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!.INTRODUCTION 

Conformal mechanics (1] and ita aupe-raymmetric extensions (2,3] 

(CM and SCM in what follows) are instructive to explore for several 

reasons. Being d;l prototypes of conformal field theory. these systems 

offer an appropriate laboratory for getting insight into the structure 

of conformal theories in higher dimensions. Furthermore, they provide 

nontrivial examples of the particle and superparticle models which 

recently received a great attention as the toy models for strings and 

superstrings.It is also worth recalling that different versions of 

supersymmetric quantum mechanics [4-7] describe nontrivial reductions 

of some four-dimensional theories of interest, such as supersymmetric 

Yang-Mills and supergravity theories (5.6], and may bear a deep 

relation to more realistic :models [7]. 

In the previous paper [8],we have found that the purely bosonic CM 

exhibits interesting geometric features. Its field equation can be 

interpreted as defining a class of geodesics in the group space of d;l 

conformal group S0(1,2).Thus, there revealed an intimate relation 

between CM and the geometry of group SO(l,2). Our consideration relied 

heavily upon the d=l version of the covariant reduction method which 

was originally invented by us to deduce new superextensions of the d=2 

Liouville and Wess-Zumino-Witten-Novikov models [9]. As has been 

mentioned in [8), this approach admits an immediate generalization to 

the d=l supersymmetry case where it can be used to construct manifestly 

invariant sup~rfield formulations of the known SCM models and to set up 

new modele of this kind. To date, merely the N~z and N=4 SCM'el) were 

known, the latter one only in the component form. 

In the present paper we study implications of the ct~l covariant 

reduction techniques for the SCM models. These ayateme prove to be 

related to the geometry of appropriate coset manifolds of d=l 

superconformal groups. In particular. the superfield equations of N=2 

and N~4 SCM's are shown to single out the (1\2)- and (114)- dimensional 

geodesic subspace a in the coset manifolds SU(l,lll)/U(l) and 

SU(l,li2)/6U(2), respectively. We present. for the first time. two 

different off-shell superfield formulations of N=4 SCM. They are 

!)By N we denote the number of r..e..a.l d=l Poincare auperchargee.So N=2 

and N~4 in our terminology correspond to N=l and N=2 of refs.[2-6]. 
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related via a •d:::l duality transformation. One of those yields the 

known component version of N=4 SCM [3) while the other gives rise to a 

different version. One more new r,esult is the construction of 

previously unknown higher N SCM models. They are associated with cosets 

SU(1,11N/2)/U(N/2)(N even).We derive the relevant equations of motion. 

both in the superfield and component forms, and write down the 

invariant physical component actions. 

The paper is organized as follows. In Sect.2,we briefly review the 

d:::l covariant reduction method in application to the bosonic CM model 

(N:::O SCM). In Sect. 3, the basic p·eculiarities of supersymmetric 

generalization of our procedure are illustrated by a simple example of 

N = 2 SCM. The geometric superfield formulations of N ::: 4 SCM are 

constructed in Sect.4 and 5.Some unusual features of the d=l duality 

transformation are discussed, among them the creation of an operator 

central charge in d=l N=4 superconformal algebra.In Sect.B, we explain 

how to get the general superfield solutions of the SCM equations in the 

geometric formal ism. Sect. 7 deals with higher N SCM models. Sect. 8 

collects concluding remarks.ln particular, an interpretation of the SCM 

equations as integrability conditions is presented.Appendices A and B 

treat some technical points. 

2.PRELIMINARIES:CONFORMAL MECHANICS 

Before considering the supersymmetry case we recall basic facts 

about the geometry of purely bosonic CM [1] following our paper [8). 

2.1 The action and field equation of this d = 1 model read 

p(t} z -· IRP 

They are invariant under d 

_, 
= em 

-z em 

1 conformal transformations 

6t a+ bt + ct2 
_ /(t), 6p(t) = 

2 
i<t) p(t) 

generators of which form the d::: 1 conformal algebra so(1,2) 
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(2.3) 

(2.4) 



The basic observation of [8] was that equation (2.2) can be deduced 
in a purely geometric way, starting with a nonlinear realization of 
group 80(1.2}. Consider an element of 80{1,2) parametrized as 

itL_s, 
g(t,z(t},u(t)) = e 

iz(t)Lt. 
e 

iu(t)L
0 

e (2.5) 

Left action of 50(1.2) on these elements produces for t and 
p(t) = e1 

• ...-
2}u(t)just transformations (2.3}. Further, let us construct 

Cartan one-forms 

(2.6) 

and impose on them the covariant reduction constraint 

(2. 7) 

This condition amounts to the set of equations on the group parameters 

z(t) 
- .. 

p P, 

~(t) + (z(t))' 2 -· m P 

which is easily recognized to be equivalent to eq. (2.2). 

(2.8) 

2. 2. Condi tiona ( 2. 7), ( 2 _ 8) have a transparent geome-tric meaning
In the 80(1,2) group manifold {t,z,u} they single out a curve which is 
produced from an arbitrary fixed point of the manifold by the right 
action of the one-parameter subgroup 50(2) with generator R

0
• Such 

curves are known to be geodesics [10}. Thus, eqs.(2.8) and, hence, the 
CM equation (2.2) define a class of geodesics in the 80(1,2) group 
manifold. These geodesics are represented by the 80(1,2) group elements 
of a special form 

iTR 
e o 

(a) 

(b) (2.9) 

g
0 

being a representative of the coset S0(1,2)/S0(2) and ct.,c
2 

arbitrary constant coset parameters. These constants, together with the 
coupling constant m, specify an initial point on the geodesic and the 

3 



tangent vector at this point. while T is the natural parameter (proper 

time) along the curve.The expression (2.9b) furnishes equation (2.2) 

with the general solution and so gives a purely geometric method of 

integrating this equation. 

It is straightforward to adapt the above construction for getting 

supersymmetric extensions of equation (2.2).0ne has to enlarge 80(1,2) 

to an appropriate d::1 superconformal group, to construct a nonlinear 

realization of the latter and to single out,in the relevant supergroup 

manifold.a geodesic subrnanifold which properly extends geodesic (2.9). 

3. N::2 SUPERCONFORMAL MECHANICS 

As a first nontrivial example of application of our procedure to 

super-symmetric d::l systems we will reproduce here,on purely geometric 

grounds,the superfield formulation of N::2 SCM [2]. 

3.1.The algebra of d::1 N::2 supetconformal group is the Lie 

superalgebra su{l,lll)- osp{212) [11] 2 ) 

(a) 

{G ,G} :: - 2L - 2(r-qlT 
r q r+q 

(b) 

i [ L • G ] :: ( ~ - r )G 
n r 2 n+r 

(c) (3.1) 

i[T,Gr) i(T,Grl ::-i Gr (d) 

0 (e) 

(n,m:: -1,0.1: r,q:: ±1/2). 

