. 
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The nuclear density of the created particle-antiparticle pairs 
ir. the state, that was a vacuum one at i ~ -CU is t\11 ~~=-~p 5J}p lp,J~ 

8onsequently, as can be seen from eqs.(6) and (8), the calcula­
tion of the pair creation probability may be reduced to a determina­
tion of the asymptotics of the solutions of oscillator equation 
(J) with a complex frequency. Similarly, the calculation of the 
probability for the boson pair creation reduces to a determination 
of the asymptotic a of the solutions of equation (J) but with a real 
frequency. 

where 

designated as 

t -')-a.::> 

t -..-rev 

The impossibility to construct a solution, which bothat i:~.ot-Q;) 
and at t__,-a.::> indudes just one definite frequency, is a re­
sult of the pair production by the field. The quantity g:::(Cz /C, 12 

defines the degree of the oscillator excitation due to changes in 
its frequency. Consequently the particle creation probability can 
be expressed through q 

The problem of particle creation is reduced to the problem of 
parametric excitation of oscillator with variable frequency, or to 
the problem of flat wave reflection from the potential barrier 
/5,7, 9-11 J - Indeed, using the formal substitution X. instead of 

-f; in equation (3) we obtain the Schrodinger equation desc-

ribing one dimensional mO¥ament of particle in potential 
N 9 :;L (t.) . '3 in this case plays the role of reflection 

coefflcient from the barrier). Due to this link we can express cre­
ation probabilities through the solutions of ordinary differential 
equations, avoiding ·the search of the exact solutions of the rela­
tivistic equations and the Green's functions. Some methods for so­
lution of equatj,.ons of type (3) are discussed in ref ./7, 11 / • 

Employing the Lagrange method to the oscillator equation (3) 
we obtain a set of first order differential equations: 
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a (t) = _i_ a.C-t)e:xp(-2i<e)j(.Q,·Hi) 
1 .25ljJ) 

t 
a.,Co)= 1n:zwi-Q•) J o.~ (o)=O' Q=m-tX, c.p<-t!=SS2,lt'!dt~ 

0 

where 

The solution of (J) reads: 

4> (i-) = tSl
0

-tQ' a,(+.) exe(ct<J)- o~.<t) ex-p<-'-4')/ ~ 
q = io~tt)/[a,(i)(Jlo-;-Q)] l.z. 

Using the variable phase method we obtaine a solution for the boson fields in the form: 

<f'(-t):o ll:(-tJL e.xpH<p) -t !Z(i)exp(+-i<f)], 
t 

where {f(t) = J .Q, (+')J-1:' 
0 satisfy the equations: 

and 

.J{€1-J= ~ JW:J[it<t) exp (+2~<0- i] 
11.'(-l)= ;i L exp (-2C'f)- tZ1tJ exp(•2•4')] 

1 

Particle creation probability is r = l R C+v.>)l'~ 

./t-(t:j and /Z {t) 

Thus the calculation particle creation probal::ility can be reduced to 
the calculation of the asymptotic solutions of the oscillator equa­tions with a complex or a real frequency. In most cases it is diffi­cult to find the exact solution. There is a lot of problems when 
the approximate methods of calculation fit well enough. In what 
follows we will obtain the explicit analytic formulae for the pair 
production probabilities in two limiting cases; r;ben perturbation 
theory is applicable and when the quasiclassical methods can bP­
employed. The interaction of time dependent Realer field J:At) -::....'k,.)-ti) 
with the fe:mions ~XQ/lf! is equivalent to a variable contri-
bution to the fermion mass, m'tH:l= Ync -t~JG0 f(+) . So the fern.ion mass becomes time-dependent. 
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the perturbation theory can be used, while for 
the quasiclassical approxir:;ation workes. 

J. The perturbatior. theor;)" calculations 

~ The lowest amplitude far the pair creation of fermions with 
mo~r.enta r; and "f? is: 

ji (f., f;) = ~ j d ':x- Xlt) < p,, p. I iV 4' I o > = 

where yJ and \..V are expres8ed throullh the creation and anni-
hilation operators, according to: ~ = 4'-t' (X)-t- 4' -ex.) 

