

ОбъӨДИненный ИНСТИТУТ Ядерных исследований
 дубна

E2-89-296
V.A.Bednyakov

SUPERSTRING INSPIRED
NEUTRAL GAUGE BOSON
IN ELASTIC ep-ASYMMETRIES

Submitted to "Modern Physics Letters A"

The neutral extra gauge Z^{\prime}-boson with mass below 1 . leV is today one of the most widely discussed low energy concequences of superstring theory [1,2]. Since there is no yet unambiguous scheme of the low energy limit of superstrings, the experimental determination of the Z^{\prime}-boson parameters, such as mass, its mixing with the standard Z- boson and couplings with fermions can help to reduce this uncertainty and give necessary information about E6 gauge symmetry breaking at the intermediate scale.

The experimental investigation of possible $Z^{\prime \prime}$-boson manifestations can be done in two directions which complement each other. First, the obvious observations of Z^{\prime}-boson creation and decay in high energy colliders [3]. Secondly, indirect manifestations by little deviations of experimental results from standard model (SM) predictions in precise measurements [4]. In the former case the energy must be as high as possible, in the latter case the main problem is not the energy but the high accuracy.

This significant increase in precision will be obtained on the Continuous Electron Beam Accelerator Facility (CEBAF) where luminosity will be about $10^{38} \mathrm{~cm}^{-2} / \mathrm{sec}$ [5]. In this case, for instance, $1-2 \%$ level of accuracy has to be reached in parity violating elastic polarized electron - nucleon asymmetries [6]:

EUSNBOTEMA

$$
\begin{equation*}
A\left(e_{L}^{-}-e_{R}^{-}\right)=\frac{\frac{d \sigma}{d Q^{2}}\left(e_{L^{-}}^{-}+e^{-} N\right)-\frac{d \sigma}{d Q^{2}}\left(e_{R^{-}}^{N+e^{-} N}\right)}{\frac{d \sigma}{d Q^{2}}\left(e_{L}^{-} N+e^{-} N\right)+\frac{d \sigma}{d Q^{2}}\left(e_{R^{-}} N+e^{-} N\right)} . \tag{1}
\end{equation*}
$$

This accuracy gives a good oppotunity to extract the most strong restrictions on the above-mentioned Z-boson parameters: $M_{2} Z^{-}$mass, $\theta-Z-Z$ mixing angle and $\theta_{E 6}$ angle which is determined by symmetry breaking at the intermadiate scale.

In Ref.[7] we found that for high energy collisions (HERA, UNK,etc) in elastic ep-scatering the Z°-boson can give up to 20 per cent deviation from SM. Unfortunately, while writing our paper [7] we did not have any information about CEBAF and the planned precise measurements, therefore we concluded that elastic ep-scatering cannot impose more restrictions on M_{2} and θ, as compared, for instance, with deep inelastic ep-scattering (HERA) [4] or collider experiments.

Now taking into account the CEBAF high accuracy we discuse the same question but in intermediate energy and Q^{2} domain.

The neutral current cross section of polarized electron nucleon elastic scattering which take place in P-odd asymmetry (1) can be expressed in the form ($\lambda= \pm 1$ for L, R):

$$
\begin{equation*}
\frac{d \sigma}{d Q^{2}}\left(e_{\lambda}^{-} N\right)=\frac{G^{2}}{2 \pi} \sum_{i=1}^{4} k_{i} \phi_{i}\left(N, Q^{2}, \lambda\right), \tag{2}
\end{equation*}
$$

where $y=\frac{Q^{2}}{2 p k}$ and $k_{1}=y \frac{M^{2}}{p k}, \quad k_{2}=2 y-y^{2}, \quad k_{3}=1-y-y \frac{M^{2}}{2 p k}, \quad k_{4}=y^{2} / 2$. are kinematic factors. Structure functions φ_{i} may be expressed through the effective neutral currentform factors $A_{\lambda}, V_{\lambda}, M_{\lambda}\left(\tau=Q^{2} / 4 m_{P}^{2}\right)$:

