

объединенный ИНСТИТУТ ядерных исследований

E2-89-295 +
V.A.Bednyakov, S.G.Kovalenko

NEW RELATIONS IN LEPTON-NUCLEON SCATTERING, INDEPENDENT OF THE NUCLEON STRUCTURE

Submitted to "Physics Letters B"

Precise measurement of the Standard Model (SM) paramoters and the searoh for now-phyaica requires effort for ellmination of theoretioally weekly controllable factors. In lepton-nucleon scattering this is first of all the nucleon atructure functions (SF) and form factors of the nucleon (FEN). Neither of them was found from the first principles of the theory as yet. So the values of $S M$ parameters extracted from the experimental data, in principle, may have large systematic errors due to the uncertainty In the theoretical description of the nucleon structure. On the other hand, in νN-scattering there are rolations for special combinations of crose sections (CS) which allow this uncertainty to be eliminated. A Hell known example is the Paschos-Wolfenstein
relation [1]:

Despite the fact that the formula involves the $C S$ of deep inelastic νN-scattering ($N^{I=0}$ is the isoscalar target), the right hand aide of the relation containes only the $S M$ parametere p, $\operatorname{cin}^{2} \theta_{\mathrm{H}}$ and is indepondent of SF .

In this paper we ohall obtain almilar relations for deep inelastic and (quasi-)elastic scattering of longitudinally polarized electrons and positrons or $\mu^{ \pm}$-mesons on non-polarized nuoleons. Let us start from a more detailed consideration of such relations for' $\bar{\nu}$ 'N-bcattering and introduce the notation:

$$
\begin{equation*}
R_{2}(\nu)=\frac{\left(\alpha^{\nu p_{-}} o^{\nu n}\right)_{N C}+\left(\sigma^{\nu p_{-}}-o^{\nu_{n}}\right)_{N C}}{\left(\alpha^{\nu p_{-}} o^{\nu n}\right)_{C C}-\left(o^{\bar{\nu} p_{-}} o^{\bar{\nu}_{n}}\right)_{C C}} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{R}_{3}(\nu)=\frac{\left(o^{\nu \mathrm{P}_{-}} \sigma^{\nu \mathrm{n}}\right)_{\mathrm{NC}}-\left(\sigma^{\bar{\nu} \mathrm{P}_{-}} \sigma^{\nu n}\right)_{\mathrm{NC}}}{\left(\sigma^{\nu \mathrm{P}_{-}} \sigma^{\nu \mathrm{n}}\right)_{\mathrm{CC}}+\left(\sigma^{\bar{\nu} \mathrm{P}_{-} \sigma^{\nu \mathrm{n}}}\right)_{\mathrm{CC}}} . \tag{3}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{R}_{5}(\nu)=\frac{\left(\sigma^{\nu \mathrm{p}}-\sigma^{\nu \mathrm{p}}\right)_{\mathrm{NC}}^{d}}{\left(\sigma^{\nu \mathrm{n}}-\alpha^{\bar{\nu} \mathrm{p}}\right)_{\mathrm{CC}}^{l l}}, \quad \mathrm{R}_{\sigma}(\nu)=\frac{\left(\sigma^{\nu \mathrm{n}}-\sigma^{\nu \mathrm{n}}\right)_{\mathrm{NC}}^{e l}}{\left(\sigma^{\nu \mathrm{n}}-\sigma^{\nu \mathrm{p}}\right)_{\mathrm{CC}}^{e l}} \tag{5}\\
& R_{7}(\nu)=\frac{\left(\sigma^{\nu \mathbf{P}_{+}}+\sigma^{\nu n}\right)_{N C}^{e l}-\left(\sigma^{\bar{\nu} \mathbf{P}_{+}}+o^{\bar{\nu} \mathrm{n}}\right)_{\mathrm{NC}}^{e l}}{\left(\sigma^{\nu \mathrm{n}}-\sigma^{\bar{\nu} \mathrm{P}}\right)_{\mathrm{CC}}^{e l}}=\mathrm{R}_{5}(\nu)+\mathrm{R}_{\sigma}(\nu) . \tag{6}
\end{align*}
$$

 scattering. Formulae (5),(6) involve the total cS of (quasi-)elastic scattering. We shall also use the quantities $\tilde{B}_{i_{z}}(\nu)$, obtained from $R_{i}(\nu)$ by substituting the differential cs $\frac{d^{2} \sigma}{d x d Q^{2}}$ and $\frac{d o}{d Q^{2}}$ for the total one in formulae (1)-(4) and (5)-(6), respectively. All the results given belon remain valid if the p and n in formulae (1)-(4) are replaced by arbitrary nuclei A_{1} and A_{2} with different isospins.

