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I. Introduction 

Recently Jackiw (1988) has revived the interest into the 

Schrodinger representation in quantum field theory. In this approach 

the dynamical quantities are expressed in terms of fixed-time 

canonical variables, $(x) and n(x), which upon quantisation satisfy 

canonical commutation relations. The quantum field theory involves 

states I*> that, in the Schrodinger representation, are realised as 

functionals, I*> +P[$,t), of a time-independent, c-number field $(x). 

The operator $(x) acts on these states by multiplication, 
A 

@ (x)  I*> +$ (x) 9[$, t) , while the canonical momentum operator rr (x) acts 
by variational differentiation, n (x) I*> +-iha*[$, t)/6$ (x) . 

In the Schrodinger representation the Schrodinger equation is 

given by 

;[$I *[$,t) = ih a t E  *[$,t) , 
where the Hamiltonian is defined by 

where Z is any space-like section of space-time. Since the 

Hamiltonian, and all other relevant quantities, are already integrated 

over space-like sectaons the use of functional methods is mandatory. 

The main drawback of this approach lies precisely on the use of 

functional methods. Only a few particular cases, e.g., those in which 

the starting Lagrangian is quadratic in the fields, can be solved 

exactly. 

It must be, on the other hand, observed that *[$,t), being the 

total wave function, must be given as the product of the local wave 

functions * ( 4  (x) , t) 

*[@,t) = n,,= @($(x),t) . ( 1 . 3 )  

A remarkable property of the ~chrodinger equation (I. 1) is that it is 

solved by the local Schrodinger equation 

 his Schrodinger equation is a differential equation in which the 

derivation operator is the variational one, which is iteratively 

defined at all orders by 



da= d/dxa is the total or formal derivative with respect to xa, the 
a ... a 

coordinates on the base space; a A  ' '=a/a@* a ... a , with @ *  the 

fields describing the system and @A a , , , a . We will I 
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call them variational differential equations. 

The solution to a variational differential equation will be a 

function containing the derivatives, with respect to the base space 

coordinates, of the fields up to a generic order s: a sth-order 

function. However, variational differential equations present a quite 

pathological behaviour. The problem lies on the fact that the 

variational derivation operator, in contrast with an ordinary 

derivation operator, doubles the order of the function on which acts. 

In fact, from the definition of the variational operator follows that, 

if @(@(x) ,t) is a function containing the derivatives of @ up to an 

order s, then 6@(@(x),t)/6@ will be a function containing the 

derivatives of @(x) up to an order 2s. Therefore, the different terms 

appearing in a variational differential equation will be of different 

orders. One way of solving this impasse is by making the solution of a 

variational differential equation to be a function containing the 

derivatives of the fields at all orders. But this takes us again back 1 
to functional methods. 

If one insists into keep finite the order of the solution one 

sees that, in principle, unsolvable order incompatibilities appear 

between the different terms of a variational differential equation, 

unless one restrict the considerations to those functions for which 

their variational derivatives are of an order lesser than that 

naively implied by just doubling the order. In fact, the previous 

situation would drastically change if the order of 6@(@(x),t)/6@ would 

be lesser than that naively obtained just by doubling the order each 

time a variational derivation operator is acting. It is possible to 

characterise the functions for which this property holds. For sth- 

order functions we must just look at the kernel of sth-order functions 

mapping to rth-order, r<2s, functions under variational derivation. 

These functions, which we call non-standard, can be almost completely 

characterised in the sense that its dependence on the highest-order 

derivatives is completely determined. These functions turn to be 

polynomials in the highest-order derivatives of the fields with 

arbitrary functions of the lower-order derivatives as coefficients. 

The order of these polynomials strongly depends on the dimension of 

the base space. Then, functional differential equations reduce to a 

system of coupled partial differential equations for the coefficients 

we mentioned above. 

2 

Up to our knowledge, no general techniques for solving 

variational differential equations is actually known. We must 

emphasize furthermore that we do not know of any explicit reference to 

the facts quoted previously in the literature. 

Let us see how the previous ideas apply to field theory. For a 

field theory in a (l+p)-dimensional space-time the Schrodinger 

equation becomes a functional differential equation in a p-dimensional 

base space. The Schrodinger equation can be solved by a variational 

Schrodinger equation on a p-dimensional base space. Therefore we need 

to characterise non-standard functions over p-dimensional base spaces. 

The Schrodinger equation reduces to a system of coupled partial 

differential equations. This provide therefore a non-perturbative 

scheme for quantum field theory. 

In this article we will consider field theories in (1+1)- 

dimensions. In this case the Schrodinger equation is a variational 

differential equation in a one- dimensional base space. Therefore we 

need to characterise non-standard functions over one-dimensional base 

spaces. We do this for first- and second-order functions. The first- 

order case is quite trivial while the second one can be considered as 

a rereading of the results by Tapia (1985), therefore only the main 

results are presented. 

Since most of our reasoning will be based on variational 

derivation we start by introducing functions over jets of fields over 

which the variational derivation operator acts., We introduce some 

elements of what can be called "Lagrangian analysis," i.e., the 

differential calculus for variational derivatives. Then we consider 

field theory, the canonical formalism and the canonical quantisation 

in which variational Schrodinger equations play a central role. We 

turn then to the massless scalar field and show in detail the order 

incompatibility we mentioned above. 

Next we turn to characterise non-standard functions over one- 

dimensional base spaces. We then apply these results to the massless 

and massive, Klein-Gordon, scalar fields, in (l+l)-dimensions; in this 

two cases the solutions must be second- order non-standard functions. 

The Schrodinger equation reduces to two coupled partial differential 

equations. The massles case can be solved exactly. For the massive 

case we just write down the equations. We have not been able to solve 

them, but being similar to the schrodinger equation for the harmonic 

oscillator in ordinary quantum mechanics we conjecture that they 

should admit Hermite-like solutions. If this is the case the energy 

spectrum is given by En=hw(n+l/2). This agrees with the fact that the 

Klein-Gordon field is the natural generalisation to higher dimensions 

of the harmonic oscillator. 
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