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I. Introduction

Recently Jackiw (1988) has revived the interest into the
Schrodinger representation in quantum field theory. In this approach
the dynamical quantities are expressed in terms of fixed-time
canonical variables, ¢(x) and m(x), which upon quantisation satisfy
canonical commutation relations. The quantum field theory involves
states |¥> that, in the Schrédinger representation, are realised as
functionals, |¥> -¥[¢,t), of a time-independent, c-number field ¢(x).
The operator a(x) acts on these states by multiplication,
o (x) |¥> -+¢(x)¥[¢,t), while the canonical momentum operator ﬁ(x) acts
by variational differentiation, m(x)|{¥> --ihd¥[¢,t)/d¢(x).

In the Schrédinger representation the Schrédinger equation is
given by

H[¢] ¥[6,t) = ih 8,E ¥[¢,t) , (1.1)

where the Hamiltonian is defined by

H(¢] = IZ *(e(x)) a’x , (1.2)

where £ is any space-like section of space-time. Since the
Hamiltonian, and all other relevant quantities, are already integrated
over space-like sectjons the use of functional methods is mandatory.
The main drawback of this approach lies precisely on the use of
functional methods. Only a few particular cases, e.g., those in which
the starting lLagrangian is quadratic in the fields, can be solved
exactly. v

It must be, on the other hand, observed that ¥[¢,t), being the
total wave function, must be given as the product of the local wave
functions y(¢(x),t)

Yo, t) = [, 5 ¥($(X),E) . (1.3)

A remarkable property of the Schrédinger equation (I.1) is that it is
solved by the local Schrodinger ‘equation

ih

(8 (x)) V(o(x),t) = 5 8 ¥(e(x),t) . (I.4)

v
This Schrédinger equation is a differential eguation in which the
derivation operator is the variational one, which is iteratively
defined at all orders by

§ =3 -d8°, (I.5a)

(I.5b)
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call them variational differential equations.

The solution to a variational differential equation will be a
function containing the derivatives, with respect to the base space
coordinates, of the fields up to a generic order s: a sth-order
function. However, variational differential equations present a quite
pathological behaviour. The problem lies on the fact that the
variational derivation operator, in contrast with an ordinary
derivation operator, doubles the order of the function on which acts.
In fact, from the definition of the variational operator follows that,
if y(¢(x),t) is a function containing the derivatives of ¢ up to an
order s, then d&y(¢(x),t)/8¢ will be a function containing the
derivatives of ¢(x) up to an order 2s. Therefore, the different terms
appearing in a variational differential equation will be of different
orders. One way of solving this impasse is by making the solution of a
variational differential eguation to be a function containing the
derivatives of the fields at all orders. But this takes us again back
to functional methods.

If one insists into keep finite the order of the solution one
sees that, in principle, unsolvable order incompatibilities appear
between the different terms of a variational differential equation,
unless one restrict the considerations to those functions for which
their variational derivatives are of an order lesser than that
naively implied by just doubling the order. In fact, the previous
situation would drastically change if the order of Yy (¢ (x),t)/8¢ would
be lesser than that naively obtained just by doubling the order each
time a variational derivation operator is acting. It is possible to
characterise the functions for which this property holds. For sth-
order functions we must just look at the kernel of sth-order functions
mapping to rth-order, r<2s, functions under variational derivation.
These functions, which we call non-standard, can be almost completely
characterised in the sense that its dependence on the highest-order
derivatives is completely determined. These functions turn to be
polynomials 1in the highest-order derivatives of the fields with
arbitrary functions of the lower-order derivatives as coefficients.
The order of these polynomials strongly depends on the dimension of
the base space. Then, functional differential equations reduce to a
system of coupled partial differential equations for the coefficients
we mentioned above.

Up to our knowledge, no general technigues for solving
variational differential equations is actually Kknown. We must
emphasize furthermore that we do not know of any explicit reference to
the facts guoted previously in the literature.

Let us see how the previous ideas apply to field theory. For a
field theory in a (l+p)-dimensional space-time the Schrédinger
equation becomes a functional differential equation in a p~dimensional
base space. The Schrédinger equation can be solved by a variational
Schrédinger equation on a p-dimensional base space. Therefore we need
to characterise non-standard functions over p-dimensional base spaces.
The Schrédinger egquation reduces to a system of coupled partial
differential equations. This provide therefore a non-perturbative
scheme for guantum field theory.

In this article we will consider field theories in (1+41)-
dimensions. In this case the Schrodinger equation is a variational
differential equation in a one- dimensional base space. Therefore we
need to characterise non-standard functions over one-dimensional base
spaces. We do this for first- and second-order functions. The first-
order case is quite trivial while the second one can be considered as
a rereading of the results by Tapia (1985), therefore only the main
results are presented.

Since most of our reasoning will be based on variational
derivation we start by introducing functions over jets of fields over
which the variational derivation operator acts. We introduce some
elements of what can be called "Lagrangian analysis,"™ 1i.e., the
differential calculus for variational derivatives. Then we consider
field theory, the canonical formalism and the canonical guantisation
in which variational Schrédinger equations play a central role. We
turn then to the massless scalar field and show in detail the order
incompatibility we mentioned above.

Next we turn to characterise non-standard functions over one-
dimensional base spaces. We then apply these results to the massless
and massive, Klein-Gordon, scalar fields, in (1+1)-dimensions; in this
two cases the solutions must be second- order non-standard functions.
The Schrédinger equation reduces to two coupled partial differential
equations. The massles case can be solved exactly. For the massive
case we just write down the equations. We have not been able to solve
them, but being similar to the Schrodinger equation for the harmonic
oscillator in ordinary gquantum mechanics we conjecture that they

should admit Hermite-like solutions. If this is the case the energy
spectrum is given by En=hw(n+1/2). This agrees with the fact that the
Klein-Gordon field is the natural generalisation to higher dimensions

of the harmonic oscillator.



We arrive finally to the conclusions and draw the forthcoming
work in which the higher-dimensional, p>1l, case will be considered.

II1. Mathematical Preliminaries: Fibered Manifolds, Jet Prolongations,
Functions on Jets and Functional Derivation

et M be a differentiable manifold, with dim(M)=m, and let
B=(B,M,n) be a fibered manifold over the manifold M, with dim(B)=n.
The sth-order jet prolongation of a fibered manifold B, where s is any
positive integer, will be denoted by J°(B)=(J°(8),M,n’): we agree that

the zeroth-order prolongation of B coincides with B itself.