The nucleon-structure independent relations have the following form for deep inelastic ' $\bar{\nu}$ ' N - scattering [1,2]:

$$
\begin{align*}
R_{1}(\nu) & =\tilde{R}_{1}(\nu)=\frac{a \beta+\gamma \delta}{2}, \tag{7}\\
R_{2}(\nu) & =\tilde{R}_{2}(\nu)=-\frac{a \gamma+\beta \delta}{2}, \quad R_{3}(\nu)=\tilde{R}_{3}(\nu)=-\frac{a \delta+\gamma \beta}{2}, \tag{8}\\
R_{4}(\nu) & =\tilde{R}_{4}(\nu)=\frac{a^{2}+\beta^{2}+\gamma^{2}+\delta^{2}}{4} \tag{9}
\end{align*}
$$

and for (quasi-)elastic ' $\bar{\nu}$ ' N - scattering [3]:

$$
\begin{align*}
& R_{5, o}(\nu)=\tilde{R}_{5, o}(\nu)=\frac{2 \lambda \delta \pm \beta}{4 \cos ^{2} \theta_{c}}\{3 \gamma f \pm \alpha\}, \tag{10}\\
& R_{7}(\nu)=\tilde{R}_{7}(\nu)=\frac{1}{2 \cos ^{2} \theta_{c}}\{\alpha \beta+6 \lambda \gamma \delta f\}, \tag{11}
\end{align*}
$$

where $f=\frac{\mu_{p}+\mu_{n}}{\mu_{p}-\mu_{n}}$ and $\mu_{p}=2.79, \mu_{n}=-1.91$ are the total magnetic moment of the proton and neutron. Formula (7) is a general form of Pashcos-Wolfenstein relation (1). The parameters $\alpha, \beta, \gamma, \delta$ determine the structure of the weak hadronic neutral current (NC):

$$
\begin{equation*}
J_{h \mu}^{N C}=\frac{\alpha}{2} V_{\mu}^{3}+\frac{\beta}{2} A_{\mu}^{3}+\frac{\gamma}{2} V_{\mu}^{0}+\frac{\delta}{2} A_{\mu}^{0} \tag{12}
\end{equation*}
$$

Here $V_{\mu}^{3,0} A_{\mu}^{3,0}$ are the vector and axial-vector currents. At the tree level in the $S M \alpha=\rho\left(1-2 x_{W}\right), \beta=\dot{\rho}, \gamma=-\frac{2}{3} \rho x_{W}, \delta=0$, where $x_{W}=\sin ^{2} \theta_{W}$ and $\rho=\frac{M_{W}^{2}}{\cos ^{2} \theta_{W} M_{Z}^{2}}$. The parameter λ in formulae (10)-(11) fixes the normalization of the neak axial isoscalar FFN $F_{A}^{(0)}(0)=\lambda C_{A}, C_{A}=1.25 \pm 0.06[4]$. It can be taken from the experiment or calculated, for example, within the non-relativistic $\mathrm{SU}(6)-$ quark model. In the last case $\lambda=0.3$. Since δ is small, a slight difference in values of λ in different approaches has negligible influence on R_{5-7}.

Now we turn to e($\mu) \mathrm{N}$ - scattering. Nucleon-stucture independent relations can be directly obtained from relations (7)-(11). To make this, we note the following.

