


1. INTRODUCTION

Conformal mechanics {11 and its supersymmetric extensions [Z2.3]
(CM and SCM in what follows) are inatructive %o explore for several
reasons. Being d=1 prototypes of conformal field thecory, these systema
offer an appropriate laboratory for getting insight into the structure
of conformal theories in higher dimensions. Furthermore. they provide
nontrivial examples of the particle and superparticle models which
recently received a great attention as the toy models for strings and
superstrings.It is also worth recalling that different versicns of
supersymmetric guantum mechanics [4-7] describe nontrivial reductions
of some four-dimensional theories of intereat, such aa supersymmetric
Yang-Mills and supergravity theories [5,6], and may bear a deep
relation to more realistic models [7].

In the previous paper [B],we have found that the purely bosonic CHM
exhibits interesting geometric features. Its field equation can be
interpreted as defining a class of geodesics in the group space of d=1
conformal group S0(1,2).Thuas, there revealed an intimate relation
bétween CM and the geometry of group S0{1.2}. Qur conaideration relied
heavily upon the d=1 version of the covariant reduction method which
was originally invented by us to deduce new superextensions of the d=2
Liouville and Weas-Zumino-Witten-Movikov models [9}. As has been
mentioned in [B}, this approach admits an immediate generalization to
the d=1 superaymmetry case where it can be used to construct manifestly
invariant aupqrfield formulations of the known SCM models and to set up
new models of this kind. To date, merely the N=2 and N=4 SCM'sl) were
known, the latter one only in the component form.

In the present paper we study implications of the d=1 covariant
reduction techniques for the SCM mocdels. These systems prove to be
related to the geometry of appropriate coset manifolds of d=i
superconformal groups. In particular, the superfield equations of N=2
and N=4 SCM's are shown to single out the (112)- and (1)/4)- dimensional
geodesic  subspaces in the «coset manifolda SU(1,1113/0(1) and
SU(l,lIZ))SU(Z), respectively. We present. for the first time. two
different off-shell sasuperfield formulaticns of N=4 8CM. They are

l)By N we denote the number of real d=1 Poincare supercharges.So N=2
and N=4 in our terminclogy correspond to N=1 and N=2 of refa.[2-8].
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related via a d=1 duality transformation. One of those yields the
known component version of Nz4 SCM [3]} while the other gives rise to a
different version. One more new ressult is the construction of
previcusly unknown higher N SCM models. They are associated with cosets
SUCL,1I8/2)/6(N/2)(N even).We derive the relevant eguations of motion.
both in the superfield and component forms, and write down the
invariant physical component actions.

The paper is organized as follows.In Sect.Z,we briefly review the
d=1 covariant reduction method in application to the bosonic CM model
(N=0 S8CM).In Sect.3, the basic peculiarities of supsrsymmetric
generalization of our procedure are illustrated by a simple example of
M = 2 SCM. The gecmetric superfield formulations of N = 4 SCM are
constructed in Sect.4 and 5.Some unusual features of the d=1 duality
tranaformation are discussed,among them the creation of an operator
central charge in d=1 N=4 superconformal algebra.In Sect.6, we explain
how to get the general superfield sclutions of the SCM equations in the
geometric formalism. Sect.7 deals with higher N SCM modele. Sect.B
collects concluding remarks.In particular, an interpretation of the SCM
equations as integrability conditions is presented.Appendices A and B

treat some technical points.

2.PRELIMINARIES : CONFORMAL MECHANICS
Before considering the supersymmetry case we recall basic facts
about the geometry of purely bosonic CM {1] following our paper {8].
2.1 The action and field equation of this d = 1 model read

8 = h_zj dt ( (o)’ - mzp-z} , A1z en* M1 = em (2.1)
p(t) = me (2.2)
They are invariant under d = 1 conformal transformations

bt = a + bt + et? = F(8), Splt) = ;1 F(t) elt) (2.3)
generators of which form the 4 = 1 conformal algebra so(l,2)

i[Ln,Lm] = (n - m)Ln+rrl , h,m = -1,0,1. (2.4)



The bazaic observation of [8] was that equation (2.2) can be deduced
in a purely geometric way, starting with a nonlinear realization of

group 50(1,2). Consider an element of S0(1,2) parametrized as

itL_* iz{t)L1 iu(tlLo
g{t,z(t),u(t)) = e e e . (2.5}

Left action of 80(1.2} on these elements produces for t and
e(t)y = eu/mu(t)just transformatjons (2.3)}. Further, let us construct

Cartan one-forms
g'd g = dw L {2.6)
and impose on them the covariant reduction constraint

ol = (L + mth) =w R =w €80(2) (2.7)

This condition amounts to the set of eqguations on the group parameters

#(t) = p '8, {2.8)

—d

z(t) + (a(£))® =’ o

which is eaasily recognized to be eguivalent to eq. (2.2).

2.2. Conditions (2.7),(2Z.8) have a transparent gecmetric meaning.
In the S0(i,2) group manifold {t,z,u} they single out a curve which is
produced from an arbitrary fixed point of the manifold by the right
action of the one-parameter subgroup S0(2) with generator Ro' Such
curves are known to be geodesics [10}. Thus, eqe.(2.8) and, hence, the
CM equation (2.2) define a class of geodesica in the S0(1,2) group
manifold. These geodesics are represented by the 80(1,2) group elements

of a special form

' g =, (e

- iTR
g, = sotc‘,cz) e o , (b) (2.9
g, being a representative of the coset 50(1,2)/50(2) and e,.C,

arbitrary constant coset parameters.These constants,together with the
coupling constant m, apecify an initial point on the geodesic and the



tangent vector at this point, while ¥ is the natural parameter (proper
time) along the curve_The expression {(Z.9b) furnishes equation (2.2)
with the general solution and so gives a purely geometric method of
integrating this eguation.

It ia straightforward to adapt the above construction for getting
supersymmetric extensions of equation (2.2).0ne has to enlarge 850{(1,2)
to an appropriate d=1 superconformal group. to construct a nonlinear
realization of the latter and to single cut,in the relevant supergroup

manifold.a geodesic submanifold which properly extends geodesic (2.9).

3. H=2 SUPERCONFORMAL MECHANICS

As a first nontrivial example of application of our procedure to
superaymmetric d=1 systems we will reproduce here,on purely geometric
grounds,the superfield formulation of NzZ SCM [Z].

3.1.The algebra of d=1 N=2 supeiconformal group is the Lie
superalgebra su{l,111) ~ osp(2]2) [1112)

il L 1 = (n - m)L_ (a}
6.63 =-2L - 2(r-a)T (0)
$1L.61 = (2 - w6 . ilL.G] = (§ - n (c) (3.1)
$(T,G,3 = ;G . ilT.G,1 =-; G (d)
[T.T) = [T.L ] = {G.G } = {G,.G;} = 0 (e)

(n,m = -1,0,1; r.q = *¥1/2).