We now
give some local coordinate notations. On the manifold M we consider
local coordinates x*, a=1,...,m; on the fiber g at x we consider local
coordinates ¢A(x), A=1,...,n, such that on the fibered manifold B we

have local coordinates (xa,¢A(x)). on the sth-order jet prolongation
J“)(B) we consider local coordinates

A
(x*, "0, ¢t 0, ..., ¢Aal--~a (x))
s
where
A A *1 2
¢, , (0 = aA"¢" (x)/dx ...dx " .
r
Let #°'(x) be an ordinary function on Jﬁ)(B)

Fx) = F (M0, 8t 0, .. et ), (I1.1)

1
and let £ be the space of functions %'°

(x).SA function depending
on up to the sth-order derivatives of the fields is to be called a
sth-order function, for example, a sth-order Lagrangian.

Let us now consider functionals on gt
(s)

(B). A functional is an
ordinary function from J (B) to some RP, with p some integer number.

Equivalently it can be considered as a map which to any function
?‘“(x) associates a number. Two main kinds of functionals will be of

importance for what follows: the o-functionals, defined as the sum
over M of the given function

F'*' ¢ = I F(x) a"x , o (II.2a)
M R

and the n-functionals defined as the product of the given function
over all M

2% [¢] = Mew 277 00) - (1II.2b)

; ) :
Let us now consider the variation sF'°’[¢] of a o-functional
A A A A .
F'®)(¢] under variations 5¢*(x) of ¢"(x), ¢ -¢"+3¢ . The result is

s (s) A m
sF* (9] = [M 5,57 (x) 80" (x) a"x
s [ om0 (5,°% % (x) 86" (x)
M 2
+8, %5 % (x) 80t (x) + ...) a® 's , (II.3)

A

where

L (x) = (86" (x))_ ..., ., etc . (TI1.4)
a trra al a

1 r
We have furthermore defined, at all orders,

r

3
A

t

2 (II.5a)
6A - dasA !
where 6A° is defined iteratively by

e R R . (11.50)
3, =3, a.s,

: B.

d =d/dx® is the total or formal derivative with respect to X7

a

al...a
a
A

to 8M; A" 's is its (m-1)-dimensional volume element. Throughout all

'=a/a¢“ . 6M is the boundary of M and n, is the normal
a .
1

«sa

the work we will restrict our attention to functions satisfying

s al"'ars‘S)(x)| =0, (II.6)
A aM

Therefore, equation (II.3) reduces to

sF'® (] = I 6A3(5)(x) s¢*(x) a"x . (11.7)
M

(s)

The variational derivative of ¥ (x) is defined as the factor

. s A +
appearing in (II.7) multiplying the variation 8¢" under the integral
sign. Therefore, according with (II.5), is given at all orders by

(s) T r?(s)
—23% —aqa®#*) + .+ (=7 Q -4 3,
A a A 1 r

(s)

a

Lera
s .. 1 sg(s) (II-S)
oo 4 () dal -4, 8, ¥ ,
s s .
and therefore coincides with the usual Euler-Lagrange derivative.

It can now be checked that

(s) (2s) (I1.9)
SA. £ f .

An important property of the variational derivative is

BA(daA°(¢,...)) =0 . (II.10)

Therefore we can write



8,8, =258,0, - (IT.11)
A word concerning the definition of the total, or formal,

derivative is in order here. As appearing in (II.5) it is defined in
the following way

A A 1 ’ r
A, =9, v+ ¢, 9, + e saea O + . (I1.12)
Therefore, it is a map acting as
a: £ L gl (I1.13)

Therefore, the formal derivative goes from the fiber J(”(B) at x to
the fiber J(““(B) at x. We see that in this definition the concept
of infinitesimally close fiber does not appear. In the usual
definition the formal derivative is defined by taking resource to two
infinitesimally close fibers J")(B) at x and I (B) at x+Ax. But
both definitions are completely equivalent.

III. Lagrangian Analysis

Here we introduce some elements of what can be called "Lagrangian
analysis." The results of this section will be useful for developing
quantum field theory. In this Lagrangian analysis the role of the
derivation is played by the variational derivative. But 6 directly
cannot be the correct operator since it is not a derlvatlon operator,
in fact, it does not satisfy the Leibniz rule

8, (FG) # Gs,F + F§ G . ' (III.1)

This is due to the fact that the variational derivative is a on-linear
oerator. Therefore, we must look for an alternative definition. The
problem can be solved if we conveniently redefine the product of
functions defined on different points. Next we define an operator
D, (x) satisfying all the requirements for being a differential
operator. With the previous prescription for the product of functions
this differential operator gives a convenient generalisation of the
Leibniz rule for the variational derivative.

Next we consider integration. In order to do that we take
resource to a remarkable identity derived quite recently in (Tapia et
al., 1989). This identity allows to define an operator playing the
role of integration. In this section all functions % are assumed as
defined on a jet J(S)(B) of a generic order s.

First of all we must give a prescription on how the product of

operators in different point is to be defined. We do it in the

following way

r-1 . . m , III.2)

F(x) % (x) =V IM 3 (x,1z) ¥ (x_iz) d"z (
where

F (x) = J F (x;2z) d"z , (III.3)

1 M 1

For ordinary functions it is enough to consider

F(xiz) = 6™ (x-2) %(z2) , (III.4)
where 6‘”’(-) is a m-dimensional delta function. However, some

operator valued functions have less trivial kernels. Let us consider

for example the operator
{m)
D, (x) = JM (6" (x-2) 3, (2)

+ ds ‘" (x-2)/dz* 8,°(z) + -1 d"z . (III.5)

According to the rule (III.2) this operator acting on ordinary

functions is defined by
) (m)
D, (x) F(y) =V jM 8" (y-z) 18" (x-2) 3, (2)

+ds'™ (x-2)/dz” 9,%(2) + ---] ¥(z) d"z , (IIL.s)

such that when restricted to functions satisfying (II.6) we obtain

D, (x) F(y) =V I (y-2) 8'" (x-2) 5 3(z) a°z

=v &' (x-y) & JF00 (II1.7)

The Leibniz rule takes the following form

(m)

D,(x) [#(y) 5(2)] (x-t) o, (t)