Besides the d::l conformal generators L,.... this superalgebra includes the 

d::l N::2 Poincare eupersymmetry generators G_t./
2

,G_t/
2

,the generators 

of superconformal boosts.and the internal U( 1) automorphism 

generator T. 

In constructing nonlinear realizations of SU( 1.111), we adopt the 

following two natural requirements: 

~. We wish to have a manifest N::2 auperf'lymmetry. So the time 

2 )The simplest superextension o.f SO( 1, 2) is the supergroup 0Sf(211) 

corresponding to N::1 d::1 superconformal symmetry. However, no 

nontrlvial N::l extension of eq_ (2.2) exists. 
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coordinate t associated with the generator L_
1 

has to be completed to 

the d=l N=2 super space {t ,e ,8}, with e ,e being mutually conjugated 

Grassmann coordinates appearing as the supergroup parameters associated 

with the Poincare supersymrnetry generators G_v
2

,G_
1
n. All the other 

SU(l,lll) parameters are regarded as superfields defined on this 

euperspace. 

ii. Hereafter,our main interest will be in the maximally invariant 

ei tuations when the internal symmetry (U( 1) in the present case) is 

realized linearly. So we are led to consider a realization of SU(l,lll) 

in the quotient SU(l,lll)/U(l). 

With these remarks in mind, we implement SU ( 1, 111) as the left 

shifts of elements of the coset SU(1,111)/U(l) 

itL_ 1 
$G_

1
/

2
+ eG_

1
/

2 
izL1 

~G 1 / 2 + e-G1 /
2 

iuL
0 

G(t,e,e) = e e e e e (3.2} 

z::: z(t,c9,8), u::: u(t,e,fi), ~::: ~(t,e,$). 

Under this choice of parametrization,the superspace {t,e,8} and the 

dilaton euperfield u(t.,c9,8) transform with respect to the left 

SU(1,1Il) shifts as 

6t = ECt,e,e) +; e DE i- e DE 

6e = iiDE(t,e,fi) , 68 = iiDE(t,e,8) (3.3) 

6u(t,e,9) = Ect,e,e), (3.4) 

where D :::8 /be + i8b jbt 

derivatives 

bjbi§ -i8bjbt are covariant apinor 

{D,Dl = -218/bt, D
2 = If= o (3.5) 

and E(t,e,&) is a auperfunctioh collecting all the infinitesimal 

parameters of d:::l N=2 superconformal transformations 

8(t,e,9) = f(t) - 2i(c+f't)9 - 2i(e+/Jt)9 + e9h · (3.6) 

Here f(t) is already defined in eq.(2.3),~.~ and h are,respectively,the 

parameter& of 

defines the 

two supereymmetriee and U(l) rotations.Note that B(t,B,~) 

euperconformal transformation of the supercovariant 
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differential .6t: 

.6t = dt + i8d9 - ide8 (3.7) 

6-t.t :: E/l.t . 

For the reason to be clear later we do not need to know the explicit 

form of transformations of the remaining coset parameters z and ~. 

3.2. To put in force the covariant reduction method,we have first 

to define the corresponding covariant Cart an one-forms. This can be 

done by the familiar recipe of refs.[l2] 

a-•dG = iwnLn + 11.-G .. + ~J .. G .. + vT = iO: e su(l,lll) 

w_• e-"'(dt - idee + i8d9) = e-"'t.t 

w
0 

= du - 2zt.t - 2id&~ - 2id8f 

" = e-<•/2 ru.[d8 - ~t.t] , ~ ( )+ 
.... _./2 1-L_:l/~ 1-L_:l/2 

11
1

_..
2 

= e"'/2
(d{ - zd8 - i~{de + ~.6t) , ;:;:1._..

2
= (l-l:l_..

2 
)+ 

v = zc:@~ - 2def + z~ft.t-

(3.8) 

(3.9) 

These one-forms are defined up to arbitrary gauge U(l) transformations 

realized as the right shifts of elements (3.2) (the parametrization we 

are using corresponds to a particular fixing of this gauge freedom). 

It remains to find out how to extend the constraint (2.7). In the 

present case the coset parameters in eq. ( 3. 2) are restricted to d= 1 

N=2 superspace (t,e,B),so these define a (1J2) dimensional hypersurface 

in SU( 1,1Jl )/U( 1). The corresponding geodesic aubmanifold should be a 

special case of this hypersurface parametrized by the proper time r 

already defined in eq. (2.9b) and appropriate Grassmann variables 

)'),l7.The parameter r appears as a coordinate associated with the 80(2) 

generator R
0

, so )'). Yi should be associated with the f·ermionic generators 

promoting R
0 

to a graded subalgebra of su(1,1J1). This subalgebra is 

unambiguously extracted to be 

(3.10) 
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{r, FJ ~ -2R
0 

- 4imT {r, r} ~ {f", FJ 0 

rr, ROJ ~ "'· [F • ROJ ~ - rrt' (3.11) 

rr, TJ ~ ;.1r, [F • TJ ~ - ~iF 
2 

As a crucial step,we are now led to put equal to zero all the Cartan 
forms except for those belonging to superalgebra (3.10) 

(3.12) 

/Jt/2= imu_.t/z !J.t/z= -imu_t/2 · 

The set (3.12) is manifestly covariant with respect to both the left 

SU(l,lfl) shifts and the right gauge U(l) shifts. Note that these 
constraints agree with the original Maurer-Cartan equation for the 

su(l,lJl)valued one-form (3.8). Actually, the surviving form OR 
satisfies a closed Maurer-Cartan equation on the subalgebra ~.-

The one-forms (3.9) involve the differentials of Grassmann 
variables ae,d8 together with dt. Therefore, constraints {3.12) result 
in a larger number of equations for the coset parameters as compared 

with the bosonic case (2.7),(2.8). Now we have 

• z ~ ;: u 

~ ~ !..iDu 
2 

(3.13) 

~ ~ iiDu 

(D,DJY = 2m y-i (3.14) 

6Y = i- E y . 

Thus, like in the CM case, all the superfield coset parameters are 

expressed via a single object,this time the dilaton 

u(t,8,8).Aa we have started from the covariant constraints 

expressions (3.13) are guaranteed to agree with the 

superfield 

(3.12), the 

original 

transformation properties oft: and z.One may,if Wishes, derive these 

transformations using 

(3.3), (3.4), 

eqs.(3.13) and 
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Equation ( 3. 14 l is dynamical and it is just the N=2 superextension 

of eq.(2.2).Its identity to the one given in {2] becomes evident after 

passing to real Grassmann variables e~E (1/2)(e + e),e
2
a (1/2i){8- 9). 