Besides the d=1 conformal generators Ln, this superalgebra includes the

d=1 N=2 Poincare supersymmetry generators Gd/z,aq/z,the generators
th,@/z of superconformal boosta,and the internal U(1l) automorphism

generator T.
In constructing nonlinear realizations of SU(1,1]1), we adopt the
following two natural requirements:

i. We wish to have a manifest N=2 supersymmetry. So the time

2)Tihe simplest superextension of 80(1.,2) is the supergroup OSp(2f1)
corresponding to N=1 d=1 superconformal symmetry. However, no
nontrivial N=1 extension of eq. (Z2.2) exists.



coordinate t associated with the generator L_1 has to be completed to
the d=1 N=2 superspace {t,9,8}, with €,8 being mutually conjugated
Grassmann cocordinates appearing as the supergroup parameters asesociated
with the Poihcare'supersymmetry‘ generators GA/Z,Eﬂ/z_ All the other
SU(1,111) parameters are regarded as guperfields defined on this
superspace .

ii. Hereafter,our main interest will be in the maximally invariant
situations when the internal symmetry {(U{l)} in the present case) is
realized linearly. So we arerled to consider a realization of SU{1l,1]1}
in the quotient S5U(1.,111)/U(1}.

With these remarks in mind, we implement S5U(1,1i1) as the left
shifte of elements of the coset SU(1,111)/U(1} '

itL—ieeG*‘i/Z-” eG—lfzeiZLle:G!./Z-‘- EG1/2 iULO

G(t,e.8) = e e (3.2}

z = z{:,8,8), u = u(t,8,8), £ = £(t,9,8).
Under this choice of parametrization,the superspace {t,0,8) and the

dilaton superfield u(t,2,8) transform with respect to the left
SU(1,1}1) shifts as
i

6t = E(t,9,8) +;§ﬁE—§a DE

s0 = LiDE(t.9,8) , 68 =- 2iDE(t,6.8) (3.3)
su(t,8,8) = E(t,8,8), _ (3.4)
where D =8/30 + i88s8t , D = - 3,88 -182/9t are covariant spinor
derivatives

{D,0} = -218s8¢, D'= D'= 0 (3.5)

and E{(t,8,8) is a superfunctioh collecting all the infinitesimal
parametars of d=1 Nz2 superconformal transformatlons

R(t,8,8) = £(t) - 2i{s+3t)F — 24(£+7t)0 + 65h - (3.8)

Heres f(t) im already defined in eqg.(2.3),<,? and h are,respectively,the
parameters of two supersymmetries and U(l) rotations.Note that E(t,8.8)
defines the superconformal transformation of the supercovarjiant



differential At:

At = dt + i9d8 - id68 (3.7)

&At = EAt .

For the reascn to be clear later we do not need to know the explicit
form of transformations of the remaining coset parameters z and £.

3.2. To put in force the covariant reduction method,we have first
to define the corresponding covariant Cartan one-forms.This can be

done by the familiar recipe of refs.[12]

G rag = i Lo+ m G+ ,ljrﬁr + vT = i € su(i,111) (3.8)
w, = e"(dt - id8B + i8d6) = e At

w, = du - 2zAt - 2idBEF - 2idef

w = e'ldz - i(KE - faf) + 2i(d6F - Bz + z'At) (3.9
H vz © "‘/z“‘[de - tatl r:;—1/% (H-xxz )+
B, = R - zae - tfde + zEat) , b= ()7

v = 2d9¢ - 2d0F + 2FEAt .

These one-forms are defined up to arbitrary gauge U(l) transformations
realized as the right shifts of elements (3.2) (the parametrization we
are using corresponds to a particular fixing of this gauge freedom).

It remaine to find out how to extend the constraint (2.7). In the
present case the coset parameters in eq. (3.2) are restricted to d=1
N=2 superspace (t,2,8),s0 these define a (1|2) dimensional hypersurface
in SU(1,1[1)/U(1).The corresponding geodesic submanifold should be a
special case of this hypersurface parametrized by the proper time 7
already defined in eq. {(2.9b) and appropriate Grassmenn variables
#w,n.The parameter T appears as a coordinate associated with the S0(2)
generator Ro, 80 m,n should be associated with the fermionic generators
promoting R, to & graded aubalgebra of su(1,1{1). This subalgebra is

unambiguously extracted to be

9‘8!: r= G—1/2+ imGUst' = G—t/z_ imGg/z’R::a’T} (3.10)



(r, T} = -2R, - 4imT , (T, "} = {, F} = 0
(. R,1 = o, (F, R, = - mF (3.11)

[r. TJ = ;il, (F, T) = - 34F -

As a crucial step,we are now led to put equal to zerc all the Cartan

forms except for those belonging to superalgebra (3.10)

0 = nn < !ﬁta -

000 =0 v

w = miw 3.12)
i | -1 (3.
Mypa™ 1BH_ o 1 Hy o7 TImH L T

The aset (3.12) is manifestly covariant with respect to both the left
SU{1,1}1) shifts and the right gauge U(i)} shifts. Note that these
constrainta agree with the original Maurer—Carpan eguation for the
su(l,1}1)valued one-form (3.8). Actually, the surviving form nn
satisfies a closed Maurer-Cartan eguation on the subalgebra WR.

The one~form=s (3.9) dinvelve the | differentisle of Grassmann
variables 48,48 together with dt. Therefore, constraints (3.12)} result
in a larger number of equations for the coset parameters as compared

with the boaonic case (2.7),(2.8). Now we have

. -

z = E Ly

Z = >iDu (3.13)

s 1,

¥ = - ziDu

(0, DI = 2m Y (3.14)
v .

Y=e', 6Y=1E7Y.

2

Thus, like in the CM case, all the superfield coset parameters are
expressed wvia a single object,this time the dilaton superfield
u{t,6,6).As we have started from the covariant constraints (3.12), the
expressions (3.13) are guaranteed to agree with the original
transformation properties of £ and z.0One may,if wishes, derive these
transformations wusing eqgs.(3.13) and the transformation laws
(3.3),(3.4).



Equation {3.14) is dynamical and it is just the N=2 supersxtenaion
of eq.(2.2).1Its identity to the cne given in {2] becomes evident after
rassing to real Grassmann variables e'= (1/23(F + 9).92E (1/2i¥(8 - @).

In componenta, it amounts to the set

F=2m ', o= (m-wie)ro"
. Ll
v imywe ¥ = imwe (3.15}

where we have defined

]

L YIB:O = i.DYIB:O o == iﬁY!e:o' (3.18)

The invariant action giving rise to eqs. (3.14},(3.1i5} reads

N 5 [oy © = aE Ly —igmaiy
s$=-3ixr _{dtdede_[DYDY+2mznyl_x fdt[?_(m T EEL R

+mwp‘*+%f—%me“]- (3.17)

Superconformal invariance of this action can be checked most readily in

the superfield notation, using the transformation rules

&D = ﬁ (DDEVD , 8D = -+ (DDEID

N
o] -

&(dtdedBy = O - {3.18)

The tranasformation laws of the component fields follow from definition
(3.18).

We postpone the discussion of the geometric meaning of egquations
(3.14),(3.15) to Sect.6 where the general superfield sclutions of N=2
and N=4 SCM will be obtained by extending the procedure employed in the
bosconic case.

3.3. Before closing thia Secticn, we shall describe an equivalent

formulation of N=2 SCM in terms of complex N=2 chiral superfield.a)This
formulation is a prototype of dual complex formulation of N=4 SCM that
will be discussed in Sect.5.

B)Descriptien of superaymmetric mechanics via d=1 chiral superfields as

an alternative to the real superfield description [4-5] waa proposed in
[13].



The possibility of defining d=1 N=2 chiral superfields in a
superconformally covariant way is related %o the existence of chiral

d=1 N=2 superspaces closed under superconformal transformations

(t,_,€).(1,.8) , £,= t + 189 , t =Tk =t - 198 (3.19)

st = E(t,8,8) + 8 DE = £(t,) - 216 + Bt )8 (3.20)

' _ 1.8 X
68 = —iDE = & + Ar + S+ ik)e .

