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1. Irtroduction

The irterest in part:cle creation from vacuum, by an external
scalar field, is provoked primerily by comsomological inflaticnary
models, In all the models considered (see e.g. reviews f1/ ) expo=-
nential expansion is driven by a scalar field _Il&), providing the
effective equation of state P=-£ . At the end of inflation
the only nonvanishing field in the Universe is the scalar field

Xt , while the density of other forus of matter is expo-
nentially damped. The ordinary matter is created due to the coherent
oscillations of X around its equilibrium point. That leads to
the custowary fridman universe. This process is called the Universe
heating up or reheating, It was discussed in refs. /2—4/ ,but deta-
iled calculations of the particle creation probability were rogt per-
formed there.

The aim of this work is to present simple analytical formulae for
particle creation probability for different cases, which could te’
realized in the early Universe, and also to discuss some cosmological
implications, such as the Unlverse reheating, bariogenesia, the effect
of particle creation on the Universe evolution.

Particle creation from vacuum by an external field is a well
investigated problem of the quantum field theory (see e.g. the togk
[5/). Electromagnetic fields of different kinds, configurations and
intensity have been considered in literature, while the case of an
external scalar field is not yet well studied. It differs from the
vector field case by some specific features, as for exaumple, the
fact that the interaction of a particle with sealar field can be
regarded as a contribtution to the particle méss. Hence, on one hand,
the ereation probatility wmust increase with rising field strength,
and on the other hand it decreases as the mass increases. This comp-
lex behaviour is reflected in the results obtained helow.

The Bogolubov canonical transformation method ¢an be used for the
description of the particle creation processes (see C.E. ref./ 5/ ).



In the next section we will apply this method for the scalar Tield
cese in enalogy with the electromagretic one. This formalisn redu-
ces the caleulation of creation probabilities to golution of second
order ordinary differential equations.

In see, 3 the creation probability is calculated in the case when
perturbation theory is wvealid.

In ssc. 4 another method for the dzzeription of particle creation
processes is presented based on calculation of the imegrinary part of
the action functicnel . This method is especially suitatbls for qua-
siclasgical approximation in the imaginary tine formalism, As will
be shown, the results, obtained in quasiclassical approximation are
in good mccordance with those cbiaired in the vpposite case, when
the perturbation thesry is valid.

2, kethod of Bogoliubov transformstion.
We will consider the case of time dependent space-hompgeneous
external scelar fizld JLC£)= Jﬂo{:({J » interacting with fermions

W (X} (or bosons WX)). The Lagrangien density and the corresponding
field equatiens have the form:

p4 ——:-3 [J(x) AL -—’&k?tx)x"‘w(xﬂ _{%afgx)q;w (1)
Ly’ a - (me+X)]yex=0. (2)

It is convenient to express the solution of the equation (2)
through the sclution of the second order differential equation:

N 2 =
AN %J%ﬂ + (mo+4X)* ] @) ﬁi’;
where (LXM BM+mO .\.)(,)(_p(x) = Ly(x) 7 (P?S (':1’,) = e,LP CP(F’:‘&)SS .
Substitutiﬁg (-Ppg,(x) ’e’q;'i’ (E(P’n '}-‘)55 s where 55 are

the eigen-vectors of the matrix Xo » e obtain for @(Fy:t) an
equation of the form:

G0 +Q WFF D=0, (3)
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Equation (3} is un oscillator type equation with a complex tims-
dependent frequercy. Analo.ous equation is sttained for the toson
ereation, but in that case the frequency is real. The field cpera-
tpr expansion in terms of creation and annibilation operators with
definite momentum bas the form:
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Here \.}’;-f,j) (<) are correspondingly positive and
negative frequency solutions of the Dirac equation defined in such
a way that they coincide witn positive and negative=frequency
agymptotics of the solutions vhen ‘t—-'r-cv and the particle crea-
tins part of the fleld awiteches off (i.e. when the field becomes
static).

After some transformations the namiltonian of the fermion
(boson) Tield in external soalar field can te written in the form:

(4] (= (-} .
i@y (wpeEs[EEaGRoR S ARas)r

ety
EEDAT A + FEDES of |
(5}

whe(re) NE(—()P"‘&) and F (F,‘l') can be expressed through
Elp) - 1 LF0C F' @] Y4

Eg0)" + IREor =1
(6)

At infinitely large negative t the Hamiltonian is itdiagonal
operator, while in the presence of nonstationary fieltd-'—Jis not., It
can be diagonalized at any piven time ty the Bogoliubov transforma-

-
tions realizing the transition f{rom cperators 0\(1), al to



* )
tixe dependent operators bL” H:) N b (‘t) with conser-
ved anticommutator (ir fermionic case) or commutator {in bosonic case )

relations.