'!'; (x),i!~?•Jdp e.xe(!:cpx.)o(p"-m')4'/(p) 

4' •. \rJ=l 1{,-v,t o..icr) 
'))o.1,2 

V and V are Dirac spinors, 

_i (E)~ Jo!t <2xp (cH).X,(-Io) 

The fermion creation rate per unit volume is: 

The coefficient proportional to the volume V 
as ueuall~, from the square o:t the 0 -function: 

[ s-c?, .. ~ )t~ V oc~ .. ~); cz•)~. 
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The integral over tirr.e is taken assurr.inf' that l0 > 7 t.- :i 
1;ow, let us take a concrete external field X (-t) = ~oW.s (W(t) t) 
Then, usin,· the expression for the .X -particles nur;-.bcr density 
and takin1.<" the inte,,·rals over r.;Ol1fenta in eq. (10) we ottain for the 
fermion creatio~ rate: 

3fc 

r: ~ " 
~2 ( ,,/- "Y>'l:) 

= 
~ ~Tr w~ 

1·:here !'{ ~ J.} 
"' 0 

w 

In approximation 

( 11) 

as one may have expected. is the decay width of the 
~ -rr.eson. 

Si~ilar result can be obtained 
Provided that W» Mo+~X..o and 

startin, frorr; equation 
5' >;> (lm + <JX) ~_,;; 

, we derive g = ~m' -t fY' 
~ _1 cH2o L exp ( _z;'?t )- QCt) exp ( ,2:<;t)] 
~ eli: 

Rr (<l.?)~ .!. r exp (-l,~t) J.l?.o Jt 
~ }"' d~ . 

r~ <fSl 
'"' 

( 9). 
, where 

However, in these calculations ·.-:e have r:ot accounted for the damping 
of y_, L-t) caused t:r partich creation. In the case rx. << 4) 
this can be done us in. the sulstitution l, {t) --> X(t) <>xp(-JI} eli') 

4. Functional approach. Quasiclassical approxir;Jation. 
,, 

?;aw, let .us study particle creation procesS8S in the other li-
r::i ting case, •Nhen the oscillation frequency of the X -field is small 
in co;;;parison with the ferr;.ion r.:tass: CJ<:< Yrll.\' (i) . Then, 
t~e quasiclassical approxi~ation is valid. 

The classical Lagrar.;rian for the relativistic particle with a 
variable mass 'Ytl..y (i:) has the form: 
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The correspondin<:" Hamiltonian equals: l{ ~Y f'.l..-t m;lt) = V D0
2
(t) 

Quantum description can be realized by path integral method. Par­

t:cle Green function ~s (see, for example j12j ): 

G ex: t+ · :x:: tc) ~ J ~f JJ=z qr[;}d.t: c,p :c- ~1 
... 

In the case discussed, the functional integral can be easily taken 

a~d the result is ~ 

G(~ tl-; X: tc}: Jt:J "-Xf[cf (x; -~)-"ldJVfz+m;l•1. 
The pair creation amplitudes are of the form: 

1c (~Iii;)~ (lr.); S(~ .. ~) exe{-•fott Yt,~ .. m~(tJ 
... 

where 1(..1 "" andt ~~ are the momenta of the created particles • 
. c ~n ou:r t. Z.(L) 0 

The intet~rat~onrc ,encircles the branchi?g points l61 +YI? ~ ""' 

( \2) 

A passa~e alone C from one side of the cut to the other chan-

ges the sign of the energy V \t 1 -t "l'Yflt-) • In order to have. a 
correct description of the creation of particles from vacuum, the mo­

vement along contour C must be carried out in the increasing 

energy direction, i .. e. the movement should correspond to a transfer 

from the negative enere"Y continuum states (Dirac sea) to the positive 

energy ones, 

Then the transition probability, corresponding to only one 
branching point, is: 

w N 
e-xp (- '), Im ~ dd,P'-tm'-\.t) ) . 

c ( 13) 

This result can be obtained without exploiting Green's functions, 

but using the oscillatory equation (3), as it was already stated in 

sec. 2. Substiting t __,. :X. into equation (3) we can reduce the 
problem of particle creation probabilities to the quantum mechani­

cal problem of barrier penetration, i.e. to calculating the refrac-
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tion coefficient JZ. • So, usinp the well known results from 
quantum mechanics (see for example /13/ ) ·.:!e can as 1·rell obtain 
expression (13) for the probability. We can also solve the proble:il 
using the analo,:sy with the quantum mechar.ical trar.sition caused t~t 

a slowly chaneinD perturbation. 
For periodical fields it is convenient to carry out guasiclassi­

cal calculations in the imaginary time approach (se~:: refs. /6,7/ ). 
When mlf' {t) is a periodical function l ~ K.t-t l'rl~(t) has infinite 
number of branching points. So, the tot81 amplitude car. l::e expressed 
as a sum of amplitudes, each of which corresponds to some definite 
contour enclosint·; its own branching point IZ.t -t- "'n'!t.(t)=.O • The 