Within our scheme there is a natural place for appearance of chiral
superfields as the $U(1,1]|1) coset parameters.

Let us include the U(1) generator T in the coset. i.e. consider the
situation when SU{1,1]|1} is realized by the left shifts in its whole
group manifold. Then there appears a new superfield parameter
associated with the generator T:

oit,®,8)T

G — G e (3.2

A net effect of this modification is the shift of the inhomogeneoualy
transforming Cartan form v in eas.(3.9) by de

v = v + de (3.22)

which makes ; entirely invariant under the left action of SU(L,1|1).
Owing to the latter property. we are free to add to set (3.12) one more
constraint
v = 2ime (3.23)
with preserving the SU(1,1|1) invariance. The meaning of this
constraint is that one is finally left with the Cartan forms
corresponding to the generators r,F and R°+- 24mT. As follows from
eqs.(3.11), these generators constitute a closed subalgebra while the
generator T may be regarded as producing external automorphisma of
fermionic generators r,r. So (3.23) does not contradict ‘the
Maurer-Cartan equations on !; (3.10).

The rTesulting set of equations for the cos=et parameters is most
readable when written in terms of complex superfields %%



. 1
—ig -—ig
X=Ye® %= Ye' (3.24)
X =0 _ . '
. - =X (v, .8)  X=X(t_,8)
Dx =0 * ® (a)
a " @
FEDX = 0 ,5EPX = 0 . (b) (3.25)
2i(XK - ¥X) - DX DX = 4dm - ()

Equations (3.25) are invariant under N=2 superccnformal transformatiocns
acting on X, X% as

SX = Zi(DDE)X, 6X = Zi(DDE)X.
The remaining coset parameters z,{ are expressed through u = X + nX
by formulas (3.13).

Thus, in the case at hand the covariant reduction leaves us with
the complex chiral coset superfields XX subject to the free equations
(3.25b) and to the additional constraint (3.256c). It should be
emphasized that a chiral d=1 N=2 superfield carries out off shell a
different supermultiplet as compared to the real superfield Y
considered before. Though both superfields contain the same number of
bosonic and fermionic degrees of freedom, they differ in what concerns
the treatment of bosonic componenta. In the real caae, one of the
bosonic fields (F) is auxiliary,K while both bosonic fielde of X are
rhysical (X|8=OE p(t)eip(l)/z). Nevertheless, we will see that the
auperfield equations (3.25) and (3.14) yield on shell the same
equations for the fields p,w,¥. In the real case this occurs upon
elimination of the auxiliary field F by its salgebraic eguation of
motion whereas in the complex case the same result follows upon
elimination of é,i.e. after a partial integration of ege. (3.25b).

We begin with explaining the meaning of constraint (3.25c). The
gquantities (J.(_X—X-i} and B¥ DX entering into (3.25c) are constants by the
equationas of motion (3.25b).5c eq.(3.25c) gserves to identify a specific
combination of these dynamical constants with the “kinematical”
congtant m., Eeeping this in mind, let ue note that the chirality
conditions (3.25a) imply

10



e P
DX = 2DY e , DX = 2DY e ta)

[D,DIY = - Yp - 2Y DY DY () {3.26)
In virtue of eq.(3.25¢c) one has

4 —1 = -1
Yp + 2Y DY DY = -2m Y .

Upon substitution of this relation intc eqg.(3.26b), eq.(3.14) is
regained. Thus eqs.(3.25) and (3.14) eventually give rise to the =zame
set of component equations.

We wish to mention that the correspondence between the real
superfield formmlation of N=2 SCM and the free thecry of chiral d=1 H=2
superfield has a prototype in the boscnic case. In Appendix A we show
that the bosonic CM equation (2.2} can be regarded aas describing
clasaical ceonfigurations of a free comiex d=1 field at a fixed value of
the conserved external angular momentum,viz. the U{1l) charge [14]. Iun
the supersymmetry case this U(1l) is just that generated by T and the

expression in the l.h.s.of eq.(3.25¢c) is the relevant conserved charge.

4. N = 4 5CM : FORMULATION VIA REAL SUPERFIELD
4.1. As before, we begin with the atructure relations of d=1 HN=4
superconformal algebra su(l,1{2) [11]?)1t is a straightforward
extension of N=2 superalgebra (3.1). The basic difference consists in
that the internal symmetry group U(1) of the N=2Z case is enlarged to
8U{Z) and the fermionic generators form comlex SU(2) doublets G
=a

a -1-2a”
G—szz 4 Gs/m;’ G:/z'

6.8 = -26" L, +20r - )" T, (T.T1 = & T,

ra’ T q o T+q

iL.6 1= (C-ma6, (L ,8°1= (¢ -1 G2, (4.1)
iTh,G, 1= - £ty te, 11,8, %1 = £ 6,% ), °

{a,b = 1,2; i,5,k = 1,2,3).

4)This ie the minimal N=4 d=} superconformal algebra. Ii can be
extended to osp(2f4), however the latter case requires a more careful
analysis (see Sect.7)
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The generators Ln conatitute the algebra s0(1,2)., all the other
commutators and anticommutators are equal to zero.

Superalgebra (4.1} displays interesting peculiarities. First, among
superalgebras su(l.l]N/Z) only su(l,llZ) poasesses  SU(2) as the
internal symmetry [(11].AllL the other members of this family necessarily
involve U(N/2) as the internal symmetry group,with the U(l) factor
having a nontrivial action on spinor generators. One may still modify
the r.h.s. of {G,G} in (4.1} by adding a U(1) generator T
{6,..6,"y — 168"} - zilr - 28T, (4.2)
however, consistency with the Jacobi identitiea reguires T to commute
with all the SU(l,l{Z) generatora, including the spinor cnes. So, T is
to be regarded as a central charge generator. We will see that in the
real supsrfield formulation of N=4 SCM this generator does not
manifests itself and can be consistently put equal to zerc. It becomes
active upon passing to the dual formulation of N=4 SCM (Sect.5).

One more peculiarity of superalgebra {4.1) is the presence of an
outer automorphism group SU, (2).1ts generators V=¥t act only on

apinor generators
. x.n

_ i (4.3}
V.6, 1 =5 (7, G,
= b
Gract = (Gro M c':ﬂ':Gr '

This freedom willi be used in constructing superfield formulationa of
N=4 &CM.Note that the central charge-modified superalgebra =au(l,112)
possesses automorphisms only with respect to the third generator of
SU‘fZ) (4.3):

- i gy =--Lge-.

v, 1=356_ . (8" 1--35§ (4.4)
4.2. After these preliminary remarks let us turn to our task.Almost

all the things go like in the N=2 case.We follow the principles listed

in the beginning of Sect.3 and consider a nonlinear realization of

SU(1,112) in the coset SU(1.112)/8U(2) with the elements parametrized
5)
as

S)The 8U{2) indices are raised and lowered with the help of invariant

ab

akew-aymmetric tensors €., F .When summing over thesae indicea,the

first index is always meant to stay in a natural position ,e.®.
e°=p%0 , 68 = 8% ,8° = 8 B> .etec.
a a -3

12



o it , &G, + &G_ izl ¥G _+ EG jul
G(t,e,e,E,E,z,u)=e ES o 1.2 4.2 e i e L/Z 172 e L]

(4.5)

Here {t,au,ng (9Q)+ } are coordinates of d=1 N=4 superspace and the
rest of coset parameters are HN=4 superfields unconstrained for the
moment . The superconformal transformations induced for the coordinates
{t.®,6 } and the superfield u(t,®,8) by the left SU(1,112) shifts loock

very similar to those of the N=2 case

B 1.3 1z =
st = E(t,0,8) - 36°DE + 15 T°E (a)
a_ i wma = _ :_1.