N . ) 7 f—r)
Q,']Eps] - "[P (%) b(}‘-' (£) '”JBP’H:) bﬁps ({7) (T)

* (4)
G5d = dls (0 b ) Prprbgs (),

2+ 2
whers [G‘{'I (=) IPI =1 . Birug sin is for the tosonic case.
+
The Hamilionian can te diagonalized in terms of bﬁg‘)({) and

g?ti)(-t) » provided the followiny conditions are fulfilled:

2) . 1-E(F4 2_4 A-EEY) 2 .2

Pt + s [pl =1 NI
I T 2 EF )
hinus sign is for bosons.

In terms of operators brt )(t) the Hamiltonian takes the form:
fu " G ) 4O (-
AW =g Jer Aemal B 7 e n )
bi u:) are operators of the physical particles creati-

on or amnihilation at moment 'f: . If f Ot > is physicel vacuum
at uoment tthen

b (810, % = oe W10> = 0.

In other words, an interactins: quantur field (fermionic or bosonic

one) car te represented in the Banie way as a noninteractin, field,
provided the necessary redefinition of the concepts of particles

and the vacuum state is carried out. Diagonalization of the Hamilto-
rnian is equivalent to exact solution of the Helsenberg equation of
mot on. It allows to express any matrix element through the
Bosoliukov transforwation coefficients, Thus, the sbtsolute probabili-
ty of the pair creation is WP[%)—_]P?&)'Z , while r;;: lﬁ, /olr,‘]‘z is
the relative probability for creation of particle pair with a defi-
nite momentur,



The nuclear demsity of the created particle-antiparticle pairs
ir. the state, that was a vacuum one at - —» - ian""@-):g—%a d’p [PPIR'

Consequently, as can be geen from eqs.{6) and (8), the calcula-
tion of the pair creation probability may be reduced to a deteruina-
tion of the asymptotics of the solutions of oscillator eguation
(3) with a complex frequency. Similarly, the calculation of the
probakility for the boson pair creation reduces to a deterwination
of the asyuptotics of the solutions of equation (3) but with a real
frequency. )

The asymptotic solutions of the eguation (3} are designated as

(?'({*) exp (—:’..Q,t) £ >
i Cexp -efl b)) « Gl exp(+ifd, ) t—ortas

where ()= ()= al%(wp:%) - B (w+X3)

The impossibllity to construct a solution, which bothat 't""“a-’
and at t—s-co indudes just one definite frequency, is a re-
sult of the pair production by the field. The quantity 9:{(:3, /C4 !2
defines the degree of the oscillator excitation due to changes in
its frequency. Consequently the particle creation probatbility can
be expressed through ? .

The problem of particle creation is reduced to the problem of
parametric excitation of oscillator with variable frequency, or to
the problem of flat wave reflection from the potential barrier
[5,7,9-11 /. Indeed, using the formal substitution 23X  instead of

+ in equation (3) we obtain the Schrodinger equation deac-
ribing one dimensignal mowvement of perticle in potential
~ 1,({) . tg in this case plays the role of reflection

coefficient from the barrier), Due to this link we can express cre-
ation probabilities through the solutions of ordinary differentiaml
equations, avoiding the search of the exact solutions of the rela-
tivistic equations and the Green’s funcitions. Some methods for so-
lution of equations of type (3) are discussed in ref./?, 11 l .

Employing the Laprenge method to the oascillator equation (3)
we obtain a set of first order Gifferential equatioms:



(1) o X -2
G, (4) = }mé)az&)@xp( @)/ (,+@)

: Yo @ exp (+209)(0 +Q)
a’.?. (‘t): T O t} 1 P s
280§ . |
! !
where aq (O)-"' 1/ 2(-9'3 "Qt) > 01 (O): Q s Q:m-y—)ﬂ s Lp(f}'.:(’fﬁot& )D[f

The solution of (3) reads:
PR)=T2+q a, ) exp(i0) ~ (4 exp (-i0) [ {52 +G
9= law/[a,w(,+q)] |,

Using the varizble phase method we obtaine a solution for the
toson fields in the form:

GO =R exp-ig) + () exp(+i)]
&
where (.P(‘l:)'—‘;[-Qo('y)O({! , and ﬁ_(é/ and R(‘é)

satisfy the equﬁtions: 1
iy o ) Rie) exp b2ig) - 4 Aw)=4
ﬁ&)-zﬂa.&()[ " ) (3)

-2 [ep (200) - Rlg eptoa)] | Re@1=0.