Vz J B(N)(y—t) B(M)(z-t) (s
M
+ds ™) (x-t)/dx® 8,7 (€) + ---] F(t) §(r) A"t

= v2 J 6(")(y-t) 5™ (2-t) 6(")(x-t)
M

[F(£) 8,5(t) + §(t) §,%(t)] a’t
2

=v? s (y-x) &' (z-x)

X [#(x) 8,5(x) + 5(x) §,F(x)], (III.8)

which is a correct generalisation of the Leibniz rule for the

7



variational derivative. For the fundamental variables we then obtain

D, (x) °(y) =V 8 (xmy) B (III.9)

The same operator acting on functionals is given by

D (x) F[¢] = D (x) J F(z) d"z = J D (2) F(z) d"z
A A A
M M
= J v s'"(x-2) 8 %(2) a2z = V 5 F(x) - (III.10)
M
It is then easy to check that
DA(x) (F[¢] G[¢]) = V2 [F(x) SA?(X) + F(x) 6A§(x)] . (III.11)
The next step is to consider integration over jets, i.e., to look
for an operator inverse to the derivation one. In order to do that we
will make use of a remarkable identity for functions on jets derived
recently in (Tapia et al., 1989). Doing so we will be able to
construct an integration operator § which is inverse to D. Let us

consider a function ¥ and define f*(%) by
1
£ = [ of 5,0+ 0t 5,2 v L AT,
o
where (+)* means that in the corresponding expression all variables,

(111.12)

¢, 86, etc, have been scaled by a real factor te[0,1] (i.e., ¢=T9,
etc). Then we have

1

daf°(?) = -¢* J (SA(ﬁ))A dt + ¥ - ¥(0) , (I1I.13)
0

where ?(0)=5¥('r)|_r=0

simply write

Since %(0) is an irrelevant constant we can

¥ = ¢ Il (8,(F))" at + d_£° (%) (III.14)
This is our ;;nounced identity.

In (Tapia et al., 1989) the previous identity was used to prove,
to any order, that the necessary and sufficient condition for
obtaining identically vanishing field equations is that the Lagrangian
is a divergence, as can be read inmediatly from (III.14).

It was, furthermore, used to remove from field theory the
ambiguities related to the non-invariance of the energy-momentum
tensor under the addition of a divergence to the Lagrangian. In this
case one must select a representative for d-equivalent Lagrangians in
which the divergence part has been removed. We must in that case look
for a linear operator f acting on functions ¥ by

F = £(%) =F + dﬂga(?) , (I1I.15)

with g°(¥) some function to determine. In (Tapia et al., 1989) it was
shown that the correct operator is given by

8

1
~ .16
5=£(3) =% -d¢£(@3 =¢ JO (5,(%))~ dv (III.16)
A further property of £(-) is that of being a projector
£2 = f (III.17)
Therefore, when (III.17) is applied to ¥ we obtain
(II1.18)

1
R S CR
N o s . -3 n
We will call the functions ¥ satisfying (III.19) d invariant
functions.

Let us now consider ordinary functions on jets

" .19
F(x) = I F(x;z) d"z (III.19)
M

The differential of this function is given by

a A e m
aF(x) = I [aA(z)?(x;z) d¢A(z) + aA (2)F(x:2) d¢ a(z) + ] d'z
M

- I (8, (2)F(x:2) ag* (z)

M

+a (2)[8," (2)F(x72) ag"(2) + 1] A"z

- I 5, (2)F(xiz) as*(z) a"z , (III.20)
M
since we assume that #(x;z) satisfies (II.6).

The integration operator must be such that

S(aF(x)) = d(S(F(x))) = F(x) (I11.21)

We have found that the right definition for S§(-) doing the work is

1

(II1.22)
~) = ()/\
S( [0
In fact
1 m n
S(a¥(x)) = I [I 8, (Y)F(x:2) ast(z) a z]
[s) M -
1 N n
= [ et [ B, 7] dvasz
M 0
(III.23)

- [ oo - a_(2) £ (Fxiz))| a2 = F00)
M

where again we have used the fact we assumed that ¥%(xiz) satisfies
(II.6). This shows that (I11.22) is the correct integration operator.

The previous corresponds to the line integral. The next step is
1 integrals. The most important of them
This volume integral is

(111.22) for the

to construct higher-dimensiona
will be the volume integral over the jet.
defined as the natural generalisation of definition



line integral

. 1 1.
S, (d%%) = J'o...J'o F o¢'--¢" ar --ar (III.24)

n

n tlmes

The previous definitions correspond to

evaluated between two sets of values for the fields (9,00, --°)
between two configurations of the system

¢ 1
£ J' (d%F)~ .
¢l

i.e.,

S, (%) =

. (III.25)

In order to check that the previous definition works properly let

us consider the simple example

F=e"%
v (III.26)
with ¢1=_m’ ¢¢=m' Then
_¢z P=w 1 42 =0 1 2.2
S (e )=| (e %A d=| -t¢
d P=-w J-o ¢ ar P=- J-o ® ¢ dr
P=w ¢ _ 2 o 2 -0 2
= | e " du= e qu - T
P=-o J-o J-o “ J-o ¢ au
J.m -2
= e ¥ du = 7.
n u T (III.27)

The next natural step is to consider variational differential

equations. In order to motivate their introduction we will consider

field theory where, at the gquantum mechanical level, they play a

fundamental role.

IV. Field Theory

Field theory is the study of dynamical systems in which the
dimension of the base space is greater than one. There a dynamical
system is described by the fields ¢A(x“), where A=1

re++,n, and n is
the number of fields;

we assume they are sections of suitable vector
bundles over the base space. xu,

u=0,...,m-1, are local coordinates in
the m-dimensional base space.

IV.1. The Lagrangian Formalism

As in classical mechanics the dynamical information of a physical
system is contained in the Lagrangian density

10

undefined integrals. 1In
order to obtain the defined one the previous expression must still be

A
Mo

where ¢Au=a¢A/ax“. For simplicity we restrict our considerations to

2= 2(8*, 9 ), (Iv.1)

first-order Lagrangians and to the case in which the Lagrangian
density does not depend explicitly on the coordinates x* of the base
space; the deneralisation to the explicitly dependent case is
straightforward.

The dynamics of the system is governed by field equations

(ll\)-f =0

L) A ’

(Iv.2)

where

(m) - I
Sy T T8 (Iv.3)

' means that the base space on which 3 acts is m-

where m in 6(:
dimensional.