$$
\begin{align*}
& \varphi_{1}\left(N, Q^{2}, \lambda\right)=\left(A_{\lambda}\right)^{2}, \\
& \varphi_{2}\left(N, Q^{2}, \lambda\right)=-\lambda A_{\lambda}\left(V_{\lambda}+M_{\lambda}\right), \\
& \varphi_{B}\left(N, Q^{2}, \lambda\right)=\left(A_{\lambda}\right)^{2}+\left(V_{\lambda}\right)^{2}+\tau\left(M_{\lambda}\right)^{2}, \tag{3}\\
& \varphi_{1}\left(N, Q^{2}, \lambda\right)=\left(A_{\lambda}\right)^{2}+\left(V_{\lambda}+M_{\lambda}\right)^{2} .
\end{align*}
$$

These effective form factors $A_{\lambda}, V,{ }_{\lambda}, M_{\lambda}$ can be connected with the standard defined electromagnetic $G_{\mathrm{E}}^{\mathrm{P}}\left(Q^{2}\right)$ and charged current axial $F_{A}\left(Q^{2}\right)$ proton form factors [8] (in calculations we used dipole parametrisation):

$$
\begin{align*}
& A_{\lambda}^{p, n}\left(Q^{2}\right)=\left\{ \pm \beta^{e f}+x 0^{e f}\right\} \frac{F_{A}\left(Q^{2}\right)}{4}, \\
& \left.V_{\lambda}^{p, n}\left(Q^{2}\right)= \pm\left\{r_{ \pm}^{e f}\left(1+\tau \mu_{p}\right)-r_{\mp}^{e f} \tau \mu_{n}\right\} \frac{G_{E}^{p}\left(Q^{2}\right)}{2(1+\tau}\right) \tag{4}\\
& \left.M_{\lambda}^{p, n}\left(Q^{2}\right)= \pm\left\{r_{ \pm}^{e f}\left(\mu_{p}-1\right)-r_{\mp}^{e f} \mu_{n}\right\} \frac{G_{E}^{p}\left(Q^{2}\right)}{2(1+\tau}\right)
\end{align*}
$$

Here $\mu_{\mathrm{p}}=2,79, \mu_{\mathrm{n}}=-1.91$ are the proton and neutron magnetic moments; $x=2 F_{A}^{B}(0) / C_{A}=0.3$ determines normalization of weak isoscalar axial form factor $F_{A}^{S}\left(Q^{2}\right)$ in non-relativistic $\operatorname{SU}(6)$ - quark model, $C_{A}=F_{A}(0)=1.25 \pm 0.06[9] ; r_{ \pm}^{\text {ef }}=\frac{1}{2}\left(a^{e f} f_{ \pm} \gamma^{e f}\right)$.

The effective parameters $\alpha^{\text {ef }}, \beta^{\text {ef }}, \gamma^{\text {ef }}, \delta^{\text {ef }}$ set the time-space and isospin structure of the full ($\gamma-$ and $z^{\circ}-$ and $z^{\prime}-$) neutral current [10]
and have the form:

$$
\begin{align*}
& a^{e f}=\frac{\sqrt{2}}{4 G} \sum_{1}^{2} \frac{a_{i} \varepsilon_{i}\left(e_{\lambda}^{-}\right)}{M_{i}^{2}}-x \frac{m_{P}^{2}}{Q^{2}}, \quad \beta^{e f}=\frac{\sqrt{2}}{4 G} \sum_{1}^{2} \frac{\beta_{i} \varepsilon_{i}\left(e_{\lambda}^{-}\right)}{M_{i}^{2}}, \\
& \gamma^{e f}=\frac{\sqrt{2}}{4 G} \sum_{1}^{2} \frac{\gamma_{i} \varepsilon_{i}\left(e_{\lambda}^{-}\right)}{M_{i}^{2}}-\frac{x}{3} \frac{m_{P}^{2}}{Q^{2}}, \quad \delta^{e f}=\frac{\sqrt{2}}{4 G} \sum_{1}^{2} \frac{\delta_{1} \varepsilon_{i}\left(e_{\lambda}^{-}\right)}{M_{i}^{2}}, \tag{6}\\
& \text { where } x=2 \pi a \sqrt{2} / G_{P}^{2} \approx 0.6 \cdot 10^{4}, m_{p} \text { is the proton mass, and for } \\
& f_{1,2}^{2, z^{2}}=\left[\alpha, \beta, \gamma, \delta, \delta\left(e_{\lambda}^{-}\right)\right]_{i, 2}^{2,2} \text { we define }
\end{align*}
$$