S8 = z D'E ’ éeq T T2 DGE (b (4.6)
su = B (c)

a L= =a _ = . B
D = 8/80% 4 1B _8/0t , D" = -8/66_ - i9 8,8t ;
(D, .B°) = -2i8_ "a/0¢ (4.7)
E(t,0.,8) = f(t) - 2i(=td - Q5t) + %(91-“5)1;" +

+ 2({eB + OF)OF + % ©8)° (a) (4.8)

so(t) = &% + ﬁqt-

Here f(t), as before, collects the 50(1,2) parameters, £% and a

correapond to Poincare and conformal supersymmetries and bk to internal
SU(2) transformations. Note useful ldentities
p’E=DE=0, (b, ,07IE=0. (b) (4.8)

Further steps are to construct the Cartan one-forms and to perform
the covariant reduction to the graded subalgebra properly extending the
S0(2) generstor Ro {2.7). The computatione are tedicus though

i3



straightforward. Therefore we dwell merely on several basic points.
The reduction subalgebra in the case in question is su(li2} spanned

by the generators

3 _ . = _ =9 c A=A _
R, » T , T, =6, %G ., T _a—:/z - AmG, (4.9)
Ty = 28 % R+ 4ime¥) T T0 L qTrY = 0. (4.10)

The remaining (anti)commutatora are similar +to those present in
eqs.(3.9). The generators I'_ ,Fb are defined up to SUA(Z} rotations and
in general are parametrized by elements of the comet SUA(Z)/UA(II

I: - e F e
* = (4.11)

fo o2V gV k= 1,2}

(a rotation with y? merely attaches unessential phase factoras to Fa, re
and is thus an automorphism of (4.10)).

We perform the reduction te the superalgebra su(li2) with the

SUA(Z)— rotated generators ;a ,Fb. According to the general strategy.,
we equate to zero all the Cartan forms except those taking values in
thias subalgebra. By this procedure, the superfield coset parameters
z(t,0,8) , £%(t.6,8) are expressed via u(t,9,8) and there also emerge
differential egquations for u{t,9,9). Expressions for 2z and £® are
similar to their N=2 prototypes (3.13) so we confine ourselves to

presenting the equations for u(t,8.8)

(py’e? = 4mf}

— _ (a)

(D)¥e" = amt)

(D,Dle" = Bme (b) (4.12)
{p_, .D,,Tu = G, (c)

where constants c,f,f are related to the SU,(2) rotation (4.11)

st 4 z_z
(T e iy L% z] , 4 FF = 1. (4.13)

The set of eguations (4.12) gives the sought superfield description
of N=4 S{(M. The meaning of different equations in (4.12) is as follows:

14



i. Constrainta (4.12a) are kinematic off-shell irreducibility
conditiona. In contradiction to the N=2 dilaton supérfield u{t,8,8),
its N=4 counterpart inveolves from the beginning two irreducibie
off-shell representations of d=1 N=4 supersymmetry. Conditions (4.12a)
are reminiscent of the d=4 H=1 tensor multiplet constraints [15} (and
in fact at f=0 follow from the latter by dimensional reducticn d=4, N=1
—= d=1, HN=4). They single out from u(t,®,8) a “tensor” d=1 N=4
supermultiplet. The irreducible field content of u(t,9,8) implied by
eqs.(4.12a) is convenient to define as

Ly
z 1

- i o k) o o .za -4
e lgoo = Pty » T Dulg_y = 1B (1) ", 2 Doul 4 =i (t)e (4.14)

{a =b)

7,0 " Je

U! tab:

- BT 19 —
o= = AT (8, D, D1V, = Ct)-

All the higher dimension components are expressed as time derivatives
of the irreducible ones.

ii. An important conseguence of egs.(4.12a) is the differential
constraint

%E ( tp,51)e" =0 » [D,ﬁ]e“le=0 = C = const (4.15)

which i=s a d=1 prototype of the transversality condition a“Ap:O typical
for tensor multiplets in d=4 [15]. Thus the role of equation {4.12b) is
to fix a constant in eq.(4.15) in terms of original parameters m and c
figuring in the definition of the covariant reduction subalgebra.

1ii. Eguation (4.12c) is dynamical. It serves to eliminate the
auxiliary field A(Gb’(t) and gives rise to equations of motion for the
physical fields o(t),¥"(¢),¥_(t). '

Ingtead of writing down the component equations we give the
invariant superfield action and its component form.

Taking into account the transformation law of u (4.6c), identities
{4.8b) and the ggansformation property of d=1 N=4 superspace

integration measure

S(atd’od®8) = -F (did ed"8) (4.18)

B} R ., 1,22
We use the convention Iatd e = fdt;;D D
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the invariant action is unambiguously restored to be
§ = - 3 A [ atd"e (ue) (4.17)

which is easily recognized as a d=1 prototype of the d=4 N=1 improved

tensor multiplet action. The presence of constant f in constraints

(4.12a) reveals itself only after passing to components7)

S = A Ffdt [(.r':v)’~ [+ 2mcT ¥ + nfF & + mBe ¢ + 4(F ©)%]e "+

_iF P o+ i ¥ - L Fwa
b a

(bar

1 -2
-az A Abar® ] (4.18)

ibar -2
Fel

N

One may check by inspection that the component field egquations
following from {4.18) coincide with those implied by the superfield
equation {4.12c}.

In terms of physical compcnents, the action reads

S = % a2 jdt[ (&) - [ mo+ Zmc® ¥ + mfP T+ mFE ¥ + (T I® ].0—z +

—x@~i+1$w]- (4.19)

For completeness, we present the supersymmetry transformations of &(t)
and ¥ leaving this actien invariant:

_ o

oty = —i(uP - ) ¥ = (o¥ )"

- e - o= = T _i .
éWG(t) = (¥ + Wp)wa + e Hoe o u (PP + mc) + pmfpﬂ (4.20)

a

R

i
=]

4_3.We cloese this Section with several comments.
First,the final component action (4.19) does nnot coincide with the
one corresponding to the N=z4 8CM wcdel proposed previcusly [31. It

involves only one physical boson e(t) and therefore can be regarded as
7 Note that in the d=4 case the insertion of constants f.,f into the

r.h.a. of the improved tensor multiplet constraints is forbidden by

superconformal invariance.
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a genuine extension of the CM and Nz=2 SCM actions {(2.1),(3.17). In the
next Sect. we will see that the standard version of N=4 SCM with %two
bosonic rphysical fields (3] emerges upon performing the duality
transformation on the above action. This version is related to the one
given here much like a complex version of N=2 SCM is related to its
real formulation (see subsect.3.3}.