In components,it amounts to the set 

F = 2mP-~, p 
- 2 -ll 

(m - W) P 

where we have defined 

The invariant action giving rise to eqs. {3.14),(3.15) reads 

s - 1 
2 /'.. -z J dtded?i (oy DY + 2m lnY) =A- 2

Jdt [! (,; )2 - i -· 
2"" 

_, 1 F' 1 -•] + m ""' p + 8 - 2 mF p · 

(3.15) 

(3.16) 

i 
+ 2 '1'¥'+ 

(3.17) 

Superconformal invariance of this action can be checked most readily in 

the superfield notation, using the transformation rules 

6D = 2 ~ (DEiElD . 60 = 2 ~ !DDEJD . 

(3.18) 

The transformation laws of the component fields follow from definition 

(3. 16). 

We postpone the discussion of the geometric meaning of equations 

(3.14),(3.15) to Sect.6 where the general superfield solutions of N::2 

and N=4 SCM wiJl be obtained by extending the procedure employed in the 

bosonic case. 

3.3. Before closing this Secticn, we shall describe an equivalent 

formulation of N=2 SCM in terms of complex N=2 chiral auperfielct. 31 This 

formulation is a prototype of dual complex formulation of N=4 SCM that 

will be discussed in Sect.S. 

3 )Description of auper~ymmetric mechanics via d=1 chiral auperfields as 

an alternative to the real superfield description [4-6] was proposed in 

[13]. 
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The possibility of defining d=l N=2 chiral superfields in a 

superconformally covariant way is related to the existence of chiral 

d=l N=2 superepaces closed under superconformal transformations 

6 ~'DE ' • e e=
2 

... =c+{JtL+i"(f+ih). 

(3.19) 

(3.20) 

Within our scheme there is a natural place for appearance of chiral 

superfields as the SU(1,lj1) coset parameters. 

Let us include the U(1) generator T in the coset. i.e. consider the 

situation when SU{ 1,1J1} is realized by the left· shifts in its whole 

group manifold. Then there appears a new superfield parameter 

associated with the generator T: 

t:"{t,6,9)T 
G _..,. G e (3.21) 

A net effect of this modification is the shift of the inhomogeneouely 

transforming Cartan form v in eqs.(3.9) by dt:" 

v =v+dtp (3.22) 

which makes v entirely invariant under the left action of SU( 1.111). 

Owing to the latter property, we are free to add to set (3.12) one more 

constraint 

v = 2imw -· (3.23) 

with preserving the SU( 1,111) invariance. The meaning of this 

constraint is that one ia finally left with the Cartan forms 

corresponding to the generators r ,F and R
0 

+ 2imT. As follows from 

eqe. ( 3. 11). these generators constitute a closed subalgebra while the 

generator T may be regarded as producing external automorphisms of 

fermionic generators r ,F. So (3.23) does not contradict the 

Maurer-Cartan equations on~. (3.10). 

The resulting set of equations for the coset parameters is most 

readable ~hen written in terms of complex superfields X,X 
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DX 

DX 
.. 

8 8-
atDX = 0 •atDX = 0 

2iCxX- XX)- DX DX = 4m-

(3.24) 

(a) 

(b) (3.25) 

(c) 

Equations (3.25) are invariant under N=2 superconformal transformations 

acting on X,X as 

6X = ~i(f5DE)X, 6}( = iHDDElX. 

The remaining coset parameters z ,{ are expressed through u = lnX + tnX 

by formulas (3.13). 

Thus, in the case at hand the covariant reduction leaves us with 

the complex chiral coset superfields X,X subject to the free equations 

(3.25b) and to the additional constraint (3.25c). It should be 

emphasized that a chiral d=l N=2 superfield carries out off shell a 

different supermultiplet as compared to the real superfield Y 

considered before. Though both euperfields contain the same number of 

bosonic and fermionic degrees of freedom, they differ in what concerns 

the treatment of bosonic components. In the real case, one of the 

bosonic fields (F) is auxiliary, while both bosonic fields of X are 

physical ( Xfe=o= P(t )e i.p< t >/z). Nevertheless, we will see that the 

auperfield equations (3.25) and (3.14) yield on shell the same 

equations for the fields P,w,V/. In the real case this occurs upon 

elimination of the auxiliary field F by ita algebraic equation of 

motion whereas in the complex case the same result follows upon 

elimination of ?,i.e. after a partial integration of eqs. (3.25b}. 

We begin with explaining the meaning of constraint ( 3. 25c). The 

quantities (iX-xi) and DX DX entering into (3.25c) are constants by the 

equations of motion (3.25b).So eg.(3.25c) serves to identify a specific 

combination of these dynamical constants with the "kinematical" 

constant m. Keeping this in mind, let us note that the chirality 

conditione (3.25a) imply 
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DX = 2DY , DX = 2DY e 
i'P 

Ia) 

rD,DJY = lbl 13.26) 

In virtue of eq.(3.25c) one has 

Upon substitution of this relation into eq.(3.26b), eq.(3.14) is 

regained. Thus eqs.(3.25) and (3.14) eventually give rise to the same 

set of component equations. 

We wish to mention that the correspondence between the real 

superfield formulation of N=2 SCM and the free theory of chiral d=l N=2 

superfield has a prototype in the bosonic case. In Appendix A we show 

that the bosonic CM equation (2.2) can be regarded as describing 

classical configurations of a free comlex d=l field at a fixed value of 

the conserved external angular momentum,viz. the U(l) charge [14]. In 

the supersymmetry case this U( 1) is just that generated by T and the 

expression in the l.h.s.of eq.(3.25c) is the relevant conserved charge. 

4. N = 4 SCM : FORMULATION VIA REAL SUPERFIELD 
4.1. As before, we begin with the structure relations of d=1 N=4 

superconformal algebra su( 1,112) [ 11 ]~ )~t is a straightforward 

extension of N=2 superalgebra (3.1). The basic difference consists in 

that the internal symmetry group U(l) of the N=2 case is enlarged to 

SU(2) and the fermionic generators form comlex SU(2) doublets G-t./za.' 

a_; .... z • G~...-za. • Gs~z: 

<i - r) Gn+r a.• (4.1) 

(a.,b = 1,2; i,j,Jc = 1,2,3). 

4 )Thia is the minimal N=4 d=l superconformal algebra. It can be 

extended to osp(214), however the latter case requires a more careful 

analysis (see Sect.?) 
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The generators Ln constitute the algebra so(1,2), all the other 

commutators and anticommutators are equal to zero. 

Superalgebra (4.1) displays interesting peculiarities. Firat, among 

superalgebras su(l,llN/2) only su(1,1J2J possesses SU(2) as the 

internal symmetry [llJ.All the other members of this family necessarily 

involve U(N/2) as the internal symmetry group,with the U( 1) factor 

having a nontrivial action on spinor generators. One may still modify 

the r.h.s. of {G,G} in (4.1) by 

{G ,Gb} -- {Gr~'Gqb} ~ 2i(r

adding a 
b 

qJ6.a. T. 