$$
\begin{align*}
& f_{s^{\prime}}=g^{z} f^{z} \cos \theta+g^{z^{\prime}} f^{z^{\prime}} \sin \theta, \\
& f_{z}=g^{z} f^{z} \cos \theta-g^{z} f^{z} \sin \theta . \tag{7}
\end{align*}
$$

Values of these parameters for $Z-$ and Z^{\prime}-bosons as functions of $\vartheta_{E 6}$ angle are given in the Table.For $\mathrm{Z}-\mathrm{Z}$ mixing angle one has the relation $\operatorname{tg}^{2} \theta=\left(M_{0}^{2}-M_{1}^{2}\right) /\left(M_{2}^{2}-M_{0}^{2}\right)$, where M_{1} and M_{2} are the physical $Z-$ and $Z^{\circ}-$ masses.

Table

parameter	Z°	Z
g	$e\left(\cos \theta_{W} \sin \theta_{W}\right)^{-1}$	$e\left(\cos \theta_{H}\right)^{-1}$
$c\left(\mathrm{e}_{\mathrm{L}}^{-}\right)$	$-1 / 2+\sin ^{2} \theta_{H}$	33^{+2}
$c\left(e_{R}^{-}\right)$	$\sin ^{2} \theta_{\text {H }}$	$\boldsymbol{\xi}-\nu$
α	$1-2 \sin { }^{2} \theta_{W}$	4ξ
β	1	-4\%
γ	$-2 \sin ^{2} \theta_{W} / 3$	-4\%
δ	$0+\hat{\xi}^{*}$	42

${ }^{*}$) Correction $\hat{\xi}$ [11] results from the heavy quark contribution to the isoscalar part of the weak axial hadron current (with s,b,t-quarks $\hat{\xi}=0.06$ [8]).

To study manifestations of the Z^{\prime}-boson, one usually analyses the relative deviation from $S M$

$$
\begin{equation*}
r\left(e_{L}^{-}-e_{R}^{-}\right)=\frac{A(Z+Z)-A(Z)}{A(Z)} \tag{8}
\end{equation*}
$$

where $A\left(Z+Z^{\prime}\right)$ is the asymmety with the Z^{\prime}-contribution and $A(Z)$ is the asymmetry in SM. The quantity $r\left(e_{L^{-}}^{-}-e_{R}^{-}\right)$is interesting from two points of view. First, a lot of uncontrolled hadron structure systematic uncertainties are cancelled in it, secondly the direct

a

: C

b

Fig.1. Deviation from the standard model $r\left(e_{L}^{-}-e_{R}^{-}\right)$as a function of the z^{\prime}-boson physical mass M_{2} at the $z^{\circ}-z$ mixing angle θ equal to $-0.04,-0.02,0,0.02,0.04 \mathrm{rad}$ (curves $1-5$ respectively). Here $Q^{2}=0.5 \mathrm{GeV}^{2} / \mathrm{c}^{2}$.
comparison of $r\left(e_{L}^{-}-e_{R}^{-}\right)$with the experimental accuracy answers the question about possibility of indirect observation of the Z^{\prime}-boson. In calculations we restrict ourselves to polarized electron-proton scattering, similar results can be easily obtained from formulae (1)-(6) for electon-neutron scattering, etc.