Second, ths version of N=4 SCM we are considering displays actually
no dependence on the choice of SUA(Z] constanta c.f. Indeed, it is
always possible to pass to c=1 £=f=0 by a proper SUA(Z} redefinition of
a“,Eb in eqs.(4.12) and, respectively, of Wa,ﬁb in action {(4.19). Then

the expression within square brackets in (4.19) is reduced to
[m + (@)} (4.21)

However, these SUA(Z) constants appear to be essential while going over
to the dual formulation. We will see that to any given set of c,f.f
there corresponds a dual formulation which is different off sheil from
the others. Note that at any choice of £, and e={1-f the set of
equabions {4.12) and the action (4.19) enjoy an additional invariance
under U{1l) subgroup of SUA(Z) acting on ey, Wﬂ(t) as

Hy

a

ST = ja(F - = )

0 lrh|

s¥ = —saw, + £ ). (4.22)

+

In the representation (4.21) this subgroup coincides with the one
generated by Vl.

Finally, to clarify the previcus remark, we present a manifestly
8U, (2)=8U{(2} covariant formulation of N=4 SCM.

Let us pasa to the SUA(Z)—covariant notation:

% = (8% ,&%%8,). (8% = eabsaﬁebﬂ = (@, ,-8_)
1w = (B, D) = as30°% + i9__a/9%
L= F T = c“bs“ﬁwbﬂ = (T,
o= W (0¥ (1) Ao o [ f _g]
Toam = 6 zﬁUJ‘pv’ LoaeEd PR SLA x‘“ﬁ’x‘mﬁ): -2
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Then (4.12) and (4.19) can be rewritten as
Daca ]{‘_j)eu - 4[:1?\“16)

(acx L3

D D,u =20

_ A -z .2 1 o _
§S=7n _[dt[(p) + TR

_ (mz . ml‘aﬁ’J toydy

J

1 -z
oy o J(aﬁ))p ].

(4.127)

(4.19°)

Locking at these formulas it becomes evident that one may always pasas

to »***" - (0.1,0) by s proper rotation in the U, (2)

Besidea, for arbitrary K‘aﬁ’ there 1is &an invariance

rotations in the plane ortogonal to R(aﬁ’.

eqs.(4.22).

5. DUALITY TRANSFORMATION ANRD COMPLEX FORM OF N=4 SCM

indices a,f3.

50(2)

They are Jjust given by

5.1 The superfield action (4.17) exhibits a manifest supersymmetry

and gives rise to a reasonable component action. However,

one cannot

directly wvary it with respect to the superfield uw to obtain the

equation of motion (4.12c) because u ia subjected off shell to the

constraint (4.12a). A way out ia to sclve (4.12a) wvia an appropriate

unconstrained prepctential. Another option we prefer here to follow is

to implement (4.12a} in the action with the help of a Lagrange

multiplier superfield %(t,2,8):
S = - La7? Jara'e [euu -8 D°( e - mt &%) -

- F 0 e“-m?§’>]-

(5.1)

Varying #, & ,we come back to (4.17) and (4.12a). On the other hand, u
is unconstrained in the action (5.1) and one may vary it before varving

$. As a result, one gets for u the algebraic equation

Introducing the d=1,H=4 chiral superfields

B’ =v . DV =0V =v(e
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o
L]
"
<
=}
=
n
<
¥
<
it
<

(tn9)
=) yP =t - ie8
6tL=E+§ﬁE,6tR:E—6DE (5.4)

and substituting (5.2) back into the action (5.1), we arrive at a dual

representation of the N=4 SCM actiou:s)

S = -:— ?\.—2[ _rdtd‘Q YY¥ - mf fdtl_dza inY - mf fdtndz_é oY ] 1 (5.5)
where

vy=6"12 7 =2V Moy (5.6}

With taking account of superconformal invariance of the d=1 N=4 chiral
superspace inegration measures 5(dtbd29} = 6(dtndz§) = 0, (5.5) can be

checked to be invariant under

8Y = EL(tL )Y 8Y = En(tn O Y
1 L% + 2 L = (5.7
E =g fit ) + 2186 (%) . E = (E) ., E=E +E.
The superfield equations of motion following from (5.5} are
DY = amf(¥ )7 , ¥ = 4amF(Y) " (5.8)
In the component notation, (5.5) reads
3‘=§x‘zj‘dt[ioYo+}i>}E -lixx +FF-QEYxx
m T -2 = = T -1 B =%
SREF )R E - mi(T) Tt F - it ) (6.9a)

or, being rewritten via physical fields,

S=iafar (1,7, ¢tk - fixx - wiEOT) -

B)J'dthdze = L far (D D%} , fot,d" = [av, (D°D))
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£7,) 7% % |- (5.9b)

L=
i
]
*
Pad

1

.E

We have defined the component fields as

Y, = Ylgog = e(t3e™ ™) L3 = 0B, o, x, = -iD Yl
(5.10)
_ 1z T o_ A R2w .
F=D¥ley» F=0DVlg,

The physical component action (5.9b) is invariant under the fopllowing

supersymnetry transformations

solt) = ;5 (2°x e ¥ - X2 7
Sp(t) = —;é (f:a:}:ae—lp + Z“Zcelp)

(5.11)
8x(t) = 2¢

= — . o1
Sx (t) = 26 Y - 2¢ Y, + 2ie mfY " .

The eguivalence of this version of N=4 SCM to that given in [3] is
proved in Appendix B.

5.2. Let us explain at a greater length in what sense the described
formulation of N=4 SCM is equivalent to the real one given in Sect.3.

First of all, original equations (4.12) for the superfield u are

satisfied with substitution of " = YY. However, their atatus is
essentially different. Equation (4.12c), which was dynamical in the
real superfield formulation ,is now obeyed off shell as a conseguence
of the chirality conditions (5.3). On the contrary, constrainta (4.12a)
become on-shell eguations in the dual formulation. Actually, these are
satisfied in virtue of the equations of motion (5.8). The smame concerns
the conatraint (4.15) following from eqs.(4.12a).0ne has

c(t,e,8) = (0,bre" = -2p_YD*Y - 41(¥¥ - YY) (a)
(5.12)
Clt) = Befe + 2(x°x,) (b}
and
B(t) = 0 + C(t) = const (5.13)

ag a consequence of the equationa of motion for fielda e(t) and xﬂ(t),
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%> (t). Thus, in the dual formulation the field C(t) is expressed wvia
the derivative of the physical field ¢(t) and it is a constant only
dynamically, by virtue of the equations of moﬁion.'Upon eliminating
é(t) by eq.(5.13) and identifying the constant in thisrequation with
8m{1-tT one getsrfor p{t) and @u(t) = % eipxo(t) , ¥ty = % e_ipzqft}
precisely the same egquations as those following from action (4.18). So,
the N=4 SCM equations in real formulation can be regarded as an
invariant subset of the comlex Nz4 SCM equations which is singled out
by specializing to a fixed value of the conserved quantity C{t)
{5.12b}.