Despite the fact that according to the standard Lagrangian

$$
\begin{equation*}
-\Omega=e J_{\mu}^{\mathrm{em}} A^{\mu}+\frac{\mathrm{g}}{\cos \theta_{W}} J_{\mu}^{\mathrm{NC}} Z^{\mu}+\frac{\mathrm{g}}{\sqrt{2}}\left(J_{\mu}^{+} \mathbf{W}^{\mu}+J_{\mu}^{-} W^{\mu}\right) \tag{13}
\end{equation*}
$$

both weak and electromagnetic interactions contribute to $e^{ \pm}\left(\mu^{ \pm}\right) N-$ scattering this process can be described in the Born approximation by the similar effective 4-fermion Lagrangian as ' $\bar{\nu}$ ' N -
scattering. After simple transformation we obtain from (13):

The effective hadronic current is introduced:

$$
\begin{equation*}
\tilde{J}_{(i) \mu}=2 \varepsilon_{i}^{e} J_{h \mu}^{N C}-\frac{1}{2} x \frac{m_{F}^{2}}{Q^{2}} J_{h \mu}^{e m}, \quad i=L, R ; \tag{15}
\end{equation*}
$$

$$
x=2 \pi a \sqrt{2} / \mathrm{Gm}_{\mathrm{p}}^{2} \approx 0.610^{4}
$$

Here $\varepsilon_{[}^{e}=-\frac{1}{2}+x_{w}, \varepsilon_{\mathrm{D}}^{\mathrm{e}}=x_{w}$ are the chiral constants of the electron. Using the standard parametrization, we write down

$$
\begin{equation*}
\tilde{J}_{(i) \mu}=\frac{Q_{i}\left(Q^{2}\right)}{2} V_{\mu}^{3}+\frac{\beta_{i}\left(Q^{2}\right)}{2} A_{\mu}^{3}+\frac{\gamma_{i}\left(Q^{2}\right)}{2} V_{\mu}^{0}+\frac{\delta_{i}\left(Q^{2}\right)}{2} A_{\mu}^{0} . \tag{17}
\end{equation*}
$$

Taking into account that $J_{h \mu}^{e m}=v_{\mu}^{3}+\frac{1}{3} v_{\mu}^{0}$ and using (15) we find the effective current parameters:

$$
\begin{array}{ll}
\alpha_{i}\left(Q^{2}\right)=2 \varepsilon_{i}^{e}-x \frac{m_{p}^{2}}{Q^{2}}, & \gamma_{i}\left(Q^{2}\right)=2 \varepsilon_{i}^{e} \gamma-\frac{1}{3} x \frac{m_{p}^{2}}{Q^{2}} \\
\beta_{i}\left(Q^{2}\right)=2 \varepsilon_{i}^{e} \beta, & \delta_{i}\left(Q^{2}\right)=2 \varepsilon_{i}^{e} \delta .
\end{array}
$$

Lagrangian (14) has an obvious symmetry. The charged current (CC) part does not change at the $\nu \leftrightarrow e, J^{+} \leftrightarrow J^{-}$substitutions and the NC part does not change at the $v_{L} \leftrightarrow e_{L}, \tilde{J}_{(L)} \leftrightarrow J^{N C}$, or $\nu_{L} \leftrightarrow e_{L}^{e}, . \tilde{J}_{(R)} \leftrightarrow J^{N C}$ substitutions.

So, at high energies, when the electron (muon) mass can be ignored, the substitutions $\nu_{L}\left(\bar{\nu}_{R}\right) \leftrightarrow e_{L}^{-}\left(e_{R}^{+}\right), p \leftrightarrow n$ in the $C C$ dif-
 in the NC differential CS leave these $C S$ unchanged.

Using this property it is easy to connect e^{N} - scattering with ‘ $\bar{\nu}$ 'N- scattering, ard. in particular, to generalize relations (7)-(11). We write them down as:

$$
\begin{align*}
& -\mathbb{S}_{\text {eff }}=\frac{4 G}{\sqrt{2}} i_{L} \gamma_{\mu} e_{L} J_{h}^{-\mu}+\frac{4 G}{\sqrt{2}} \bar{e}_{L}^{\gamma} \mu_{\mu} \nu_{L} J_{h}^{+\mu}+\frac{4 G}{\sqrt{2}} \nu_{L} \gamma_{\mu}{ }_{L} J_{h}^{N C \mu}+ \tag{14}
\end{align*}
$$

$$
\begin{equation*}
\tilde{R}_{i}(\nu)=\frac{N_{i}\left(\nu \bar{\nu}_{p n} \mid x, y\right)}{C_{i}(\nu \bar{\nu} p n \mid x, y)}=\varphi_{i}(a, \beta, \gamma, \delta) . \tag{19}
\end{equation*}
$$