U(l) generator T 
(4.2) 

'" q 
however, 

with all 

consistency with the Jacobi identities requires T to commute 

the SU(l,lf2) generators, including the apinor ones. So, Tis 

to be regarded as a central charge generator. We will see that in the 

real sup~rfield formulation of N=4 SCM this generator does not 

manifests itself and can be consistently put equal to zero. It becomes 

active upon passing to the dual formulation of N=4 SCM (Sect.5). 

One more peculiarity of superalgebra ( 4. 1) is the presence of an 

outer automorphism group su. ( 2). Its generators VL=~VL+ act only on 

spinor generators 

(t/.G l=~(Tk}f)G,.n 
ro.OI :<; 01 '-'1' 

- b 
Gro.Ot :: (GTo. • .co.bGr l· 

(4.3) 

This freedom will be used in constructing superfield formulations of 

N=4 SCM. Note that the central charge-modified superalgebra au( 1.112) 

possesses automorphisms only with respect to the third generator of 

su.<2l (4.3J: 

{~ • Gro.] = ~ Gro. • [~ ' Gr"' (4..4) 

4.2. After these preliminary remarks let us turn to our taak.Almoat 

all the things go like in the N=2 case.We follow the principles listed 

in the beginning of Sect.3 and consider a nonlinear realization of 

SU(l,ll2) in the coset SU(1,112)/SU(2) with the elements parametrized 
as5 ) 

5 )The SU(2) indices are raised and lowered with the help of invariant 
ab 

skew-symmetric tensors .cab ,c .When summing over these indicea,the 

first index is always meant to stay in a natural position .e.g. 

82 =e"'ea.. ee = e""ea.,B2 = e~~.etc. 
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(4.5) 

Here {t,ea. ,8 = (ea.)+ } are coordinates of d:::l N:::4 superspace and the 
• 

rest of coset parameters are N=4 superfields unconstrained for the 

moment. The superconformal transformations indu,ced for the coordinates 

{t,e,$ } and the superfield u(t,e,S) by the left SU(1,1!2) shifts look 

very similar to those of the N=2 case 

6t = E(t,e,8) - ~a.D E + ~ iJE (a) • • •• 
68a= ~ iJ"E 68 = 

-i 
D E (b) • . • . 

6u E; (c) 

n. = 1Jj8ea. + i&Cl8'/8t jj" -8 ;lie 0.. - i$ .,.8/IJt 

lD. • Db} = -2i6<1b8/llt 

ECt,e,B> 

(a) 

Here f(t), as before, collects the 60(1,2) parameters, £
0 

correspond to Poincare and conformal supersymmetries and bk to 

SU(2) transformations. Note useful ~dentities 

(b) 

(4.6) 

(4. 7) 

(4.8) 

and flo. 

internal 

(4.8) 

Further steps are to construct the Cartan one-forme and to perform 

the covariant reduction to the graded eubalgebra properly extending the 

SO( 2) generator R
0 

( 2 _ 7) _ The computations are tedious though 
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straightforward. Therefore we dwell merely on several basic points. 

The reduction subalgebra in the case in question is su(1!2} spanned 

by the generators 

Ro T' r 0 G + imG F = 't./2 
- ·mao (4.9) 

a -t./20 t./2o 1 ./2 

{r ,Fb} -2<5 
b 

Ro 4im(Tic)
0

b T' {r ,r} Q. ( 4.10) 0 + 0 

a a 

The remaining (anti)commutators are similar to those present in 

eqs.(3.9). The generators ro ,Fb are defined up to su.(2} rotations and 

in general are parametrized by elements of the coset SUA(2)/UA(1) 

r a"'v"' r 
-OIIc VIc 

e e 
a a ( 4" 11) 

F • • -011< VIc ea V F e (ko 1,2) 

• -b 
(a rotation with V merely attaches unessential phase factors to r

0
, r 

and is thus an automorphism of (4.10)). 

We perform t.he reduction to the superalgebra su(ll2) with the 
~b 

SUA(2)- rotated generators ro ,r According to the general strategy, 

we e-quate to zero all the Cartan forms except those taking values in 

this subalgebra. By this procedure, the superfield coset parameters 

z(t,e,S) , { 0 (t,B,9) are expressed via u(t,e,8) and there also emerge 

differential equations for u( t,e ,8). Expressions for z and {
0 

are 

similar to their N=2 prototypes (3.13) so we confine ourselves to 

presenting the equations for u(t,e,&) 

(a) 

[D,D]eu = Bmc (b) (4.12) 

(c) 

where constants c,f,f are related to the SU.(2) rotation (4-11) 

~· c
2 

+ ff = 1 · ( 4. 13) 

The set of equations (4.12) gives the sought auperfield description 

of N=4 SCM. The meaning of different equations in (4.12) is as follows: 

I~ 



i_ Constraints (4.12a) are kinematic off-shell irreducibility 
conditions- In contradiction to the N=2 dilaton superfield u( t ,e ,$), 

its N~4 counterpart involves from the beginning two irreducible 
off-shell representations of d=l N=4 supersymmetrY- Conditions (4.12a) 
are reminiscent of the d=4 N=l tensor multiplet constraints [15] (and 
in fact at f=O follow from the latter by dimensional reduction d=4, N=l 

d=l, N=4)_ They single out from u(t,e,8) a "tensor" d=l N=4 
supermultiplet. The irreducible field content of u(t,8,8) implied by 
eqs.(4.12a) is convenient to define as 

' -u z 
e le=O p(t) (4.14) 

All the higher dimension components are expressed as time derivatives 
of the irreducible ones. 

iL An important consequence of eqs. (4.12a) is the differential 
constraint 

(4.15) 

which is a d=1 prototype of the transversality condition ~A~=O typical 
for tensor multiplets in d=4 (15]_ Thus the role of equation (4.12b) is 
to fix a constant in eq.(4.15) in terms of original parameters m and c 
figuring in the definition of the covariant reduction aubalgebra. 

iii. Equation (4.12c) is dynamicaL It serves to eliminate the 
auxiliary field A<QbJ (t) and gives rise to equations of motion for the 
physical fields p(t) ,'I'Q(t) ,'liQ(t) _ 

Instead of writing down the component equations we give the 
invariant superfield action and its component form. 

Taking into account the transformation law of u (4.6c), identities 
(4.8b) and the transformation property of d=l N=4 euperspace 
integration measure6 ) 
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the invariant action is unambiguously restored to be 

( 4. 17) 

which is easily recognized as a d~1 prototype of the d~4 N~1 improved 

tensor multiplet action. The presence of constant f in constraints 

(4.12a) reveals itself only after passing to components?) 