·-t-t'"'-" positions of two branching points within the period ~: v-- 1,1-' l;.J,l 

When passing over the Cranching point energy sign changes .. 
That is ;vhy, the amplitudes corresponding to the branchinr points 
shifted by a period differ in their phases: Jl,+,. I J).n-::::. expl.l~ot) 
where .ol, ... fd.{ V¥' ~.-;:,;;t; ~ The neighbourine ampli tues have phase diffe-
rence • Jt,., /Jt~~<..tp(l•j>) \';here P'f• + P~ 
consists of two pieces, one equal to the phase increase alon[ the 
real axes _);4 -=- Jdt f"iltt-~,.ft-) , the other appearing due to the 
phase increase along the out p,_-=- 2~e..f~[ V'it1+~). 
The module of the amplitude is defined b; the real part of VtL~nt~ • when integrated over the cut 

t!• 
Q =- ;n:m. ~cdcc ViZ'+'ll'l1 (t,+•·n 

0 

Summation over all branching points results in 6 ( ol-Jfl) 
(where ~ is an integer) reflecting energy conservation 

A. In the case when t'Vr)0 is small 1 ~X.,o > W 
7 fermions cPeation rate per unit volume is 

10 

law. 



1\C ~ ;zd I J0! qp [- 1 W+m'(t) I I( ( ~) - t( 11 )l 
0 11 n llu)' W L 'J 

' 0 [ mv- ~ \ r~ ;- m1 t- ( v 1- 1( 2 
)] ' 

· ... here l{ ~ P / V p'+m2 
elliptic functions (see 

, and ~ (~) 1 H~) 
Gradshtein and Ryzhik 

is a slowly decreasin.'-' with tirr:e function .. 

In the liflii. ting case when 

are the 

19G2), 

complete 

and »7, (-t) •dX... 

we obtain 

w
1"rn/12 

(nw-hn/lf [ if:t(n- ~) J 
w:~~ rx~t)7'-(w..( 410111, J)i ·exp -&..[:"~· ]+~ 

rrw \...:. TIYJw-4m1lj unw "'""1 · 

(H) 

As VY)t.J- ~~' 0 ( W) , then in the lin;i t, when "YY71 '>7W 

and tv,_ (.,:I w) '>"> JI-Z ''" obtain' LJ~cv5i<-w,,"'•/@u"•.e,:<(!J)] 
So the X- decay is: t. J'J. 4. £;: ~ 

r ' .-,I ~ ~ "' D .. '}'>! (15) 
X ~ N'i' llx_ =- u"" m,''' e.{' (m/<J) IT.ot' m, \ffl. w' 

V/here rX is the rate, calculatedin perturtation theory. The decay 

rate decreases because of the increase of the effective fermion mass 

at lar.'..;e 'YY11 .. This suppression is not an exponential one, but a 

power law one in terms of the ratio W / n-11 • This is due to 

the fact that fermion mass oscillates about zero level (or atout 

1'()'1 0 L:..t.. LA) ), and as a result its avera,!re value vanishes, 

fi'Y\r ~ 0 
Let us note, that after the formal substitution t.J >> Y'Y1'f' 

into expression (14) (antiquasiclassical limit) the result coincides 

in form with that deduced by perturbation theory up to a numerical 

coefficient equal to 1/ 5 

B. In the case when the fermion mass is large in coa:parison 

with rY¥:1 J /)")')" ") <;jLo 1 the creation probaCility is strongly 

suppressed. Then we can solve this problem in analo(y with the 

quantum mechanical problem of over barrier reflection. The probatili t,y 

is exponentially small, w~- exp C _ z v-,; .. pz. !tq. 
In this case it's easier to calcul tF~ creation probabilities for 

a little bit different form of the variaCle mass 1'n~(t-)=m;+(t'..X..l.(t) 
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Such depender.ce is realized when J:, field decays to bosons I.{J due to the interaction of the form ~..t X} /tp.t/ • Qualitatively, 
these results will be valid for ferml::ms, as welL 