One sees that these two formulations of N=4 SCHM are related to each
other like N=2 SCM is related to the theory of chiral N=2 supe;field
{Sect.3.3) and the ordinary boscnic CM tc the theory of complex d=1
field (Appendix A). To understand the meaning of the conserved quantity
C(t), let wus inspect in more detail the invariance properties of
actions (5.5},(5.9). The off-shell U, (1} invariance (4.22) of the real
N=z4 SCM action is not respected in general by (5.5),(5.9) (though is
restored on shell at any given fixed value of C(t)). Instead, these

actions respect a new abelian cff-shell symmetry

Y=e®yY.T=e"¥%" {5.14)
This new invariance is of the same nature as, e.g., the one associated
with the duality transformations in d=4 SUSY {15]. An interesting
peculiarity of the d=1 case i2 that this symmetry proves to be
naturally incorporated into the underlying superconformal symmetry. It
emerges in the Lie bracket of Poincare and conformal supersymmetry

transformations of fields e(t) and x_ . X" . As follows from (5.11):

_ azs a—

{6€5ﬁ - éﬁés)v(t) = (e, +Be)+

(5.15)
5 & - & —a = -3 a= A= =¥
€5, (] ﬂés)x (t) i(e ﬁ? + 7 Er)x ...
Comparing it with formula (4.2), we conclude that in the comiex
formulation of N=4 SCM the N=4 superconformal algebra is necessarily
modified by an operator central charge T possessing a nontrivial action
on the physical fields. The quantity C{%) in eq.(5.12) 1is Jjust
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proporticonal to the conserved "current” generating this T aymmetry. The
fields p(t}, Wu = 2 eip X, - ¥ entering into the equations of the real
formulation of N=4 SCM are inert under T. This explains why the central
charge does not manifest itself in the real formulation.

One more curious feature of the d=1 duality transformation is
related to an S0, (2) freedom in the definition of constants c,f.Instead
of atarting with (4.1Za). one might choose as the basic constraint some
80,(2)/U(1) mixture of eqs.(4.12a) and (4.12b)

D De¥ = 4mf ,D De¥ = 4mf (5.186)
8% = cosa 6% + sine 78
& =cosc ® - sincae 7 O
-3 a a
f = cos’o £ - sin‘a e *¥F - ainfe e Yo .

Inserting (5.16) into action (4.17} one arrives at a different dual
action, where f stands for f and the notion of chirality is defined

with respect to 8° ,Su

w(t,e,8) = V(;,L;) + ¥ (Elé} -1 (5.17)

Thus, there exists a whole SU,(2)/U, (1) orbit of dual formulations of
the same real N=4 SCM (4.12).. All those are noneguivalent off shell and
correspond to different .patterns of the U(l) central charge
modification of N=4 superconformal algebra (4.1). For instance,the
choice (5.16) amounts to (w€ ignore the SU(2) indices)

{6 ,6} — {G ,G 1 - 2i(r-q)cos2a T
, (5.18)
{G .G} -+ {G .G} - 2ilr-q)sinZa &% T -

Note that the option E:E:O,;:l gives rise to the dual formulation in
terms of a free chiral N=4 superfield.

Finally, we wish to mention that the superfield equaticns of N=4
SCM in dual formulation including the c¢hirality conditions can be
unambigously deduced by applyving the coveriant reduction procedure to
the central charge-modified N=4 superconformal algebra. The
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consideration goes along the same lines as in the N=2Z case (Sect.3.3).
One should put the central charge generator into the coset and perform
the covariant reduction to subalgebra (4.8) enlarged by this generator.

6. SUPERFIELD FORM OF GENERAL SOLUTION

A= has been already mentioned, the covariant reduction techniques
provide us with a geometric way of getting general solutions of field
eguations of CM and SCM. The procedure of integrating these equations
ig reduced to purely algebraic manipulations which are based mainly on
the structure relations of relevant d=1 superconformal algebras.

The strategy we will keep tc is a straightforward generalization of
the cne employed in the besonic CM [8), so we will not enter into
details of presentatien. )

8.1 _We begin once again with the simple case of N=2 5CM.
The basic covariant reduction constraint reads (see eqgs.(3.12})}

e . ~ -
G fdG, = in <% = (,F,R T}, (6.1}

where the subalgebra ﬁ;= {RD,F,F,T} < su(i,il1) is defined in (3.10}.
The most general solution of eg.(6.1) can be written as{(c.f.eg.(2.9b))

. _ itrR, Wl + T BT
G, = G, (c, .0, u,u)e e e - (6.2}
where c’.cz,y,ﬁ are constants, respectively bosconic and fermionic, and
t,m,7,h are superfunctions given on the d=1 N=2 superspace {t.,9,8}.

The meaning of different factors in eq.(6.2) is as follows. The

element G, belongs to the coset SU(I,lIl)/Hn . It can be parametrized,
without loss of generality, as

-~ _ ic, L, nG_ + uG_ ic L
Go(c‘,cz,.u,u) - e 1 1 e 1.2 1,2 e z o (6.3)

(any other parametrization is related to (6.3) by a redefinition of
parametsrs 7,n,%,h). The factors to the right of éo rapresant the coset
Hl/U(l). The parameters 7t(t,8,8) ,n{t.,6,8),n can be regarded as
coordinates of a (1!2)-dimensional geodeesic hypersurface which is

embedded into the group space of SU(L,1i1) and extende the
one—-dimensional geodesic subspace (the geodesic curve) of the bosonic
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case. The position of this hypersurface within the 5U{(1,111) manifold
ig specified by constants cg,cz,y,ﬂ.

Since the N=2 5CM equation of motion (3.14}) is a consequence of
{6.1), the general soliution of the latter immediately yields the
general solution of eq.(3.14}. Comparing (86.2) with the original
SU(1,111)/U(1) coset element (3.2), one finds

1
c . —C
z 1 i = -z
t=c t+te o tent - G - m)e
1 1 {6.4)
—c ]
22 1 = — 22 1 =
= —_— & = —_—
e H*e cosmt H +oe coamt
u,= o, -2n{coamT) + 2Zn0m (6.5)

{h is alsoc unambiguously fixed). After expressing T and »,7 in terms of

{t.9,8}, one eventually gets the general solution for u{t,8,8) in the

form
e - aa*(1-32 £ (1 + 3 §+ £, (6.6)
t, -t +i88 - 2i60 . T, - E
bla + aty - oL@ = 2m . a = ecz/2+im(cl—iuﬂle—cz/f b= me_cz/z-

The fact that e" is factorized into a product of chiral and antichiral
d=1 N=2 @superfunctions reflects the correspondence between the
equations of N=2 SCM and those describing a chiral d=1 N=2 superfield
{oee discussion in Subsect.3.3).

Let us briefly diacuss the transformation properties of sclution
{6.6) under the N=2 superconformal group (3.3),(3.4). It is easy to
check that the infinitesimal transformations of v, at fixed t,8,6
6"y =B -Ey -L2DEDu - 1DEDu
o 3 z o z o
are reduced to appropriate wvariations of the integration constante in

(6.8). For instance, under supersymmetry

da = L(ufF + fH)a + 2ueb , &b = L(AU - uP)b (8.7)

Su = & + A(E - A,
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It is ‘a =2imple exercise to indicate the SU(1,1i{l1) generators leaving

the above solution invariant

~ PN ~ _ N““— ~
{R, ,[,I,U} = GQ{RO,FJ",U}Go = ¥ (6.8)
* . —
& PR 0
»

Like in the bosonic case [81, the geometric interpretation of this
jnvariance is that generators (6.8) produce the motions along the
directions belonging to the hypersurface {Tt,n,7} ., without affecting

the costants G,» © ,tt,1 and, hence, with preserving the shape of the

hypersurface and :ts crientation in the SU(1,111) group space. Any
other SU{1,1l1) transformations change the above constants. One may say
that ©SU{1,111) ia 'spontaneously broken on sclution (6.6) down to
subgroup ﬁ‘ generated by (6.8).