(4.18) 

One may check by inspection that the component field equations 

following from { 4.18) coincide with those implied by the superfield 

equation (4.12c). 

s 

In terms of physical components, the action reads 

A-2 

' 
' m + 2mc'li >I' + mf\ii 'li 

- i\ii "' + i\ii "' ) . (4.19) 

For completeness, we present the supersymmetry transformations of P(t) 

and ~~ leaving this action invariant: 

6p(t) ~ -i(~"'- "'~) 

6"'~(t) (4.20) 

4.3.We close this Section with several comments. 

First, the final component action ( 4. 19l does nnt co inc ide with the 

one c;orresponding to the N~4 SCM lflodel proposed previously [3]. It 

involves only one physical boson p(t) and therefore can be regarded as 

7 ) Note that in the ct~4 case the insertion of constants f, f into the 

r.h.s. of the improved tensor multiplet constraints is forbidden by 

superc0nformal invariance. 
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a genuine extension of the CM and N=2 SCM actions (2.1),(3.17). In the 

next Sect. we will see that the standard version of N=4 SCM with two 

bosonic physical fields [3] emerges upon performing the duality 

transformation on the above action. This version is related to the one 

given here much like a comple-x version of N=2 SCM is related to its 

real formulation (see subsect.3.3). 

Second, the version of N=4 SCM we are considering displays actually 

no dependence on the choice of SUA(2) constants c,f. Indeed, it is 

always possible to pass to c=1 f=f=O by a proper SUA(2) redefinition of 

ea,eb in eqs.(4.12) and, respectively, of ~a.~b in action (4.19). Then 

the expression within square brackets in (4.19) is reduced to 

[ m + (WJ]
2 

• 
(4.21) 

However, these su.(2) constants appear to be essential while going over 

to the dual formulation. We will see that to any given set of c,f,f 

there corresponds a dual formulation which is different off shell from 

the others. Note that at any choice of f, f and c=V-fT the set of 

equations (4.12) and the action (4.19) enjoy an additional invariance 

under U(1) subgroup of SUA(2) acting on ~(t), ~a(t) as 

(4.22) 

In the representation (4.21) this subgroup coincides with the one 

generated by v:!ll·-
Finally, to clarify the previous remark, we present a manifestly 

SUA(2)xSU(2) covariant formulation of N=4 SCM. 

Let us pass to the SUA(2)-covariant notation: 

e•a E (8" ,co.beb). (&o.a) = co.bco.{3e 
b~ 

(.9<1 ,-e .> 

D oa - <D. ,l5 = il/89"'"
0 

+ ie a;at . oa 

,. 
~ <"'. ,'> . ) (~<10) = ab a(3~ = (~<1 '-~"'") 

oa c c b{} 

J 
.,. 

0 (t)'lla.{3(t) At0/}1= ( f -~) 
·~· 

~ c 

---;] 

·~· 
= 

. "P 
-& c(ju J Ata/31 

'"'" 
= -t.- c Atpul 

"P (lv 
Atof}lA 

·~· 
= -2 
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Then (4.12) and (4.19) can be rewritten as 

(4.12.) 

(4.19') 

Looking at these formulas it becomes evident that one may always pass 

to A co(h (0, 1,0) by a proper rotation in the SU.._ (2) indices et,{1. 

Besides, for arbitrary Aca(f> there is an invariance under 80(2) 

rotations in the plane ortogonal to A c a(f> • They are just given by 

eqs. (4.22). 

5. DUALITY TRANSFORMATION AND COMPLEX FORM OF N=4 SCM 
5.1 The superfield action (4.17) exhibits a manifest supereymmetry 

and gives rise to a reasonable component action. However, one cannot 

directly vary it with respect to the superfield u to obtain the 

equation of motion (4.12c) because u is subjected off shell to the 

constraint (4.12a). A way out is to solve (4.12a) via an appropriate 

unconetraine.d prepotential. Another option we prefer here to follow is 

to implement (4.12a) in the action with the help of a Lagrange 

multiplier superfield §(t,e,S): 

(5.1) 

Varying •. ~ ,we come back to (4.17) and (4.12a). On the other hand, u 

is unconstrained in the action (5.1) and one may vary it before varying 

•- As a result, one gets for u the algebraic equation 

1" (5.2) 

Introducing the d=1,N=4 chiral euperfielde 

(5.3) 
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o'• v Da.V 0 .. v - v (tR?i) 

t = t + ieB" 
L t. (tL )+ = t - iee 

6t = E + 8 DE 6t. = E - e DE 
L 

(5.4) 

and substituting (5.2) back into the action (5.1). we arrive at a dual 

representation of the N=4 SCM action: 8 ) 

(5.5) 

where 

(5.6) 

With taking account of superconformal invariance of the d=l N=4 chiral 

auperspace inegration measures O(dtLd~&) = 6(dtRd
2G) = 0, (5.5) can be 

checked to be invariant under 

(5. 7) 

The auperfield equations of motion following from E5.5) are 

D2 Y = 4mf(Y )-s , 02 Y = 4mf(Y)-s· (5.8) 

In the component notation. (5.5) reads 

s 

(5.9a) 

or, being rewritten via physical fields, 
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- ; f Y~ 2 x x (5.9b} 

We have defined the component fields as 

- i9(t) -Q -~-
Yle::o ""'p(tle , x ::: iD Yle:::o 

(5.10) 

The physicaf component action (5.9b) is invariant under the f-ollowing 
supersymmetry transformations 

6p(t) ' (& a 8~i9 ~Co.e 197 ) 0 zi X a 
-

69(t) ' (£ 
a 

8
- i9 -a- it? 

0 
zp X a + X c e ) 

a 
(5.11) 

6;t"~(t) 0 z&ay 
0 

- 2cay 
0 

+ 2i£ amfY~ 1 

6x zC y 2< --· a(t) -
a Yo + 2ic mfY . a 0 a 0 

The equivalence of thie version of N=4 SCM to that given in (3} is 
proved in Appendix B. 

5.2. Let us explain at a greater length in what sense the described 
formulation of N::4 SCM is equivalent to the real one given in Sect.3. 

First of all, original equations (4.12) for the superfield u are 
satisfied with substitution of eu 0 yY_ However, their status is 
essentially different. Equation ( 4. 12c l, which was dynamical in the 
real superfield formulation ,is now obeyed off shell as a consequence 
of the chirality conditions (5.3). On the contrary, constraints (4.12al 
become on-shell equations in the dual formulation. Actually, these are 
satisfied in virtue of the equations of motion (5.8). The same concerns 
the constraint (4.15) following from eqa.(4.12a).One has 

(a) 
(5.12) 

(b) 

and 

Cct) ::: 0 ~ C(t) = canst (5.13) 

ae a consequence of the equations of motion for fields p(t) and X~(t), 
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XCt). Thus, in the dual formulation the field C(t) is expressed via 

the derivative of the physical field ~(t l and it is a constant only 

dynamically, by virtue of the equations of motion. Upon eliminating 

;,.(t) by eq.(5.13) and identifying the constant in this equation with 

8m-it::rTone gets for p(t) and~ (t) = ~ ei~X (t) , iiia(tl::: ~ e-i~(t) 
a 2 o. - 2 

precisely the same equations as those following from action (4 . .19). So, 

the N=4 SCM equations in real formulation can be regarded as an 

invariant subset of the comlex N=4 SCM equations which is singled out 

by specializing to a fixed value of the conserved quantity C(t) 

(5.12b). 