For the fixed electron energy $E=2 G e v r\left(e_{L}^{-}-e_{R}^{-}\right)$depends on the kinematic variable y (or Q^{2}) and parameters M_{2}, θ and $\vartheta_{E 6}$: For angle $\theta_{E 6}$ we have taken discrete special values $142.24^{\circ}, 90^{\circ}$ and 0^{0} in correspondence with the most popular low energy limits of superstrings [2-4]. For this angles and $Q^{2}=0.5 \mathrm{GeV}^{2} / \mathrm{c}^{2}$ (or $y \approx$ 0.1) fig.ia,b,c demonstrate the deviation from $S M, r\left(e_{L}^{-}-e_{R}^{-}\right)$, as a function of the Z^{\prime}-boson physical mass for fixed θ (in radian) equal to -0.04 (curve 1), $-0.02(2), 0(3), 0.02(4), 0.04(5)$. It vanishes quickly for $\theta=0$ and increases with M_{2} from fractions of per cent to $25-30 \%$ for $\theta \geqslant 0$. The increase must cut off for larger $|\theta|$ and M_{2} because of experimentally measured low mass limit of the ordinary Z-boson. If y differs from 0.1 , the main properties of curves 1-5 don't change very much.

Contours 2(for 1% deviation) and 3(for 2\%) in fig. 2 illustrate a possibility of obtaining strong restrictions on M_{2} and θ for $\vartheta_{E 6}=142.24^{\circ}$ in CEBAF presice measurements. For 1% (2\%) accuracy M_{2} must be larger than $450(320) G e v$ and $|\theta|$ must be smaller than $0.01(0.03)$. These contours correspond to $y=0.5$, for lesser y the restrictions become softer and for $y . \approx 0$ the contoure go to contour 3 in fig. 4 , obtained for measurementof deep inelastic νq-scattering with 0.5% accuracy [12]. Contour 1 gives today's restrictions [13].

Practically, the elastic asymmetry $A\left(e_{L}^{-}-e_{R}^{-}\right)$gives information only about the vector part of the hadron weak current V_{q} which
appeared in the parity violating effective Lagrangian as a product of V_{q} times axial lepton current $A_{e} V_{q}$. This information is well available today from deep inelastic ep-scattering and P-odd effect atomic physice measurements [4,10]. More information is needed for determination of the axial part of the hadron weak current A_{q} which appeared in Lagrangian as $V_{e} A_{q}$. In the domain, where y is not equal 0 or 1 , there is an opportunity of studing the axial hadron current A_{q} in presice measurements of charged asymmetry $A\left(e_{L}^{-}-e_{R}^{+}\right)$, because this asymmetry is directly proportional to the axial vector current parameters β and $\delta(6)$:
$A\left(e_{L}^{-}-e_{R}^{+}\right) \propto\left\{\beta^{e f}+\mu \delta^{e f}\right\} \quad k_{s} F_{A}\left(Q^{2}\right)\left(F_{V}^{e m}+F_{M}^{e m}\right) / \sigma_{e m}$.

Fig. 2 Limits on the $Z-Z^{\circ}$ mixing angle θ and Z° mass M_{2} for $\theta_{E 6}=142.24^{\circ}$. The permitted regions are inside the contours. 1 contour obtained in Ref [12]; 2,3-contours corresponding to $r\left(e_{L}^{-}-e_{R}^{-}\right)=1 \%, 2 \%$.

The combined resulte of measurements of $A\left(e_{L}^{-}-e_{R}^{-}\right)$and $A\left(e_{L}^{-}-e_{R}^{+}\right)$ can fully determine the structure of the parity violating effective Lagrangian. For the discussed $\vartheta_{E 6}$ angles and $Q^{2}=0.5$ fig. $3 \mathrm{a}, \mathrm{b}, \mathrm{c}$ demonstrate the deviation from SM for charged asymmetry $A\left(e_{L}^{-}-e_{R}^{+}\right)$. Curve 2 in fig. 4 gives restrictions on parameters M_{2} and. θ corresponding to the 1% deviation from $S M$ in $A\left(e_{L}^{-}-e_{R}^{+}\right)$.