6.2. The N=4 case can be treated gquite analogously. It is
convenient from the beginning to fix the SU (2) freedom so as to have
f=f=0 ,c=1. Then the covariant reduction constraint reads

i

G 'aG, = i, =%, = (R ,FO,F_ T

1 (6.9

and its general sclution is given by

14

G =

a — a —
“ o (G, Contt st ) (T, .1 ), (6.10)

where Go and g represent, respectively. the cosets SU(l,llZ)/Hn and
H!/SU(Z). The explicit form of these elements iz an immediate extension

of (6.2),(6.3), so we do not present it here. The general solution
has the form like (6.8)

u - ~

o =aa1- 12 1§+t-) (8.11)
I - T o3 Nt

t,= t o+ 168 - 210k, t =(t)

(6.12)
c, /2 -c /2 c /2
—_ 2 2
a=e + 1m(c‘— HEe e , b= me

The stability subgroup of soluticn (6.11) is ﬁ‘ related to HR by meansa
of the SU(1.1|2)/H‘ rotation with G (c, .o, .u.H1).

»
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7.TOWARDS HIGHER N

We have shown that the N=2 and N=4 8SCHM equations can be
algorithmically deduced starting solely from the structure relations of
d=1 superconformal algebras su{l,1i{1) and su(l,112). One may wonder
what happens while treating,along the same lines, the superalgebras
incorporating higher N d=1 supersyimmetriea. Here we apply our
techniques to superalgebras su(l,1IN/2) with arbitrary even N. The
ariaing systems directly generalize the real N=4 SCM considered in
Sect.4 and can thus be regarded as higher N SCM models.

The (anti)commutation relations of su(l,1IN/2) are [11]

itL LY = (n-m)L n,m = -1,0,1; r,q = ~ 2,

N|e

i0L,.6, 1= (F -o)6 3 i[5 .6 %1 = (7 - r)8

+h

oy %a s [1'.G

P 1 R b, i, a
[T 'Gra] -~z a rb r 1= Tz Gr » )b (7.1)

(T .61 =206 : (T .G

ra 4

N|w

1 =

|
L
@l

@ ,G°

ra q

il

© \ i, b i (N-4) b
=26 "L, . *2(r-@yi[et) 0 T - 2 s 7 )

where (1’\-l )c‘b are generators of the fundamental representation of SU{(N/2)

i.) b(Kl) 4 =~ 25 dé 1 _ﬁénbécd.

(27, - 2. "
We see that superalgebra (7.1} at any N.except N=4 necessarily contains
an U(l) generator T having a nontrivial action on spinor generators.

As before, we realize SU(1,1|/H/2) by the left shifts in the coset
SU(L,LIN/2)/SU(N/2)xU(L) and identify the coset parameters

corresponding to the d=1 Poincare supersymmetry generators

L_,.G_, ,.»8 5 , with the d=1 N superspace coordinates {t,.,éi‘l .B_}.We
choose su(llN/2)= (R ,G_ _, + imG,_, .G, 6 - imG, ,,T,T'} as the

covariant reduction Bsubalgebra.Without entering into details of
computation, let wus write down the final egquationa for the basic
superfield u(t,8,8):

u =a=h 11
=0, DD e =0 (a)
Dqu e (7.2
(D,.D"1e% 2e "p_e” D'e" + e VD e" T 6_° = ams_® (b)
D = a/80% + i 8 asat o

-1

= -8/88_ - 1 e%as8t .

S
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These egquations are an obvious generalization of egs.(4.12) and reduce
to the f=f=0 version of the latter at N=4. Note that non-zero constants
£, are not allowed at B > 4 aince a nontrivial external automorphism
group exists only in the special case of N=4.The set (7.2) is invartant
under superconformal transformations which have the same form as in
ega. (3.3),(4.6}:

5t = E(+,0,8) - > DE & - 28D E
a z a
a _ ige g = -+
&% = 2 O°E , 68_ = -2 D_E £7.3)
S = Eel

E(t,8,8) = £(t) -2i(e(t)® - 68(t)) + 2(48 + 82168 + L (68)" £+

£ b (en'F) - aoB
with £(t) = a + bt + ot® , =(t) = # + £ft, b ,& being infinitesimal
parameters of SU(1,1I8/2).

An essential difference from the N=4 case conaists in that
constraints (7.2a) not only reduce the off-shell component content of
u{t,8,8)} but alsc partly put the‘ayatem on shell. One may check that
for any even N the &-decomposition of the superfield eV subject to

(7.2a) is as follows

e’ = plp + 216 + 2i5F) + 9°§bcab + 2[6(9@} + (;3)5 ]e% +
+ $(68)% (%) . ' (7.4)
However, for N»4 (7.2a) imply in addition the differential constraints
(e,”) =0 (a)
(,;w;v) = (.;%) =0 {b) (7.5)
@) = 0 ©)

(recall that in the N=4 case an analogous constraint appeared only for
the singlet piece of cub, eq.(4.15)). Fortunately, these constraints
prove tc be a consequence of the dynamical equations embodied in
eq.{7.2b)

+ BE°C -46 T = 4ms °
a “a o

c
o= - ip_zi’o'(m + @‘F)
R (7.8)
T =
waﬁ e Qa (m + ¥}

ait) = & 2(m + TB)°.

27



The equations for physical fields p,iq,wa follow from the action
which is a straightforward extension of the component N=4 action (4.3)

. *

S = 32 “fat[(2)® - o %(m » )P 4 iTw - 18¥] (7.7)

and is invariant under the following supersymmetry transformations

So = -i(sa(t)q’q - iﬂEu(t))
¥ = —ip '[e(t)1F + B ()]F + 2% - £%5 —ip 'S (TH + m) 7.8)
&¥ = ipf‘[s(t)w + @E(t)]%o + Eap - &0 +ip”‘2a(iw + m)

which close on shell. Of course, it remains to learn how to divide
(7.2) into the kinematical constraints and dynamical equaitons and how
to extend the action (7.7) off shell. It would be of intereat also to
check whether the system (7.7) ia contained in the clasa of d=1 models
with N extended supersymmetry proposed in [16].

Finally, we would like +to mention that the lower N d=1
superconformal algebras might be extended to higher N via superalgebras
osp(2IN) with the bosonic part so(1,2)®sc{N) where N may be both even

and odd (recall the isomorphism su(1,111) ~ osp(212)). However, we have
checked that these superalgebras, beginning with N=3, contain no graded
aubalgebraa which would inciude the generator Roin parallel with the
SO(N) generators.Therefore, within this framework, it appears
impossible to achieve nontrivial d=1 systems with linearly realized
SO(N) symmetry. The options when only a subgroup of SO(N) carresponds

to linear symmetries require a special analysis.

8. CONCLUDING REMARKS.

The main goal of this somewhat lengthy paper was to demonstrate the
efficiency of the covariant reduction method for constructing d=1
superconformal models and analyzing their invariance propertiea. We
have presented a common geometric view on theas models, given
manifestly invariant superfield formulations of N=4 SCM, daduced a new
series of SCM models for arbitrary N. It remains to emtablish a link
‘with models of current interest, such as superstrings, supermembranes,
etc. In this connection,we would like to notice that the considesred

238



4

systems are eimilar, in some aspects, to the spinning superparticle
models [171. Indeed, their basic objects are d=1 superfields taking
values in graded manifolds,i.e. supermanifolds. A difference is that
in the case at hand the internal and target superspaces are unifiled
within a single graded manifold, the quotient SUCL,11N/2) /(N2 This
analogy suggests that the models in question can likely be reproduced
as fixed gauges of appropriate spinning superparticle models.