Formula (1 ) can express creatior. probatility in this case as 
well if p is substituted by 1'~-t-»1~ lcavin,· J~p 
not altered • It the limit of ler~e ~one can obtain 

~ = l ~~~· Vtn,(Y>W-Jm.) expf~mo~ /Gi~t'"~~ 
V) ~ w"lr ~;'(exp ~ -::: r~"'" 

5. Reheatin!"-· 

Let us use the results obtainelfor the evaluation of the Ur:1-verse reheetin,; temperature after the particle creation by t"be inf­
laton field. To the moment wher. JS(t) starts to oscillate atout its 
equilibrium point the Universe expansion is described l::y the nonrelati­
vistic equation of state r ~ 0 (matter dominance stage) and the 
Hutble parameter is 

H 
.2 1 

" t+to 
(H-) 

The variation of 
expression 

.t ( t) at this stage is cietcrmined by the 

\'_·hers 

;r;ass of 

'mPL~ f0 19 Gev 
field ..\j • The decrease 

(18) 

is the Planck r.:ass ar,d yyX, is the 
.xctJ , .x;c+J- Ct+tori of 

is connected with the Ur:iversc expansion. The effects connected with the particle production are not considered~ The numerical coeffici­
ent in expression (18) is defined by the condition that at the 
initial moment t~ 0 the energy density of X is equal to the 
closure density s>c. • It is assumed that m.x,. > H • This allows in particular to use the obtained above results for particle production rate • The decrease X......, (i:-t-i...,)-1. is taken into account adiabati­
cally. 

The energy density of the created relativistic particles 
satisfies the equation 
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The total energy density evidently remains equal to the closure 

density. Thus during the period when ~.i. dominates and the non­

relativistic expansion law (17) is valid the following equation is 

fulfilled 

(20) 

Sutstitutin;_~ it into eq. (19) and integrating the latter with the 
1-t :lJ -stage initial condition g~ (o): 0 we obtain at 

r,+ 
q .., r_,_' m:C exp C-G t) 

l- 0T [rx (t+t.l1l) 
Jlx: x~' 'Xf'(x;). (21) 

0 

This result is approximately valid 

which is realized at rxt;:; 1.3 

in this case is 

till the moment when ~+ c:t: £t:. 
The reheating temperature 

(22) 
J 

where is the number of effective degrees of freedom in the 

• 

pri~eval plasma. It is assumed of 

is established. Expression (11) for 
course, that thermal equilibrium 

rx was used here. Substitution 

of the quasiclassical result (15) leads to a smaller reheating tem­

perature. 
Note that our result is about 

estimation T.,_ ~ ( :0090 /lf' 1(. )'
11 

moment { -=. rx-J.. 

two times larger thin the naive 

where 9~ corresponds to the 

Let us note, that at the earlier stage, when fermion energy is small 

9Jr <.C::: q X , the plasma temperature may be hie;her, thanks ~~ 

the bighher total energy density, which is proport~onal to (t+to) . 
Formally, as it can be seen from the condition S74- -=-0 , the 

t Ito = 0(1) • errergy density of fermions has ita maximum at 

However, one can speak about particle creation only when 

Hence the maximum value of qf must be estimated at 

:1, yy{ 2 
0 - 'a Pl.. ')Y])<. 0(1) 

t > m;~. 
t_ YYlJ(. "" i: 

)~ ""'' - .Zh' ' 
l"'bich corresponds to temperature T'Yn~K-;:;:. (5"/4ff'~~)"t'fV~JrYIPI.Yrt~ Yet, one 

must keep in mind, that the part of the plasma energy contained 

in fermions is quite small .9t / ~M ;;:: (3.(./'trr) • The value of 

the constant ~ is restricted by the condition (~114JJ)-'< l0-12 

which is necessary to obtain the small value of the inflation self 
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• 

interaction coupling constant • Otherwise, at great 

the Universe density perturbations are known to be 

By the same reasons the condition IVrl.,t... /'W)PL "-10-5 
too large. 

sould be fulfilled. These constraints lead to quite a low reheating 

temperature, which is fatal 
Universe at the GUT scale 

for the bariogenesis 

"' ~ w" - w" &•v 
processes in the 
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