2
Particle creation probability is [N = LR (+e0)]

Thus the calculation particle creation probatility can te reduced to

the calculation of the agyaptotic solutions of the oscillator equa-
tions with & complex or a real frequency. In most cases it is diffi-
cult to find the exasct solution. There is a lot of probleuis when
the approximate methods of calculation fit well enough. In what
follows we will obtain the explicit anelytic formulae for the pair
production probabilities in two limiting cases: when perturbation
theory is applicable and when the gquasiclassical methods can be
employed. The interaction of time dependent Bcalar fielg _X,H:) =_¥.,)-5~&)
with the fermions gJCq’le is eguivalent to a variable contri-
bution to the fermion mass, Mylt)= M, -rgbo -'LH.') « 50 the fermion
wass becomes time-dependent.



If W >»>» YY]\{; the perturbation theory can bte used, while for
W << mq’ the guasiclassical approximation workes.
3. The perturbaticn theory calculations

order,
The lowest amplitude for the pair creation of fermions with
=4

. is:
»PC(EJ ﬁ) =%quocx&)<?,, p V0> =

- v+ -
0GB R 7)) T B RS

nomenta (o? and

where LP and W are expressed through the creation and anni-
hilation operators, according to: Y= L.V+ (x)+ W (x)

\{J; () =(,Z#)5/‘J‘dp exp __pr\o (P ml\qjc_ (P)

— —a -« ) + +
T -5 @A e ww=T wPale)
Va1 WYt
V oand V are Dirac spinors, Ei =¥m?2+ f):" s

X (B)= fot exp (EE) L)

The fermicn creation rate per unit volume is:

(I LA YE- - S WY (1)
N@djr’j B+B)dp Lo

where |M|1¢31[i|2(p,up‘o,ﬁ§:—m:) 5 E;*‘E,_-—'-U

The coefficient proportional to the volune V appears
as usually, from the square of the -function;
&,

[8( 0] Vo@ )/ (20



The integral over time is taken agsuming that L > -t“" .
Now, let wus take a concrete external field XH)= Xocos CCO(t) ‘t) .
Then, usin.: the expression for the X -particles number density
and taking the intesrals over momenta in eq, (10) we obtain for the
fermion crestion rate:

3
_g:*" (wz_qm:)/z

re X

2 >
XN 4 w
.l
o 1 w
where Nx, - -XJD
In approxiwation m, << (W :
2 2 eff
=2 w-% m (11)
b qr
K
as one may have expected. A ig the decay width of the
~mesDbr.
Similar result can te obtainsd startin. froo squation (9).
Provided that (077 Motylo and  @>> (Im+gX) gL , where
9 = Vi ¢ ?3"2 7 y we derive

dsls [exp (_1;91:)_ Q]ft) exp (+2c%>’c)]

T 1
S exp (-1igt) J;l%v dt if IR ()<<

el
4w
However, in these calculations we have rot accounted for the damping
of X (_‘t) caused by particle creation. In the case Fx, << &
this can be done usin. the sutstitution X (4) _"’x(f)exp(—fﬂ OH;’) .

4. Functionzl approach. Quasiclassical approxination. %

Fow, let us study particle creation procesases in the other 1i-
ziting casse, when the oscillation frequency of the x -field is small
in couparison with the fermion masg: )<< mw ("f:) . Then,
the quasiclassical approxiwation is valid.

The ¢clessical Lagrergian for the relativistic particle with a
variable mass m\V () hag the form:



L_ = - My (|- 2 .
The corresponding Hamiltonian equals:§‘{=y Pt m,;{t) = vﬂgz(f) .