In the classical mechanics of discrete systems the time plays a
quite preferential role since it is the only coordinate of the base
space. When going to field theory one must face an increase of the
base space dimension from one to m. This problem is solved by
considering field theory as classical mechanics with an infinite
number of degrees of freedom, the canonical theory.

The first problem is to individuate an evolution parameter
playing the role of the time. In order to achieve this we must assume
that the base space is a space- time, i,e., a Riemannian space Q with
signature (1,p), m=1l+p. We furthermore assume that Q is simply
connected. This allows to introduce a 1+p splitting of space-time by
means of a system of simply connected space-like surfaces I and a
time-like interval T, we then can locally write Q=XeT. This is
eguivalent to the splitting xu=(t,xl), i=1,...,p, has the usual
meaning of a space-like 1index. We furthermore restrict our
considerations to regions Q of space-time of the form Q=2®[tl,t2],
[t1'tz]€T' Then Q is limited in the time-like direction by the space~
like surfaces 21 and 22 at times tl and tz, respectively. In the
space-like directions is limited by 8Z. We assume that I is an open
space therefore S has the topology of a p-sphere, s?. £ can then be
written as 5=IedX, with I=[0,») a radial-like interval. The boundary
is formally put at infinity.

The second step is to consider the system as a mechanical one but
with an infinite number of degrees of freedom: the values of the field
components at the various points of the space-like surfaces I for
fixed t. Then the discrete label i in q’ (of classical mechanics)

becomes a continuous label x' plus additional discrete labels A; in



this way ql is replaced by the fields ¢A(xl). The sum over the
discrete label i becomes an integration over the continuous label x!
over all ¥ plus a sum over the discrete label A. The derivatives of
the field components with respect to the time, &‘(£)=d¢‘(x5/dt, are
defined as the velocities. Dots denote total time derivatives. In what
follows we will suppress the continuous label x'; this cannot give
rise to any confusion.

The equations of motion can be considered as those from
classsical mechanics but with an infinite number of degrees of
freedom. In this case one must face an increase of the configuration
space dimension from n to infinity. In this transition partial
derivatives become partial variational (Lagrangian) derivatives.
Therefore, in order to obtain canonical field theory we must just
consider a 1+p splitting of the previous results.

The variational derivative can be rewritten as

6(m) - 6(p) - dé

A A O (IV.4)
where
(p) 1
§ f =9, -da  , (IV.5a)
a, = asapt (IV.5b)
sucﬁ that
Set™e =8Pl o o(e) =0 V.6
A A Y ’ (IV.6)
where
m, (£) =29,%¢, (IV.7)

is the momenta canonically conjugated to ot

IV.2. The Hamiltonian Formalism

A Hamiltonian mechanics for field theory may be set up still in
parallel with classical mechanics. The canonical Hamiltonian is
defined as

H(£] = I ® (2) 4% . (IV.8)

c Z c

where HC(Z) is the canonical Hamiltonian density

®_(2) = &A m(L) - 2. (IV.9)

The variation of H_(2) is

12

SH_(£) = - o,2 st - aA‘z a¢‘l + ot sm, () (IV.10)

which shows that KC(Z) has the dependence

w_(e) = #_(¢*, ¢* , m, (@) . (1v.11)

1
The variables (¢A,¢ﬂ,nk(2)) span the phase space.

The variation of the Hamiltonian is

SH [£] = I sH () AT = I [¢* am (£) - 8¢ 8¢*] az . (Iv.12)
c b3 c b A A
From here one obtains
(p)
5 Pr (&)
=, (IV.13a)
3, (%)
sV (2)
— = -5y (IV.13b')
6¢A A
When the field equations (IV.2) hold eq.(IV.13b’) reduces to
5P (#) )
— = -7 (% . (IV.13b)
6¢A A
The Lagrangian dynamics is reproduced through the Hamilton equations
(IV.13).

Let us now consider ordinary functions on the phase space

F=F (¢ (x),m(x)). Then we define o-functionals

Fi¢,n] = I F(¢,m) a°z . (IV.14)

z
A symplectic structure is induced on the phase space when
considering the time derivative of a functional in the phase space

which is given by
F = (F,H) , (IV.15)

where

s Pg(z) §'Pg(2)

(r.er = Iz [ s¢* (z) s, (2)

is the Poisson bracket. This Poisson bracket induces a symplectic

- (9«»@)] afz , (IV.16)

structure on the phase space. This is true only for functionals
restricted to satisfy (II.6) which has been assume in deriving

(IV.16).
The canonical variables can be written as functionals with a

delta function as kernel

ot (%) = I ¢ (z) 8P (x~2) @’z , (IV.17a)
5
o (%) = I o* (z) 8'7 (x-2) d”z , (IV.17b)
i 5 1
13



= (p)
m, (%) = Jz m, (z) 8% (x-z) a°z , (IV.17¢)
where boldface letters stand for space-like. This allows to define the
densities

ot (x;2) = ¢*(z) 6P (x-2) , (IV.18a)

ot (xiz) = ¢* (2) 87 (x-2) , (1V.18b)

I, (x;z) =7, (2) 5P (x-z) . (IV.18c)

Then, one obtains the Lagrangian derivatives

() A, (p)
-] 2 (x;z) _ 6; a(p)(x_z) , 5P PA(x:z) =0,
5¢° (2) sn_(z)
5P oA . o) K
P, (xiz) A (p) 1 87, (xiz)
— = BB das (x-z)/dx° , —— =0 ,
8¢ (z) sn_(z)
(
5 p)HA(x;z) G(P)HA(x:z) .
2T o, —  =5% 5" (x-2) .
6¢B(Z) 8w, (z) A (x=2)
(IV.19)
Therefore, for the canonical variables one obtains
A _ sA o (p)
(" (x),m (y)} =38, 87 (xy) . (1v.20a)
(¢A (x) - = A {(p) - 1
. oY) = 8] as (x-y)/dx' . (IV.20b)

The Hamilton equations are obtained by putting F equal to the
canonical variables in (IV.15).

V. Quantum Field Theory

There exist several equivalent methods for going to gquantum
mechanics. Here we adopt the canonical quantisation method. We start
by introducing the fundamentals of quantum field theory which can be
considered as the direct extension of the canonical method for

discrete systems with ordinary derivatives replaced by variational
derivatives.
V.1l. Fundamentals of Quantum Field Theory

A generic classical observable, represented by some function

F=F(¢,n), 1is associated with the gquantum mechanical observable
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represented by the operator ¥=%(¢,m), where careted gquantities are the
quantum mechanical counterparts of the classical ones. Summarising
canonical quantisation is obtained through the map

ArF o B o= F(p,M) - (V.1)
This map must be a homomorphism, i.e., it must preserve the algebra of
observables

3,5 = 2 (a8 (v.2)

I v 1 .

