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It is obvious that the deuterGn cannot be treated as an 
n-p system if the internucleon distance is too small. In 
quark models which fit the baryon spectrum this leads to a 
large probability for a nucleon to be part of a six-quark 
cluster. Many theorists are seeking unique signals for such 
multiquark clusters. Electron scattering and other electro
magnetic proc.esses should be particularly good for studying 
the quark structure of a nucleus, since gluonic processes do 
not directly participate in electron scattering. The micro
scopic calculation of pd elastic scattering at high energies 
seems to be the best source of information about a short
distance nuclear structure. 

The two- and three-body systems are ~ost accessible to 
microscopic calculations. A great deal of experimental data 
on elastic pd scattering is available, and theoretical cal
culations in the framework of the multiple scattering theory 
are practically lacking. 

In the paper one of the authors111 has evaluated the pd 
scattering cross section within the framework of the consti
tuent quark model in Glauber formalism with allowance for the 
six-quark state admixture, using symmetrical Gaussian wave 
functi-ons . 

In general, calculating the elastic pd scattering one must 
take into account antisymmetrizntion effects and realistic 
wave functions of the deuteron. 

Traditionally•antisymmetrization of the deuteron wave 
function performed in Jacobian coordinates and matrix ele
ments are calculated using Wheeler's method or generator 
coordinate method 12- 41 • The use of these functiohs for cal
culation of one-body operators, e.g. profile-operatOrs, is 
very cumbersome. 

Moreover, in Glauber's theory the amplitude of pd elastic 
scattering in the hybrid quark-nucleon model is determined by 
the sum of 218 -I terms representing different rescattering 
processes. Among these terms there are many similar terms, 
that is why the amplitude is actually determined by a smaller 
number of essentially different terms. Reduction of similar 
terms in the scattering amplitude was shown in paper/1/ for 
the case of Gaussian wave functions. It requires any Gaussian 
representation for the realistic pairs wave function. 
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Three main purposes of the present work are description of 

the total antisymmetric deuteron wave function in one-partic

le coordinates, construction of a Gaussian representation for 

pairs wave function and microscopic calculation of the elas-· 

tic pd-scattering cross section at high energies. 

I. THE DEUTERON WAVE FUNCTION 

At present the most adequate method for investigation of 

two-nucleon system at short distances is the resonating group 

method 151 • One can write down the wave function of the two

nucleon system.in the form 

(I) 

Here 

N2 ~ 10 ( 1 - 8) , 

8 ~ <'i'N('1''2•'s) 'I'N('4•'&•'e) x(R)IP14 I 'I'N('t•'2''3)'1'N(r4''&•'s)x(R)>-

(2) 

and Pa{3 - is the quark permutation operator, 'PN is the 

quark wave function of a nucleon; x(R) describes the rela

tive motion of nucleon clusters; N is the normalizatioa con

stant. 
The total wave function of the deuteron with the admixture 

of the six-quark state can be written as: 

Here '1'6q 
part of the 
in the form 

is the six-quark bag 
quark wave function of 
of the ground state of 

(3) 

wave function. The space 
the nucleon is taken here 
the oscillatory model 

3/2 
1 

1/4 - ~ ~12 s.<'I-Rn(p)) 
rr E\ ' • ol (-) (-) e I 4,&,6 , (4) 
a 3 

and 'I'N = 'l'n(p) • 'l'c , 'l'c is total anti symmetric colour func-

tion of a nucleon. The following approximations are most po-
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pular at present for relative motion wave function of nucle
ons 

1 x(R) ~-
14" 

where 

(5) 

(6) 

and <I>ST 
I1T 

leons. 
is the symmetrical spin-isospin function of a nuc-

The space part 
taken here in the 

of the s-and 
form 161 

D-state wave functions are 

U(R) (7) 

W(R) 
(8) 

The space configuration S5 can be described by the only 
antisymmetrical spin-isospin-colour (SIC) wave funct~?n of 
the six-quark bag with the deuteron quantum numbers 1 • It 
can be written as follows 

N
•lc 

• 6q ~ 10/3. 

(9) 

SIC Here '1',11 is the SIC part of the nucleon wave function; 
F4SI 1s the spin-isospin part of the WF describing relative 

motion of three-quark clusters in a deuteron. 
Using formulae 

-mr e n-1 <)0 n-2 8 -mRr 

r• 
m f dR(R -1) ....:__ 

(n-2)! 1 r (10) 
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we can write (7), (8) in the Gaussian representation; for 

example: 

8
-mr 

r 

8 -mr 

~ 

8
-mr 

;a-

Next, 
R2 

X 

e 

1 
4 

,2 

d - -~ 
I _'!._ erfc(myx)e 

x2 
0 

,e 2 r2 
oo -m x- -4.-

_1_I dx e 
4Vrr o x5/2 

m oo dx - -Tx-
-. -I --erfc(myx)e 

4 o x2 

using the expression 
2 

·21{3R _{f 
X 3/2 X 

d 3 {3, (-) I e 
" 

(I I ) 

for the space part of x(R) 

+1m¢ 

and with the help of relations 

Rsinee- ~ (X± iY)m, Rcose~z. 
(12) 

( 13) 

we can write ~d in the factorized form and antisymmetrization 
is usually carried out. 