Quantum description can be realized by path integral method. Par-
ticle Green function is (see, for example /12/ ):

Gt ; ﬂ’c;)ﬂjﬁﬁﬁi"ax»p Lfo{t (f;f-g{)} )
&

In the case discussed, the functional integral can be easily taken
ard the result is

+
605t )= [£5 erp i (5 2)-+ [ r—ﬁw
€

The pair creation amplitudes are of the form:

b F, 8- s B @ o) e [ ooy,
. C

where Kf and E: are the momenta of the created particles..
The integrstion C ,encircles the branching points Kf'thzct)‘C)
A passage along C from cne side of the cut to the other chan-
ges the sigzn of the energy V}fii;j;;ﬁzy . In ordexr o have a
correct deseription of the creaticn of particles from vacuum, the WO-
vewtent alongz contour C must be carried out in the increasing
energy direction, i.e., the movement should correspond to a transfer
from the negative enersy continuum states (Dirsc sea} to the positive
energy ones,

Then the transition probability, corresponding to only ... one
branching point, is: '

W o~ exp <-QIm Sdtm ) '

(13)
This result can be obtained without exploiting Green'’s functions,
but using the oscillatory equation (3}, as it was already stated in
sec, 2, Substiting t— 2 into equation {3) we can reduce the

problem of particle creation probabilities to the quantum mechani-
cal problem of barrier penetration, i.e. to caleulating the refrac-



tion coefficient R - S0, using the well known results from
quantum mechanics {see for example /13/ ) we can es well obtain
expreasion (13} for the probability. We can alsc soive the problem
using the analozy with the quantum mechanrical trarsition caused b
a slowly changing perturbation.

For periodical fields it is convenient to carry ocut quasiclassi-
cal calculations in the imaginary time approach (see refs. /6,7/ ).
waen My (£) is a periodical function, VR*: mily  bas infinite
number of branching points. So, the total amplitude car te expressed
&% a sum of amplitudes, each of which corresponds to some definite
contour enclosing its own branching point wt <+ ""’2'(‘3}‘—'0 . The
positions of two branching points within the period .‘éfj-t "‘i‘;T"L* t;‘,l

: *’z“
are defined by the expression: 4&’
| ' 2 ot B by BEY Y
hit +d¢Lt = M AM e P Mo +mi+ P _ e
C 4 ¢ 1 q«nl.
Lm, Zmi* 1

Sht)y wome gt

™,

When passing over the tranching point enerzy sizn changes.
That is why, the amplitudes corresponding to the branching pointis
shifted Yy a period differ in their phases: H, , /P = exp(Ricd)
where of=] ¢t VE’ v"r"l;&l » The neighbouring amplituss bhave phase diffe~
rence ° R /R, =exp(ZiP) where H:zpy + Py
consists of two pileces, one equal to the phase increase alony the
real aXes P‘ = [dt m » the other appearing due to the
phase increase slong the cut )’5,. = .'ZI?-&’ dfim.

The module of the amplitude is defined by the real part of Hk;‘«c-m:(t)
when intezrated over t‘tlle cut
t

Q=-2Tm SLdC \}%:+ m(E,+iT)

\ F}x\ = (-Z'H_)} S(E.+%) exp (-21@) .

Summation over all branchinz points resulis in é_ ( ol - JTC)

{(where ; 18 an integer) reflecting energy conservation law.
A. In the case when MM, is small R %Lo > W >
fermions creeation rate per unit volume is

10
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(14)
X g[ﬂv\)—“h 2y m?* [‘(V’l‘b’z )]

where \é/ P/bpz-rmz , and K( ) E(X) are the complete
elliptic fumctions (gee Gradshbtein and Ryshik 1962), and ¥h, {(+} 94‘[1:
ig a alowly decreasing with tiwme function.

In the limiting case when Y% > W we cbtain

wim"’fz wW—4 2{n- %ﬂ
W:z - ’h VY) m/r . -QXP _ ( Tw
u)’ @n 46}«;, ) eﬂ{lémq ]-M

T
h?,',‘_ T ~4m, Tnw-49m

As Unu)-—'%."’ = O( 0:)) , then in the limit, when M, Sxd

and &VL ( /l«)) >5 TR we obtain: W ws"mh/@n?‘&«f"(mﬂ

S0 the 'X,- de_cay is: _Q_"_f{)ja________ _ 4[’ 1 (15)
M= Nely, = Smmagiome o Imb 7

Where r:( is the rate, calculatedin perturtation theory, The decay
rate decreases because of the increase of the effective fermion mass

at large ™My . This suppression is not an exponential one, but a
power law one in terms of the ratic O/ W1y . This is due to
the fact that fermion mass vacillates about zero level (or atout
My &£ W ), and as a result ite average valuc vanishes,
Wy =0 .

Let us note, that after the formal substitution & >> ¥y
into expression (14) (antiquasiclassical liwit) the result coincides
in form with that deduced by perturbstion theory up to a numerical
coefficient equal to 1 .