V is the p-dimensional volume element of z

v = J d¥x . (V.3)

g
For an open space, which is the case, this quantity is infinity, but
we will take the limit V-« at the end of the calculation since other

Vv’s will appear in the game.
For the canonical field variables one must have

3 oo, ] =58y 8P ) (v.4a)
(%, 0.0, (n] =1 s as'” (xmyy/ax’ (v.4b)

and all other brackets equal to zero.
on the Hilbert space of state vectors there is furthermore
defined an internal product <WJW2>- The physical state vectors are

normalised in such a way that

<Yly> = 1 . (V.5)
The macroscopic, or observable value, of a quantum mechanical operator
is given by
&

<F> = <ylFly> . (V.6)

since the lLagrangian 1is classically connected with observable
quantities it must be a- real quantity. Quantum mechanically the

equivalent condition is Hermiticity

A ~ * - ~
= = = V.

<w1IFIW2> <w1IF|W2> <Y IF g, > <W21F|W1> ' (vV.7)
where * denotes complex conjugation.

The gqguantum mechanical behaviour of the system is described by
the state vector |¢>. The physical states are those satisfying the
schrodinger equation

H ly> = E |y> , (V.8)
where H is the quantum mechanical Hamiltonian
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H=H($m) ; (v.9)

and E is the energy operator.

V.2, Canonical Quantum Field Theory

Now we look for a concrete operator representation for 3 and ﬁ
satisfying (V.4). The operators turn to be differential operators on
jets. Canonical quantisation in field theory is obtained by
generalising the usual replacement g-q, p--ihd, of classical mechanics
to ¢-¢, m--(ih/V)8/8¢. For the Hilbert space one must consider the
space of p-functionals ¥[¢,t). In this representation the state
vectors |yY> are represented by functionals y[¢,t), which we will call
wave functions.

The internal product is defined through functional integration as

<, lv,> = [ §,06,€) v,06,) u(e) D9 , (V.10)

where p stands by a measure.
In the field representation the basic operators 8 and n are given

by
ot (x) = Iz o* (x;z) a®z (V.11a)
3‘l(X) = Iz o* (x;z) da°z , (V.11b)
n(x) = -2 (x) = Iz m, (xiz) d°z , (V.11¢)
with
ot (x;z) = ¢*(z) 8™ (x-z) , (V.12a)
ot (xiz) = ¢ (2) 8P (x-2) , (V.12b)
ﬁA(x:z) = - 26" (x-2) 3, (2)
+ a5 ‘P (x-z)saz! aA'(z) + o001 (V.12c)

It must be observed that the space over which these operators act

can be identified with J‘'%’

(B) which can be considered as a subspace
of the original phase space. This fact guarantees that one can obtain
an irreducible representation for these operators; in mathematical
language this is called a polarisation of the phase space. Due to the

previous fact this is called the field representation. A momentum
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representation can be obtained by selecting a convenient polarisation
of the phase space.

This time [,] does not stand only by a commutation, as for
classical field theory an integration is involved in between. The
Poisson bracket is replaced by the commutator defined by

A, By] = I}: [4(x;z) B(y;z) - B(y:;z) 4(x;2)] d°z . (V.13)

where a is such that

A(x) =I 4(x;z) dPz . (V.14)
b

The basic commutators are given by
o0, m,m] = [ @ e, riz) - 0, (viz2)et (xi2) "z
z

= l'v-‘ a; s (x-y) . (V.15a)

A

[$‘r(x),ﬁe(y)] =52 as'? (x-y)/ax' . (V.15b)

The canonical Hamiltonian is correspondingly changed to

M) -k = w (ot ¢t - sy, (v.16)

x_(¢", ¢

(p)

where & =6(P)/6¢A, stands for the nariational derivative acting only
A

on space-like directions

(p)

¢ e 2_7 - d|gﬁr + d‘dja x T (V.17)
s6* a0t 'ad', 2",
One furthermore defines
A A
fre) = [ # (0" (0) ax . (v.18)
b

The quantity ¥[¢,t)¥[¢,t) is interpreted as the probability of finding
the system in a given classical configuration.
The energy operator is given by

E=iha,_, (v.19)

therefore the Schrédinger equation can be rewritten as

H4) ¥[6, t) = ih 3,94, €) . (v.20)

V.3 Local Quantum Field Theory

Since the total wave function ¥{¢,t) is a p-functional it can be
written as the product of the local wave functions ¥ (x,t) at any point
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of the space-like section T

Yi¢,t) =M,y ¥, t) . (v.21)

Therefore, the left-hand side of eq.(V.20) can be rewritten as

A N v

H(¢] ¥(¢,t) = IZ K((Y)) M,ex vi(x,t) d7y . (v.22)
The previous equation is obviously solved by the local Schroédinger
equation

R_($(x)) ¥(x,£) = ih 3 Y (x,t) , (v.23)

since in that case

o) Mg ¥(x,8) = ih 3 o ¥(x,t) , (v.24)

and then

H(] ¥(d,t) = fz ih 8. 5 ¥(#(x),t) a°y
(y)

ih 3 y[4.t) . (V.25)

We will concentrate our efforts into the static case

Yio.t) = yle] e 'FHN (V.26)

for which the Schrédinger equation reduces to

HI¢] ¥(4] = E ¥[@] . (v.27)
In this case the local wave function reduces to

v, ) = e 'FYP ymy (V.28)

such that the local Schrédinger equation reduces to

®_(#(x)) ¥(#(0) = Zyo00) (v.29)

Y(x) is a function depending only on the space-like derivatives of ¢
up to an order s. The order up to which the space-like derivatives
appear in ¥(x) 1is intentionally 1left unspecified. The problem is
therefore reduced to the resolution of eq.(V.29).

However, variational differential equations, to which equation
(V.29) belongs, present a quite pathological behaviour. The problem
lies on the fact that the variational derivation operator, in contrast
with an ordinary derivation operator, doubles the order of the
function on which acts. In fact, form the definition of the
variational operator follows that, if Y(o(x),t) is a function
containing the derivatives of ¢ up to an order s, then 3y (¢(x),t)/S¢
will be a function containing the derivatives of ¢(x) up to an order
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2s. Therefore, the different terms appearing in a variational
differential equation will be of different orders. This creates, in
principle, unsolvable incompatibilities between the different terms
appearing in eq.(V.29). In the next section we explicitly illustrate
the situation with an example: the Klein-Gordon field.