One sees that these two formulations of N=4 SCM are related to each 

other like N=2 SCM is related to the theory of chiral N=2 superfield 

(Sect.3.3) and the ordinary bosonic CM to the theory of complex d=l 

field (Appendix A}. To understand the meaning of the conserved quantity 

C(t), let us inspect in more detail the invariance properties of 

actions (5.5),(5.9). The off-shell UA(l) invariance (4.22) of the real 

N:::4 SCM action is not respected in general by (5.5),(5.9) (though is 

restored on shell at any given fixed value of C(t)). Instead, these 

actions respect a new abelian off-shell symmetry 

y = e ia y , y' = e- ia y . (5.14} 

This new invariance is of the same nature as, e.g., the one associated 

with the duality tran~formations in d=4 SUSY {15]. An interesting 

peculiarity of the d=l case is that this symmetry prove·s to be 

naturally incorporated into the underlyin~ superconformal symmetry. It 

emerges in the Lie bracket of Poincare and conformal aupersymmetry 

transformations of fields ~(t) and xa , ;t'. As fol-lows from (5-.11): 

(6c6~- 6~6c)~(t) ::: (ca~a + ~a£a) + --

(6£6~ - 6~6c)X(t) = -i(ca{jr + (1a£r)ir +. __ 
(5.15) 

Comparing it with formula (4.2), we conclude that in the comlex 

formulation of N=4 SCM the N=4 superconformal algebra is necessarily 

modified by an operator central charge T possessing a nontrivial action 

on the physical fields. The quantity C-{t) in eq.(5.12) is just 
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proportional to the conserved "current" generating this T symmetry. The 

fields p(t). ~o = ~ e 1~ x • ~ entering into the equations of the real z 0 

formulation of N=4 SCM are inert under T. This explains why the central 

charge does not manifest itself in the real formulation. 

One more curious feature of the d=l duality transformation is 
related to an sU.(2) freedom in the definition of constants c,f.Instead 

of starting with (4.12a). one might choose as the basic constraint some 

su.(2)/U(l) mixture of eqs.(4.12a) and (4.12b) 

(5.16) 

;o = co sa eo + a: ina eireo 
~ 

8
- ir -e COS" e - sino. e 

0 0 • 
f 

z 
f sin 

z -z ir~ sin20t e- ir c = cos 0 - 0 e f -

Inserting ( 5. 16) into action ( 4.17) one arrives at a different dual 

action, where f sta¥ds for f and the notion of chirality is defined 

with respect to ea ,ea 

u(t,8,8) = V(tLB) + V (tRB) ~ 1 · (5.17) 

Thus, there exists a whole SUA(2)/UA(1) orbit of dual formulations of 

the same real N=4 SCM (4.12). All those are nonequivalent off shell and 

correspond to different patterns of the U( 1) central charge 

modification of N=4 superconformal algebra (4.1). For instance,the 

choice (5.16) amounts to (w~ ignore the SU(2) indices) 

{G ,G } {G ,i'l ~ 2i(r~q)cos2a T 

{G ,G l {G ,G ~ 2i(r-q)sin2a eir T · 
(5.18) 

Note that the option f=f=O,c=l gives rise to the dual formulation in 

terms of a free chiral N=4 superfield. 

Finally, we wish to mention that the superfield equations of N=4 

SCM in dual formulation including the chirality conditione can be 

unambigously deduced by applying the covariant reduction procedure to 

the central charge~modified N=4 superconformal algebra. The 
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consideration goes along the same lines as in the N=2 case (Sect.3.3). 

One should put the central charge generator into the coset and perform 

the covariant reduction to subalgebra (4.9) enlarged by this generator. 

6. SUPERFIELD FORM OF GENERAL SOLUTION 

As baa been already mentioned, the covariant reduction techniques 

provide us with a geometric way of getting general solutions of field 

equations of CM and SCM. The procedure of integrating these equations 

is reduced to purely algebraic manipulations which are based mainly on 

the structure re-lations of releva·nt d=l superconformal algebras. 

The strategy we will keep to is a straightforward generalization of 

the one employed in the bosonic CM [8), so we will not enter into 

details of presentation. 

S.l.We begin once again with the simple case of ~=2 SCM. 

The basic covariant reduction constraint reads (see eqs.(3.12)) 

(6.1) 

where the subalgebra 9ea= {R
0

,r,F,T} c su(1,1ll) is defined in (3.10). 

The most general solution of eq.(6.1) can be written as(c.f.eq.(2.9b)) 

nr+nrhT 
e e (6.2) 

where c 1 ,c2 ,~.P are constants, respectively bosonic and fermionic, and 

T,n,n,h are superfunctiona given on the d=l N=2 superapace {t,e,8}. 

The meaning of different factors in eq. (6.2) is ae follows. The 

element G
0 

belongs to the coset SU(l,lll)tH_ . It can be parametrized, 

without loss of generality, as 

~G-J./2 + ,uG_t/Z 
e (6.3) 

(any other parametrization is related to (6.3) _by a redefinition of 

parameters T,n.n,h)_ The factors. to the right of 

H.IU(l). The parameters T(t,e,8) ,n(t,e,8),7i 

G
0 

represent the coset 

can be regarded as 

coordinatee of a (112)-dimenaional geodesic hypereurface which is 

embedded into the group apace of SU ( 1,111) and extends the 

one-dimensional geodesic subspace (the geodesic curve) of the bosonic 
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case. The position of this hypersurface within the SU( 1, 111) manifold 

is specified by constants c 1 ,c2 .~.~-

Since the N=2 SCM equation of motion (3.14} is a consequence of 

(0.1), the general solution of the latter immediately yields the 

general solution of eq.(3.14). Comparing (6.2) with the 

SU(l,lll)/U(l) coset element (3.2), one finds 

• c2 i - -c 
~ - 2 2 

t c, + e tgmr - COSI!lT ( ~TI - TJ~ )e 
m 

• • 
i""2 _1_ 

-c 
1 e e + 

2 2 
~ + e cosm< n " e 

COSIJlT 
n 

original 

{6.4) 

(6.5) 

(h is also unambiguously fixed). After expressing < and TI,T/ in terms of 

{t,€1,8}, one -eventually gets the general solution for u(t,€1,8) in the 

form 

eu
0 = aa+(l-i~ tL)(l + i !?.+ tR) 

a 

t +i€18 2i&iJ tR ::::: { tL) + 

(6.6) 

2m , a 
c

2
/2 _ -c

2
/2 -c

2
/2 

e +1m(c 1 -i~~)e b =me 

The fact that eu is factorized into a product of chiral and antichiral 

d=l N=2 superfunctions reflects the correspondence between the 

equations of N=2 SCM and those describing a chiral d=l N=2 superfield 

(see discussion in Subaect.3.3). 