Fig. 4 The same as in fig. 2 but: 2 - contour corresponding to $r\left(e_{L}^{-}-e_{R}^{+}\right)=1 \%, 3$ - contour corresponding to 0.5% accuracy measurements in deep inelastic $\bar{\nu} \mathrm{N}$-scattering [8].

In conclusion the author expresses his gratituae to Altaiskij M.V.,Kovalenko S.G.and Ivanov Yu.P.for useful discussions.

When this paper was submitted to publication we have received paper by S.J.Pollock [14], where a similar question was studied.

References

1. M.Green, J.Schwarz -Phys. Lett., 1984, 148B, P. 17; D.Gross et al. -Phys.Rev.Lett.,1985,54, p502; P.Candelas et al. -Nuci. Phys., 1985, B258, p. 46.
2. R.W.Robinett -Phys.Rev., 1986, D33,p.1908; M.Dine et al. -Nucl. Phys.1985, B259, p.549; D.London, J.Rosner -Phys.Rev., 1986, D34, P. 1530; E.Cohen et al. -Phys.Lett., 1985, 165B, p. 76.
3. G.Ingelman -Prepr.DESY 87-144,1987; P. Chiappetta et al.Phys.Lett., 1987, B193, p. 346; G.Belanger, S Godfrey -Phys.Rev., 1987, D35, p. 378; P.J.Franzini, F.J.Gilman -Phys.Rev., 1987, D35,p.855; F.del Aguila et al. -Nucl. Phys., 1987, B287,p. 419.
4 V.Berger et al.-Phys.Rev.,1987, D35, p.2893; D.London et al. Mod.Phys.Lett., 1987,A2,P.343, F.Cornet,R.Ruckl -Phys.Lett., 1987, B184, p. 263; S.Capstick, S.Godfrey -Phys.Rev., 1987, D35, p.3351; J.Bordes-Rutrerford Appleton Lab., RAL-87-006, 1987.
4. R.Carlini, R.Siegel - In proceedings CEBAE/SURA Summer Workshop, p.418-428, Newport News, Virginia, June 22-26, 1987. Edited by F.Gross and C.Willamson; J.D.Walecka - Parity Violation Workshop - CEBAE, Preprint CEBAF-PR-87-003, 1987.
5. G.Feinberg -Phys.Rev.,1975,D12,p.3575; J.D.Bjorken -Phys.Rev. 1978, D18,p. 3239; F.J.Gilman, T.Tsao -Phyg.Rev., 1979, D19, p. 790.
6. M.V.Altaiekij,V.A.Bednyakov -Superstring Z^{\prime}-boson in elastic ep-ecattreing. Prepr. Space Reasearch Inet. PR1513, Moscow, 1989.
7. V.A.Bednyakov, S.G.Kovalenko -Preprint JINR E2-88-395, 1988. V.A.Bednyakov, S.G.Kovalenko - Phys.Lett., 1988, 214B, p. 640.
8. Particle Data Group - Phys. Lett. , 1988, 204B, p. 1.
9. P. Gall -Fortschr. Physik 1987,35,p.115.
10. L. Holfenstein - Phys.Rev., 1979, D19, p. 3450;
J.Collins, F.Wilczek, A.See - Phys.Rev., 1978, D18, p.242;
11. V.A.Bednyakov,S.G.Kovalenko -Sov.J.Nucl. Phys,1989, v. 49, p. 866.
12. L. S. Durkin, P. Langacker-Phys.Lett., 1986, B166, p. 436; G. Costa et al.-Nucl.Phye.,1988, B297,p.244; U.Amaldi et al.-Phys.Rev.1987, D36. P,1385.
13. S.J.Pollock - Phys.Rev. D. 1989,v.39,n.1,p.163-168.