Now two different questions can be addressed to the wave function
Y(¢(x)). One can define the probability of finding the system in the
state corresponding to the "classical" space~like configuration ¢:

PLé) = P[¢] vIe] = jz jz V(o(x)) ¥(e(y)) a°x d°y . (V.30)
Secondly, the correlated probability:

P(x,¥) = S ((#(x)) ¥(d(y) ag’---de™) . (v.31)

Apart from being solutions of the Schrédinger equation (V.29),
physical states must have a finite norm, i.e., they should be
normalizable to one

S, (P1#] A --dg™) = I J P(x,y) d°x d’y = 1 . (v.32)
Zix) "Ly

This condition in fact selects the physically sensible solutions of
the Schrédinger equation.

V.3. The Massless Scalar Field

The massless scalar field is the simplest field theory to start
with. Apart from this fact is the natural generalisation to higher
dimensions of the free particle of classical mechanics. This analogy
is also useful when one wants to check and compare results. The
massless scalar field is described by the Lagrangian

= 1 v
2= ¢, 9, - (V.33)
In 1+p dimensions the previous Lagrangian is decomposed as

2=%(? 4.’2+ﬂu¢l ¢, . (V.34)

The momenta canonically conjugated to ¢ is

=14, (V.35)
c2
such that the canonical Hamiltonian density is given by

X’ = % (c? n? - nt! s, ¢)) . (v.136)

Quantum field theory is obtained with the usual replacements
(V.13) and (V.14). For the quantum Hamiltonian we obtain
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S R 1)
— Gg) - e e . (v.37)
v

The corresponding static Schrédinger equation is therefore

o=t

1
2

1 n2e? 8P 2 § 3 _E
A R M R MRS 2 (v.38)

The first step in order to solve this equation is to rewrite it

as
é(p) 2 2 1) (V.39)
[- (377—) - A" ¢, ¢ ¥ =y, .
where
A= & , e = & (V.40)
he 22
he

Now we carry out the point transformation

¢ =a ¢, x=8Xx, (V.41)
with

a® =h cvy Pt/ g2 = v¥’P | (V.42)

Then, eq.(V.39) is reduced to
(p)

)
[- (5¢ )

where bars have been omitted. ¢ is a dimensionless number. Then for

2

-2 e $,1 ¥ = c v, (V.43)

the energy we obtain

hc ~

E=—/¢€ . (V.44)
2vi®?
In order to see more clearly how the problem of finding a

solution to a equation of this kind goes on let us rewrite it as
6(p) 2 ij ~

- (55_) ¥ = (n ¢, ¢j +€) ¥ . (V.a5)
Let us first assume that ¥ is a zeroth-order function, 1i.e., it
depends only on ¢. But this cannot be a solution since the lhs (left-
hand side) is a zeroth-order function while the rhs (right-hand side)
is a first-order function. The next possibility is ¥ being a first-
order function, w=w(¢,¢i). But in that case the 1lhs will, in
principle, be a fourth- order function while the rhs is still a first-
order function. This kind of argumentation can be repeated for ¢ of

any order. If wef(S), then the lhs is in £"%

£'. The final situation is always the same: an order incompatibility

while the rhs is in

for each side of eq.(V.44). This is the order incompatibility we
alluded above. We do not know of any explicit reference to this fact
in the literature. Up to our knowledge, no deneral techniques for

solving variational differential equations is actually known.
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The previous situation would drastically change if the order of
the lhs would be lesser than that naively implied by just doubling the
order each time a variational differentiation operator is acting. This
is in fact possible and we are going to explain how this happens. The
functions having this particular behaviour are to be called non-
standard functions.

Let us observe that for a field theory in (l+p) dimensions the
local Schrédinger equation is defined on a p-dimensional base space.
The simplest case is that of a field theory in (1+1) dimensions. In
this case the base space for the local Schrédinger equation is one-~
dimensional. Then we need only to characterise non-standard functions
in one dimension. This is the subject of the next section.

VI. Non-Standard Functions in One Dimension

Here we are going to characterise non-standard functions in one
dimension. We will consider only the first~ (s=1) and second-order
(s=2) cases which are of direct application to most of the local
Schrédinger equations in (1+1) dimensions. The first-order case is
quite trivial. The second-order case can he considered as a rereading
of the results by Tapia (1985) such that we present only the main
results. The generalisation to s>2 is straightforward, but with an eye
on physical applications we restrict our ceonsiderations to the second-
order case. In this section, following the tradition of classical
mechanics, we adopt the following notation: the coordinate of the base
space is thought of as the time t, while the coordinates in the fiber
by ql, i=1,...,N, with N the dimension of the configuration space.
Dots will denote total time derivatives.

VI.1l. The Case s=1

We must analyse functions of the type F'''7’,

1)

with r=2,1,0. Let
us start by rewriting s.F

s F(1) (1 _ (élF(l))‘

=3 F
1 1

(1) (1) -3

- aJéIF g’ -w g, (VI.1)

aF
i
were
W =83F , (VI.2)

is the Hessian matrix.
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The case r=2. This is the standard case which is characterised by

rank(wlj) 21 . (VI.3)

The case r=1. Now we want the maximum order of derivatives
appearing in (VI.1) to be one. Due to the fact that the second-order
derivatives of the coordinates appear only in the last term one must

have that
W =38a8F ") =0. (VI.4)
)
The solution is

(1,1)

F =a(a 4 +A@ - (VI.5)

In this case (VI.1l) reduces to

sFYY - F g +E , (VI.6)
1 1) 1
where
= _ (VI.?7)
F,, = 9A -8R ,
= (VI.8)
E‘ atAO .