Let us briefly diseuse the transformation properties of solution 

(6.6) under the N=2 superconformal group (3.3), (3.4). It is easy to 

check that the infinitesimal transformations of u
0 

at fixed t,€1,8 

• . i - i -= E - Eu
0 

- z DE Du
0 

- 2 DE Du
0 

are reduced to appropriate variations of the integration constants in 

(6.6). For instance, under euperaymmetry 

6a = i(P~ + P~)a + ~&b , 6b = i(P~ - ~~)b 

6p & + i(£- ~~)P· 
(8.7) 



It is ·a simple exercise to indicate the SU( 1.1 t 1) generators leaving 

the above solution invariant 

(6.8) 

6 *· 0 ~R uo= . 

Like in the bosonic case [81, the geometric interpretation of this 

invariance is that generators (6.8) produce the motions along the 

directions belonging to the hyper surface {-r, n, 7)} , without affecting 

the costants c •• c
2 

,f..l,"ii and. hence, with preserving the shape of the 

hypersurface and its orientation in the SU( 1, 111) group space. Any 

other SU(l,lll) transformations change the above constants. One may say 

that SU{1,111) ia spontaneously broken on solution (6.6) down to 

subgroup~ generated by (6.8). 

6.2. The N=4 case can be treated quite analogously. It is 

convenient from the beginning to fix the SUA (2) freedom ao aa to have 

f=f=O ,c=l. Then the covariant reduction constraint reads 

(6.9) 

and ita general solution is given by 

(6.10) 

where G
0 

and g represent, respectively, the cosets SU(l,1!2)/HR and 

HR/SU(2). The explicit form of these elements ia an immediate extension 

of (6.2),(6.3). eo we do not present it here. The general solution 

has the form like (6.6) 

(6.11) 

(6.12) 

c
2

/2 -c
2
/2 

a :: e + im(c
1

- f..lf-1 )e b 

The stability subgroup of solution (6.11) is~ related to HR by means 

of the SU(l.li2)/H. rotation with G
0

(c
1

,c
2

,f..l,"ii). 
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?.TOWARDS HIGHER N 

We have shown that the N=2 and N=4 SCM equations can be 

algorithmically deduced starting solely from the structure relations of 

d=l superconformal algebras su(l,l!l) and su(1,1!2). One may wonder 

what happens while treating,along the same lines, the superalgebras 

incorporating higher N d=l supersymmetries. Here we apply our 

techniques to superalgebrae eu(l,l!N/2) with arbitrary even N. The 

arieing aystema directly generalize the real N=4 SCM considered in 

Sect.4 and can thus be regarded as higher N SCM modele. 

The (anti)commutation relations of au(1,1IN/2) are [11] 

i[Ln,Lm] 0 (n-m)Ln.,.m 0 -1,0,1; = - • • n,m r,q 2•2 

i[Ln,Gr(lJ= (!!_ -r)Gr+n i[Ln .G .. o.J = (!!_ - r )G .. : n 2 2 

[T' ,G .. -o.] 0 • (A' ) (l bG [Tl G G) 0 • G b(Ai) Q. 

2 •b . . 2 • b (7 .1) 

[T .G .. o..J 0 • G [T .G .. G) = • a • 
' .. ' . 

{Gr-o. G b} -26 bL +2(r-q)i(CA' )o. 
b T' (N-4) 6 b 

T) 0 - -N-• q . Hq • 

where (A' )ab are generators of the fundamental representation of SU(N/2} 

(Ai )o.b(A' )c d = 26o.d6c b - ~ 6ab6cd • 

We see that superalgebra (7.1) at any N except N=4 necessarily contains 

an U(l) generator T having a nontrivial action on epinor generators. 

As before, we realize SU(l,liN/2) by the left shifts in the coset 

SU(l,liN/2)/SU(N/2)xU(l) 

corresponding 

L_i,G-t./2o.'G_:/2 

to the 

and 

d=l 

identify 

Poincare 

the coset 

supersymmetry 

parameters 

generators 

with the d=l N super space coordinates {t,9(l 

choose eu(liN/2)= ( R G imG W" imW T T' l o' -t./2(1. + t./2-o. • - i/2 i/2 • • as 
covariant reduction subalgebra. Without entering into details 

the 
of 

computation, let us write down the final equations for the basic 

euperfield u(t,e,S): 

(a) 
(7 .2) 

[D(l,DbJeu- 2e-uDo.eu Dbeu + e-uDceu TIFeu 6-o.b = 4m6o.b (b) 

DQ= ~;aea + i e(la;at ' OU: -8/89.0, - i 8Q8/8t 
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These equations are an obvious generalization of eqs.(4.12} and reduce 

to the f~f~o version of the latter at N~4. Note that non-zero constants 

f,f are not allowed at N > 4 since a nontrivial external automorphism 

group exists only in the special case of N~4.The set (7.2) is invariant 

under superconformal transformations which have the same fo-rm as in 

eqs. (3.3),(4.6): 

ot ~ E(t,e,e) , 
.! IJE , oe 

0 

E<t,e,e) = f(tl -2i(c(t)8 - eC(t)) + 2(;e + eC)ee + ; (e9)
2 

f + 

+ bt(8At9)- aei§ 

{7.3) 

with f(t) ~ a + bt + ct
2 c(t) ~ c + t1t, b' ,a being infinitesima~ 

parameters of SU(l,liN/2). 

An essential difference from the N~4 case consists in that 

constraints (7.2a) not only reduce the off-shell component content of 

u( t ,e ,9) but also partly put the system on shell. One may check that 

for any even N the 8-decomposition of the superfield eu subject to 

(7.2a) is as follows 

eu = P(P + 2i~ + 2i8~) + B
4
8bcnb + 2(B(p~) + (pi)i§ Jet§+ 

+ ~(89)z (pz) . 