One more remark concerns an analogy with the d=2 super-Liouville
models [9). The superfield equations of the latter are integrable in
the sense that they amount to zero-curvature representations on certain
superalgebras. Our cosiderstion shows that the superfield SCM equations
do equally admit & similar interpretation.

Indeed, let us apply once again %o the N=2 case. The basic con-—
straint {(3.12) leading to eq.(3.14) can be equivalently replaced by the

condition that the curvature of the 2}valued one—superform ﬁlvanishes
o 0 (d) - d0.(d ) + 1 (4, )., 4] = 0, (8.1
where the superfield Y(t,®,8) in Qnis not subjected to eq.(3.14) before

imposing (8.1) (¢ and 2z are assumed to be expressed via Y by

eqs.(3.13)) .Decomposing ﬂn in differentials <&,48, At and introducing
the lengthened covariant derivatives
“n = deﬁa - deﬂ@ + OtAt

Vez D + 199 R vez D+ iﬂe N vt: ot+ 10t (8.2%

one rewrites eq.(8.1) as the set of equations

{74,951 = (F5.953 = 0 {a)
{79.591 = -Zin ) (b} 8.3
[Ve,,vt] =0~ (c)

Note that eq.(8.3c¢) follows from (8.3a.b) by Bianchi identities.

S50 the N=2 SCM equation (3.14} is equivalent to the integrability
conditions (8.3a,b).

The equationa of higher N SCM's can be given an analogoua

interpreteﬁion.
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Finally, an urgent problem for a future study is to carry out the
gquantization of superfield SCM models and to find out how their
remarkable geometric properties reveal themselves in the guantum
region. Note that the component N=4 SCM was guantized in [3] with using
its complex version. It would be of intereat to see whether the dual
equivalence of complex and real formulations of N=4 $SCM survives
quantization.

Acknowledgements We are obliged to V.P.Akulov, V.1.0gievetsky,
A.I.Pashnev and V.I.Tkach for valuable discussions.

Appendix A CONFORMAL MECHANICS AND COMPLEX d=i FIELD THEORY

Let us show that the CM equation (2.1) can be viewed as a result of
partial solving of the free eguations for d=1 complex field. This is a
particular case of the phenomenon indicated in [14].

We start with the action

S = 22 far 2z = S AT far[(0)®+ % (e)7] - (A.1)
where z = eip(t)p(t). The equations of motion are

plt) = o(p)® ta)

;. e- (A.2)
(Pp) =0+ - conat =m - (b)

Eq. (A.2b) ia the conservation law for the Noether charge pzb {external
"angular momentum"} corresponding to U(1) transformationa z'= eia z .
Choosing a definite value of m for pzé and expressing e by eg.(A.2b)
one geta for p(t) just the egquation (2.2). Thus one concludes that
eq.(2.2) describes classical configurations of the free complex d=1
field z(t) at a fixed external angular momentum. Note that one might

add to eq.(A.1) an U(l)-invariant potential ferm

(A.1) — (A.1) - 3 A %[dt(zz) *a” -
For o(t) one would again get the eguation (2.2) but with m" shifted by
a conastant a- So eq.{2.2) can equally be embedded into the theory of
a self-interacting d=1 complex field. This consideration clarifies the
relationship between real and complex formulations of N=2 and N=4 SCM's
(Subsect.3.3 and Bect.5).
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It is noteworthy that the dual correspondence between real and
comipex forms of N=4 SCM has a prototype in the purely bheosonic case.
Let us interpret the system (2.1),(2.2) as a sector of a more general

system
S = 2 a7 far[(e)*- F(e)e 7] (A.3)
where we have introduced a non-propagating field c(t) subjected to the
constraint
é(t) = 0 = c(t) = const . (A.4)

Putting this constant equal to m one arrives at the action (2.1).
Alternatively, one may implement (A.4) in {A.3) with the help of

a Lagrange multiplier ¢
§ — 8 = EaTMfae[(5)® - P (r)e T +2o(134] - (A.5)

Instead of varying ¢(t), one may vary c(t) to get
e(t) = - PP (A.6)
After substituting this solution into {A.5}, the free d=1 complex field

action (A.1) is weproduced.

Appendix B COMPARISON WITH THE HAMILTONIAN FORM QF N=4 SCM [3]

In the original paper [31 from the beginning the guantum case was
treated. However, no uncertainties appear upon taking the classical
limit.

The Hamiltonian given in (31 is as follows

2 2x x, - X6
~irZ Il + o a3 _
H = z[p + 7 + 2f wawﬁ————-—;:————— ]-=

= teps e LB TR L2 x ] (B.1)

where we have defined
. + .t s .
z = X+ ix, x = (v viv, ¥, x5 ¥ 2w+ iv))

Using the definition
iA = (AN ]
and canonical {(anti)commutation relations, one finds the eguationa of

motion to he
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2 -4 — -2 i —., -3

sty = 27Nz T - L 3 e B0

xﬂ

= if{z) %=

- {B.2}

ab®

These equationa coincide with those following from the action (5.9)
after identifying

mf =

mf = f,z =¥ (B_3}

(one may always make f real by an appropriate phase transformation of
apinor fields).

1]
2]
[3]
[4]
[5]
(6]
[73
(813

(9]

(101

(11)
[12]

(131
[14]
[15}

[18]
(17

REFERENCES

De Alfaro V Fubini § and Furlan G 1974 Nuovo Cim.34A 569

Akulov V and Pashnev A 1983 Teor.Mat.Fiz.(in Russian) 58 344
Fubini S and Rabinovici E 1984 Hucl.Phys.B24% 17

Witten E 1881 Nucl.Phys.B188 513

Smilga A 1985 Nucl.Phys_ B249% 413

Smilga A 1986 Nucl.Phys_ B268 45; 1987 ibid.Bz29%1 241

Gendenshtein E and Xrive I 1985 Usp.Fis.MNauk.(in Russian) 14B 553
Ivanov E Krivonos § and Leviant V Geometry of conformal mechanics,
preprint JINR E2-88-370,Dubna 1988:J.Phys.A:Math.Gen.,in press
Ivanov E and Krivonos 5 1983 Lett._Math.Phys. 7 523;

1584 ibid. B 39; 1984 J.Phys.A:Math_Gen. 17 L671

Ivanov E HKrivonoa § and Leviant V 1988 Nucl.Phys.B304 601

Gilmor R 1874 Willey New York “Lie Groups,Lie Algebras and Their
Applicationa”

Ramcnd P 1985 Phyvsica 15D 25
Coleman S Wess J and Zuminc B 1969 Phys.Rev. 177 2239

Callan © Coleman § Weas J and Zuminc B 1969 Phys.Rev. 177 2247
Volkov D V 1973 Sov.J.Part and Nucl. 4 3

Akulov V and Pashnev A& 1985 Teor.Mat_Fiz. B5 B4
Olshanetsky M A and Perelomov A M 1981 Phya_ Rep.71 313
Gates S J Grisaru M T FRofek M and Siegel W

1883 (Benjamin/Cummings,Reading)”Superapace"

Pashnev A I 1986 Teor.Mat_Fiz.(in Russian) B9 311

Kowalski-Glikman J wvan Holten J W Aoyama S and Lukieraki J
1988 Phys.Lett. B201 487

Feceived by Publishing Department
on December 26, 1988,

32