The case r=0.Now we want the maximum order of derivatives
appearing in (VI.7) to be zero. Due to the fact that the first
derivatives appear only in the last term, it must be

F =08A -3A =0, (VI.9)

A =03 A . (VI.10)
In this case we will have

s F(l,O)

= - VvI.1ll
' = al(Ao atA) . ( )

Vi.2. The Case s=2

. 2,r) s
Wwe wmust now analyse functions of the type F M with
cas 2)
r=4,3,2,1,0. Let us start by rewriting 5 F'

2y _ (2) _ 3
BlF = alF (BlF

It must be remarked that these equations are of fourth-order in the
time derivatives and can be written in a more extended form that

(21, - (2), -
) )

+ (B‘F (VI.12a)
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displays the fourth-order time derivatives as

s F'2 =3 F'® - 3a5pr'? +3 2% 2 - (C - 2adw ) é)
i 1 0o 1t o 1 1) 0 1)
+ s‘ajakp‘z’ q § + W g’ (VI.12b)
where
s oy
d, =q 8 +q 3 , (VI.13)
_ A 3 (2)
W, =2328F . (VI.14)

is the generalised Hessian matrix of F'?' with respect to the
accelerations, and
o5 on pl2) _ a o L (2)

CU = B‘BJF 6]61F . (VI.15)

The case r=4. As before, this is the standard case which is
characterised by

rank(W‘J) =1 . (VI.16)

The case r=3. In this case we want the maximum order of
derivatives appearing in (VI.13) to be three. Since the fourth-order

derivatives appear only in the last term it must be

5o pl2) _
W,o=338F =0 . (VI.17)
In this way F'®'*" is linear and non-homogeneous in the accelerations
{2,3) - .y .
F f(a,q) 9 - V(q,q) - (VI.18)

Equation (VI.13) reduces to

(2, [ P
s F*3 =F (@ q @ & +E(a a4 q , (VI.19)
where
F =48f -58f , (VI.20a)
1) LIS | JN! .
B I - C
E =23V - (3V) (3,£) a

-, f +af - c':u) g, (VI.20b)

The case r=2. In this case we want the maximum order of
derivatives appearing in (VI.19) to be two. Since third-order
derivatives appear only in the last term we must have

F,=8f -8f =0, (VI.21)
in this way £ is given by
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fx = éif , (VI.22)

(2,2)

and the F is given by

(2,2)

F =4 8f(a, @ -V Q - (VI.23)

VII. Applications

Now we show how the previous considerations apply to gquantum
field theory. We restrict our considerations to field theories in 1+1
dimensions. First we consider the massless scalar field. The exact
solution is found. Next we consider the massive scalar field, Klein-
Gordon. We write down the corresponding equations but we do not solve
them. However, fue to the similarity with the harmonic oscillator of

classical mechanics one can conjecture how the spectrum is done.

VII.1. The Massless Scalar Field

In this case the Schrédinger equation reduces to

(1)

- G+ B w=cy. (VII.1)

The first trial is wsfm), which, we already know, it does not
work. The second possibility is wsf“). Then 6¢WEf“J), and the most
general form for 6¢w is

5¢W =¥, (¢) + v, (9) ¢, - (VII.2)
For ¥ we then obtain

v o= W0(¢) + Wl(¢) ¢, + W2(¢1) ’ (VII.3)
such that we can rewrite a¢w as

6¢w = 6¢wo + 6¢w1 ¢1 . (VII.4)

It can be easily verified, the proof is left to the reader, that
(VII.3) cannot be a solution of (VII.1l) due to the fact that ¢1
appears polynomically and it is impossible to reconcile the

requirements of null coefficients for all the different orders.
(2

The next possibility is to try with yef “ . For this to be the
case it must be 6¢wefa‘m. Therefore
a0 = E(9,9,) + 3(9,8,) ¢, - (VII.S5)
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Therefore, for ¥ we obtain

Vo= £(¢,0,) + g(¢,¢,) o, t h(¢ .9 ), (VII.6)

such that a¢w can be rewritten as

gV = B,F + 8,9 ¢, . (VII.7)

For &8 .38 i
® ¢W we obtain

5¢3¢W =[f-f v+ g, v2]uu

tl2g, -£  +g vl ¢ (VII.8)

uv u 11
where
u=¢, v=g¢ . (VII.9)
Since this will be linear in ¢,, we can put h=0. The KGS equation is

now written as

SIfE-f Vv+g v2]uu ~[2g, ~f _+gqg V] ¢

vy uv u 11

o 2 !
=- (v -e) (f+g¢ ). (VII.10)

We have therefore the following two equations
~lE-f veg v o+ (v -e)f=0, (VII.1la)
-[2g,-f +q, vl +(vZ-¢€)g=o0. (VII.11b)
Let us redefine f and g by
f=F, (VII.12a)
g =G/v . (VII.12b)

Then, the differential equations acquire the most symmetric form

2
[F-vF +vG]l =-(’-¢)F=0, (VII.13a)

- - 2 -
[G v Fv + v Gu]uv (v €) G

]
o

(VII.13Db)

From here it follows that

_ _ 2VF
Fv Gu = —_ . . (VII.14)
" (v°-¢)
Then, equations (VII.13) can be rewritten as

2
H = (v: -¢) F=0, (VII.15a)

uu
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H -(v¥~e)Gc=o0, (VII.15b)

where
3vi-
n=0Y -8 g (VII.16)
(v2-¢)
Then equations (VII.15a) can be equivalently rewritten as
(3v® - ¢) H_ - (vi -e)? H=o0. (VII.17)
The solution to this equation is
H=a e + a, e, (VII.18)
where
VZ—
h=u——"-F . (VII.19)
vavi-g

F is easily obtained from (VII.1l5a), while G is obtained by using
(VII.15b)

2
g = YQ@Bvite) (a,(1 +h) e” - a,(1 - h) e ™) (VII.20)

(vi-g) (3vi-g) 2 .

VII.2, The Massive Scalar Field

Now we consider the massive scalar field, Klein-Gordon. The
Klein-Gordon field is the natural generalisation to higher dimensions
of the harmonic oscillator of classical mechanics. As before, this
analogy is also useful when one wants to check and compare results.

The Klein-Gordon field is described by the Lagrangian

_1 uy o2 42
o =3 (" 0, 6, ~n° ") . (VII.21)

In l+p dimensions the previous Lagrangian is decomposed as

_ 1 1 .2 1) _ .2 2
e = 3 (—;5 "+ ¢, ¢J m° ¢7) (VII.22)
where m has dimensions [1enght]q. The momenta canonically conjugated
to ¢ is
n=-14¢, (VII.23)

c
such that the canonical Hamiltonian density is given by

® = % (c® =% - 7! 0, ¢, + n® ¢2) . (VII.24)

Quantum field theory is obtained with the usual replacements
(V.13) and (V.14). For the quantum Hamiltonian we obtain
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N 22 (p)
_1 ,_ nc 3 2 _ 1) 2
X=g 07 G n

¢, ¢, + m* o) . (VII.25)

The corresponding static Schrédinger equation is therefore

22
nle {p) i)

1 [ 2
5 (- 2 (33—0 -7 ¢, ¢J + m?