However, for N>4 (7.2a) 
• b 

(c
4 

) = 0 

0 

0 

(7. 4) 

imply in addition the differential constraints 

(a) 

(b) (7.5) 

(c) 

(recall that in the N=4 case an analogous constraint appeared only for 
b 

the singlet piece of c
4

, eq.(4.15)). Fortunately, theae constraints 

prove to be a consequence of the dynamical equations embodied in 

eq. (7 .2b) 

4m8 b 
0 

c 

(7.6) 
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The equations for physical fields p,ia. ,>I'¢. follow from the action 
which is a straightforward extension of the component N=4 action (4.9) 

(7.7) 

and is invariant under the following supersymmetry transformations 

(7.8) 

which close on shell. Of course, it remains to learn how to divide 
(7.2) into the kinematical constraints and dynamical equaitons and how 
to extend the action (7.7) off shell. It would be of interest also to 
check whether the system (7.7) is contained in the class of d=l models 
with N extended supersymmetry proposed in [16). 

Finally, we would like to mention that the lower N d=l 
superconformal algebras might be extended to higher N via superalgebras 
osp(2]N) with the bosonic part so(1,2J•so(N) where N may be both even 

and odd (recall the isomorphism su(l,lll)- osp(212)). However, we have 
checked that these superalgebras, beginning with N=3, contain no graded 
subalgebras which would include the generator R

0
in parallel with the 

SO(N) generators.Therefore, within this framework, it appears 
impossible to achieve nontrivial d=l systems with linearly realized 
SO(N) symmetry. The options when only a subgroup of SO(N) corresponds 
to linear symmetries require a special analysis. 

8. CONCLUDING REMARKS. 

The main goal of this somewhat lengthy paper was to demonstrate the 
efficiency of the covariant reduction method for constructing d=l 
superconformal models and analyzing their invariance propertiel!!l. We 
have presented a common geometric view on thel!!le modele, given 
manifeetly invariant superfield formulatione of N=4 SCM, deduced a new 
eeriee of SCM models for arbitrary N. It remains to establish a link 

'with models of current interest, such as euperstringe, eupermembre.nes, 
etc. In thil!!l connection,we would like to notice that the considered 
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systems are similar, in some aspects, to the spinning superparticle 

models (17]. Indeed, their basic objects are d:::l superfields taking 

values in graded manifolds, i.e. supermanifolds. A difference is that 

in the case at hand the internal and target superspaces are unified 

within a single graded manifold, the quotient SU(l,l!N/2)/U(N/2). This 

~nalogy suggests that the models in question can likely be reproduced 

as fixed gauges of appropriate spinning superparticle models. 

One more remark concerns an analogy with the d:::2 super-Liouville 

models (9]. The superfield equations of the latter are integrable in 

the sense that they amount to zero-curvature representations on certain 

superalgebras. Our cosideration shows that the superfield SCM equations 

do equally admit a similar interpretation. 

Indeed, let us apply once again to the N:::2 case. The basic con

straint (3.12) leading to eq.(3.14) can be equivalently rep)aced by the 

condition that the curvature of the ~.valued one-superform n.vanishes 

( 8. 1) 

where the superfield Y(t,e,e) in ORis not subjected to eq.(3.14) before 

imposing (8.1) (~ and z are assumed to be expressed via Y by 

eqs. ( 3.13)). Decomposing na in differentials de ,de, 6.t and introducing 

the lengthened covariant derivatives 

(8.2) 

one rewrites eq.(8.1) ae the set of equations 

{Ve,Ve} = {7e•9e} = 0 (a) 

{V9 ,7e1 = -2iV t (b) (8.3) 

('V'e_,v t 1 = 0. (c) 

Note that eq.(B.3cl follows from (8.3a,b) by Bianchi identities. 

So the N:::2 SCM equation (3.14} is equivalent to the integrability 

conditione (8.3a,b). 

The equations of higher N SCM's can be given an analogous 

interpretation. 
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FinallY, an urgent problem for a future study is to carry out the 
quantization of superfield SCM models and to find out how their 
remarkable geometric properties reveal themselves in the quantum 
region. Note that the component N=4 SCM was quantized in [3] with using 
its complex version. It would be of interest to see whether the dual 
equivalence of complex and real formulations of N=4 SCM survives 
quantization. 

Acknowledgements We are obliged to V.P.Akulov, V.l.Ogievetsky, 
A.I.Pashnev and V.I.Tkach for valuable discussions. 

Appendix A CONFORMAL MECHANICS AND COMPLEX d=! FIELD THEORY 
Let us show that the CM equation (2.1) can be viewed as a result of 

partial solving of the free equations for d=l complex field. This is a 
particular case of the phenomenon indicated in [14). 

We start with the action 

s 

where z ei~(t)p(t). The equations of motion are 

p(t) . ' = p(p) 

z. z. 
(p ~) = 0 ~ p p = canst ~ m · 

CA.ll 

(a) 
(A. 2) 

(b) 

Eq.(A.2b) is the conservation law for the Noether charge P
2 P (external 

"angular momentum") corresponding to U(l) transformations z' = e 101 z. 
Choosing a definite value of m for P

29 and expressing 9 by eq. (A.2b) 
one gets for p(t) just the equation (2.2). Thus one concludes that 
eq. (2.2) describes classical configurations of the free complex d=l 
field z(t) at a fixed external angular momentum. Note that one might 
add to eq.(A.l) an U(l)-invariant potential term 

For p(t) one would again get the equation (2.2) but with m2 shifted by 
a constant a~ So eq.(2.2) can equally be embedded into the theory of 
a self-interacting d=l complex field. This consideration clarifies the 
relationship between real and complex formulations of N=2 and N=4 SCM's 
(Subsect.3.3 and Sect.5). 
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It is noteworthy that the du"al correspondence between real and 

comlpex forma of N::::4 SCM has a prototype in the purely bosonic case. 

Let us interpret the system (2.1)-.(2.2) as a sector of a more general 

system 

(A.3) 

where we have introduced a non-propagating field c(t) subjected to the 

constraint 

C(t) :::: 0 ~ c(t) = canst. (A.4) 

Putting this constant equal to m one arrives at the action (2.1). 

Alternatively, one may implement (A.4) in (A.3) with the help of 

a Lagrange multiplier ? 

(A. 5) 

Instead of varying ?(t), one may vary c{t) to get 

c(t) 
, -

- p ,:>. (A.6) 

After substituting this solution into (A.5), the free d::::l complex field 

action (A.l) is reproduced. 

Appendix B COMPARISON WITH THE HAMILTONIAN FORM OF N=4 SCM [3) 

In the original paper [3] from the beginning the quantum case was 

treated. However, no uncertainties appear upon taking the classical 

limit. 

The Hamiltonian given in E3J is as follows 

!' 
H :::: ~(p2 + - + 2/ 

x' 

where we have defined 

Using the definition 

iA. :::: [A,H J 

(B.l) 

and canonical (anti)commutation relations, one finds the equations of 

motion to be 
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:1. ~ -3 -o-b 

2 
I (zl ca.bX :t 

(B. 2) 

These equations coincide with those following from the action (5.9) 
after identifying 

mf ~ mf ~ /, z ~Yo (8.3) 

(one may always make f real by an appropriate phase transformation of 
spinor fields). 
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