B, In the cese when the ferwuion mass is large in cowparison

with (YY?,} ’ MM, 5 %LD ; the crestion probetility is strongly
suppressed. Then we can solve this problem in analogsy with the
quantum mechanical problem of over barrier reflection, The probatility

is expeonentially small: WP —~ QXP ( 2 ﬁ? /@

Tn this case ifs easier to caleulte creation probabllitlee for
a little bit different form of the variatle mass ‘Y)'?lp (£)=m* +31_x}(‘t)

11



Such dependence is realized when VY, field decays to bosons
due to the intersction of the form g% 2t lp*l . Qualitatively,
these results will be valig for fermions, as well.

Formula (1 ) can express creation probatility 'in this case as

. . . e B ins  d?
well if P is substituted by 5P“”’v leavin,: 2]
not altzred . In the limit of larze M7 one can obtain

— tA —_— _
N, =) T2 fm, (e - 2m.) e)(p(-é)m"ﬂn f6m (1o ’@N

N7 - sz—b 2 6?’7‘)12
o
5/ £ T -
~ o g ) S
1

5. HReheating

Let us use the results obtained for the evaluation of the Uri-
verse reheatin; tempersturs after the particle creation by the inf-
latpon field. To the moment whern _X/(‘t) starts to oscillmte abtout its
equilibrium point the Universe expansion is described by the nonrelati-

vistic equation of state k= 0 (matter dominance stage) and the
Hutble parameter is
2 A (17)
H - 35 t+te
The variation of ‘LH:) at this stage is Getermined by the
expressiosn
. 5m My (t+to) (18)
_X[{): om—— ﬁT s
Vam My t+
19
chers  Mp = (07 Gev is the Flanck rass argd My is the

resa of field X, . The decrease of X&) . X (€) ~ (‘t't-f.‘o]—i
is connected with the Uriverse expansion. The effects connected with
the particle production are not considered., The numerical coeffici-
ent in expression (18) is defined by the condition that at the
initial moment t= ad the energy density of X is equal to the
closure density 9c » It is asssumed that m.JL >H . This allows
in particular to use the obtained atove results for particle production
rate , The decrease J ~ ({--rtg)'_i is taken into account adiatati-
cally,
The energy density of the created relativistic particles

satisfies the equation

- (49)
Q{V = GL Cx — 4H?f .

12



The total energy density evidently remains equal to the closure
density. Thus during the period when 91, dominates and the non-
relativistic expansion law (17) is valid the following equation is
fulfilled

2
LT3 T GrEtta)t g (20)
Sutstituting it into eq. (19) and integrating the latter with the
initial condition 9 ©)=0 we r?&btain at M3 -stage

g = f”;mn exp (-Gt) f,; x explx) (a1
or [y et)]? )

This result is approximately valid till the moment when ?+ 57}(_

which is realized at G{t 1.3 . The reheating temperature

in this casze is

e ' (22)

5 4
= 5Fn> glbmerm

where K iz the number of effective degrees of freedom in the

primpeval plasma, Tt is essumed of course, that thermel equilibrium
is established. Expression (11) for ly was used here., Substitution

of the guasiclassicesl result €15) leads to a swaller reheating tem-
perature.
Note that our result is about two times larger than the naive
imation Tz (0@, /m*Kk Y4
egtimation le= Qe /T K where Q.  corresponds to the
mowent + = rx"‘" .
Let us note, that at the earlier siage, when ferwion energy is suall

<L Qx , the plasma temperature way be higher, thanks tg
the “glghher total energy density, which isa propnrtlonal to ({:-t-‘to) .
Formally, as it can be seen from the conéition 574_ =0 the

energy density of fermions has its maximum at {:/to 0“) .
However, one can spesk about pariicle creation only when t > m
Hence the maximum value of ?{_ must be estimated at tm o~ i:

e
_ 2, 2 Vg, M o) |

g%‘m" pL R
vrhich corresponds to temperature 'W\ax (5/41— “') i My Yet, one
must keep in mind, that the part of the plasma energy contalned
in fermions is quite small @ /?bﬁ. = (g&/"iri‘) . The value of
the constant g is restricted by the condition (31/4&')24 (o-12

which is necessary to obtain the small value of the inflation gelf

13



interaction coupling constant A ~ 87 . Otherwise, at zreat

A the Universe density perturbations are known to be too large.
By the same reasons the condition My /Mg < 4075
sould be fulfilled. These constraints lead to gquite & low reheating
temperature, which is fatal for the bariogenesis processes in the
Universe at the GUT scale E ~ 0" — 10'° Gev .
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