)y vy =%y . (VII.26)
The first step is to rewrite this equation as

)
6(P

2 2 1)
- Gg) -2 nl e 6 ~uP e y=cu, (VII.27)
where
v v
) A=, u=r, e =2 (VII.28)
h ¢

If we carry out the point transformation

- A_ -
¢ = o/Vu , x =X, €=uc, (VIX.29)
eq. (VII.27) is reduced to

{(p)
s .
- G I ¢, + 1 v =¢cy, (VII.30)

where bars have been omitted. This equation shows that ¢ is a

dimensionless number. Then for the energy we will have

. (VII.31)

where w=mc, which, as must be, does not depends on V.
Now we restrict our considerations to the 1+1 dimensional case.
In this case eq.(VII.30) reduces to
s
- (5¢ )

2

* )T+ 1w =€y . (VII.32)

The first trial is yef'®, which, we already know, it does not
work. The second possibility is yef'*. Then 6¢WEf“J), and the most
general form for a¢w is

¥ =B, () + § () @, . (VII.33)

For y we then obtain

vo=y,(8) + ¥ (¢) o, Y (8) . (VII.34)

such that we can rewrite a¢w as

A g, + g, b, - (VII.35)
It can be easily verified, the proof is left to the reader, that
(VII.34) cannot be a solution of (VII.32) due to the fact that ¢1
appears polynomically and it is impossible to reconcile the
requirements of null coefficients for all the different orders.

The next possibility is to try with yef®. For this to be the
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case it must be a¢wefu’m. Therefore
a0 = T(9,0,) +9(8,0,) ¢, - (VII.36)
Therefore, for ¥ we obtain
= .37
v o= f(¢,0) + g(¢,9,) ¢, * h(¢1,¢11) . (VII )
such that a¢w can be rewritten as
= + 8 . (VII.38)
a¢w 6¢f ¢g %,
For 5¢6¢w we obtain
2
5¢6¢w = [f - fv v+g v ]uu
+{2g -f +4g V] ¢, (VII.39)
where
u=4¢ , v = ¢1 . (VII.40)

Since this will be linear in $,, we can put h=0. The KGS equation is

now written as

-(f-f v+g Vv -(29 -f +9 V] ¢

vv uv u 11

=- @V -e) (£+90 ) - (VII.41)

We have therefore the following two equations

-[f-f, V+ag, v2]uu + (ur+vi-g)yt=0, (VII.42a)
-(29, - £, +g, Vi + (u¥+vi-¢€)g=0. (VII.42b)
Let us redefine f and g by

£f=F, (VII.43a)
g =G/v . (VII.43b)

Then, the differential equations acquire the most symmetric form

[F-VF +VvG] - (u®> +v: -¢g) F=0, (VII.44a)
v
[G-VF +VG ], - (u> + vZ - eg) 6 =0 . (VII.44b)
v v
From here it follows that
F -G = - _2(VF-uG) (VII.45)

2
v v (u2+v -€)

Then, equations (VII.44) can be rewritten as
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Huu - (u +v® -¢) F=o0, (VII.46a)
H - (¥ +v:-e)yGg=o0, (VII.46b)
where
_ 1 2 2
H = — [(uW+3v®-e) F - 2uv G)] . (VII.47)
(V+vi-€)

Then equations (VII.46) can be equivalently rewritten as

(u® + 3v? - g) H -2uwH - (u +v:-e°H=0. (VII.48)

Now the problem is reduced to solve equation (VII.48) since then F and
G can be found through (VII.46).

However, till now all different attempts we have made in order to
integrate this equation have not lead to success. Up to now we have
not been able to solve equation (VII.48). Comparison of eqs.(VII.44)
or (VII.46) with the Hermite equation

H" - (x2 -€)) H=0, (VII.49)

leads us to conjecture that under the requirement of finiteness of the
solutions to the Schrédinger equation the spectra for € will be given
by

e =2n+ 1. (VII.50)

Therefore, the energy eigenvalues are given by

E =-"¢ =ho (n+ é) . (VII.S1)

Even when we have not been able to solve eq.(VII.48) the
important result has been to show that functional differential
equations can be reduced to a set of coupled partial differential
equations.

VIII. Conclusions
L]
We have introduced a method to solve variational differential
equations, particularly those of the Schrdédinger type appearing in
quantum field theory. The method is based on the construction of the

kernels of functions £ .

The generalisation to higher-orders, the
natural continuation of this work, presents new problem absent for
the first-order case. In particular we will prove that the functions

F'2:3) are polynomials. Particularly interesting is the following case
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F=0 (9 9,y — (3507) (VIII.1)
For this Lagrangian one obtains
¢ 5F =F . (VIII.2)

We can furthermore write

(¢5)%F -9 =0 . (VIII.3)

We already know of a similar, with a little bit of good will,
eigenvalue equation: the Wheeler-DeWitt equation. This analogy has
been the main motivation to develope the method introduced in this
article. We hope these results will be of applicability to the
Wheeler-DeWitt equation. This will be reported in a next paper.

Acknovledgements

This work was partially done in the Laboratory of Theoretical
Physics of the Joint Institute for Nuclear Research, Dubna.
The author would like to thank his colleagues for their kindness and
particularly Prof. E. Kapuszik for his warm hospitality.
References
R. Jackiw, preprint CTP#1632, Cambridge, Massachusetts (1988).

V. Tapia, I1 Nuovo Cimento B 90, 15 (1985).
V. Tapia, M. Ferraris and M. Francaviglia, Il Nuovo Cimento B (1989),

Received by Publishing Department
on May 4, 1989.

30

SUBJECT CATEGORIES
OF THE JINR PUBLICATIONS

Index Subject

12.
13.
14.
15.

16.
17.

18.
19.

High energy experimental physics
High energy theoretical physics

Low energy.experimental physics

Low energy theoretical physics
Mathematics

Nuclear spectroscopy and radiochemistry
Heavy jon physics

Cryogenics

Accelerators

Automatization of data processing
Computing mathematics and technique
Chemistry

Experimental techniques and methods
Solid state physics. Liquids

Experimental physics of nuclear reactions
at low energies

Health physics. Shieldings
Theory of condenced matter

Applied researches
Biophysics