2. CALCULATION OF THE ELASTIC SCATTERING AMPLITUDE 

According to the basic principles of Glauber's approximati

on, the differential cross section of nucleon-deuteron scat

tering is determined by the following expression 

3 6 

<'l'p'l'dl[1- II II (1-y(b-; 1 +~ll]l'l'd'l'p>, 
I~ 1 J~ 1 

( 14) 

where P is the momentum at the projectile nucleon; q is the 
transverse momentum; WP is the wave function of nucleon,y(b) 

is the amplitude of elastic quark-quark scattering in the im
pact parameter representation. ls 1l ,{r1 l are the coordina-



tes of the quarks of deuterons and protons within the plane of the impact parameter b • 
As is seen from (14J, the scattering amplitude is determined by the sum of 21 -1 terms representating different re

scattering processes. 
Among these terms there are many similar terms, that is why the amplitude is actually determined by a smaller number of essentially different terms. Using the algorithm for reduction of similar terms developed by one of the authors in18· 91 we take 665 essentially different terms from the total of 162643. 
Inserting (7) into (14) we obtain for the direct member: 

q2 IDetQI 36 ~ . kt+kj --=:r 5'(x) lTk 1• kj 6a 4 1DetW 1 5'
1 

(Q) :S f -- ----(--) e dx, 
l,J=l o <N> IDet WI 2lT 

where < N > is the normalization integral, k 1 is the number of black points in the scattering diagram/9/ , 

5'(x) = :S 
k,e 

- DkDe 
x ..!. errc [ (m + me ) v' x 1 -

16 2 x2 k mk 
_1_ errc [ (mk +me) v'xl + xs 

9Dk De 1 1 ----- errc [ (mk +me )yx 11, +-----
128 m:m r x4 

01 02 Os 04 06 Oe 
02 u2 Us u4 Us Ue 

Qlj 
Oa Us Ha H4 Hs He 

04 u. H4 X4 X& X a 

Gs Us Hs Xs Ys Ya 

Ge Ua He Xe Ye Ve 

X 

( 15) 

( 1 &) 
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N!l (l) N 12(!) Nu(j) N12(j) N21(i) N22(i) 
0 2 ~-a[-- + --- + ------- + 

Tl T4 Te 

N21 (J) l'<z2(j) Nsl (I) Ns2 ( 1) Ns1(j)Ns2 (J) 

+ + -- + 
T5 Ts Ts 

Nu (1) NlS ( l) N11 (j) N18(J) N21(i)N2S(i) 

G s ~ -al + ------ +------ + 

Tl T4 T2 

N21 (j) N 2S(j) Ns1 (I) Nss<n Nu(J)Nss<l) 

+ + + 

T& Ts Te 

Oe ~ 
Nll (j) N21 (j) Nsl ( j ) 

+ --+ 
T4 T& Te 

U a-a[ N~e (1) Nre <J) Nle(l) NL(j) 2 Nfe (J) Nae (i) 
l+D2 +---+ + +----+ 

2 Tl T4 Te T& Ta Te 

+ + + 

+ + 
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u4 "" 0 

N12 (!) N22 ( !) 
Us --- + + 

Tl 

ue 
N 12( J) ---

T4 

H4 ~ 0 

H ~ 
N13 (i) 

6 Tl 

N 13(j) 
He~---

T4 

2 
x4 ~- 9X 

x5 ~ 1 

x8 ~ 1 

T2 

N22(j) 
+--- + 

Ts 

N 23(1) 
+ 

T2 
+ 

N2S ( j ) 
+ 

T5 
+ 

Ns2 (I) 

Ts 

N 52 (j ) 

Te 

Nsa (I ) 

Ts 

N ss<D 
T8 

1 1 1 
y6 ~ - ( - + .,....- + .,...-) - 9 X 

Tl 12 ls 
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w1 = o 

W2 = o 
w3 = o 
w4 = -1 

w5 = 112 

w6 = 112 

w7 = o 
E

1 
= -a[N11 (I)+ N12(i) + N13(i)] +a 

E 3 =-a[N 31 (i) +N32 (i) +N 33 (i)]+a 

E 6 = -a[N 31 (j) + N82 (j) + N 33(J)] +a 

Using (12) and (13), one can write down the angular part of 

'I'd as 

(z1 + z 2 + z 3 - z 4 - z 5 - z 6 ) (s 1 + s 2 + s 3 - s 4 - s 5 - s & ) 

where 

S=x±ly. 
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Then after cumbersome calculation we obtain the following 
expressions for the angular (polynomial) part of the direct 
and exchange integrals of (14): 

In calculation of the exchange integrals repr~sentation 
(II) was used separately for functions 'I'd and P14 'I'd, matri
ces Qij , Wij are determined as in the case· of the direct 
integral. 

He are indebted to V.V.Uzhinskii for helpful discussions. 
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