$N_{i}(x, y), C_{i}(x, y)$ are the combinations of $N C$ and $C C$ cross sections mentioned in (1)-(6), φ_{i} is the function of parameters $\alpha, \beta, \gamma, \delta$ independent of the nucleon structure and kinematic variables. For example, $\quad N_{1}=\frac{d^{2} \alpha^{N C}}{d x d Q^{2}}\left(\nu N^{I}=0\right)-\frac{d^{2} \sigma^{N C}}{d x d Q^{2}}\left(\overline{\nu N}^{I=0}\right), \quad C_{1}=\frac{d^{2} \sigma^{C C}}{d x d Q^{2}}\left(\nu N^{I=0}\right)-\frac{d^{2} \alpha^{C C}}{d x d Q^{2}}\left(\bar{\nu} N^{I=0}\right)$ and $\varphi_{1}=\frac{a \beta+\gamma \delta}{2}$. Relation (19) will be satisfied if

$$
\begin{align*}
& \mathrm{N}_{\mathrm{i}}\left(\nu \bar{\nu}_{\mathrm{p} n} \mid \mathrm{x}, \mathrm{y}\right)=\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}^{2}, Q\right) \varphi_{\mathrm{i}}(\alpha, \beta, \gamma, \delta), \tag{20}\\
& \mathrm{C}_{\mathrm{i}}(\nu \bar{\nu} p \mathrm{pn} \mid \mathrm{x}, \mathrm{y})=\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}, Q^{2}\right),
\end{align*}
$$

where $f_{i}\left(x, Q^{2}\right)$ is the quantity absorbing the whole dependence on the nucleon structure (SF and FFN).

Now we may write down:
$N_{i}\left(e_{L}^{\mp} e_{R}^{ \pm} \quad \operatorname{pn} \mid x, y\right)=f_{i}\left(x, Q^{2}\right) \varphi_{i}\left(a_{L, R}\left(Q^{2}\right), \beta_{L}, R^{\left.\left(Q^{2}\right), \gamma_{L}, R^{\left(Q^{2}\right), \delta_{L, R}}\left(Q^{2}\right)\right), ~}\right.$ $C_{i}\left(e_{L}^{-} e_{R}^{+} n p \mid x, y\right)=f_{i}\left(x, Q^{2}\right)$.

Combining these equations in such a way that the factor f_{i} is cancelled, we abtair three types of relations for differential CS of e(μ)N- scattering:

$$
\begin{equation*}
\tilde{R}_{i N}=\frac{N_{i}\left(e_{L}^{-} e_{R}^{+} p n \mid x, y\right)}{N_{i}\left(e_{L}^{+} e_{R}^{-} p n \mid x, y\right)}=\frac{\varphi_{i}\left(a_{L}\left(Q^{2}\right), \beta_{L}\left(Q^{2}\right), \gamma_{L}\left(Q^{2}\right), \delta_{L}\left(Q^{2}\right)\right)}{\varphi_{i}\left(a_{R}\left(Q^{2}\right), \beta_{R}\left(Q^{2}\right), \gamma_{R}\left(Q^{2}\right), \delta_{R}\left(Q^{2}\right)\right)} \tag{23}
\end{equation*}
$$

After substituting $a_{l}, \beta_{l}, \gamma_{l}, \delta_{l}$ in formulae (18) we retain only the leading term in the large parameter $\chi \approx 10^{4}$ on the right hand side, which maintains the accuracy of about $1-2 \%$ for this relation at $Q^{2}<10^{3} \mathrm{GeV}^{2}$ and $0.1-0.2 \%$ at $Q^{2}<10^{2} \mathrm{GeV}^{2}$. AB a result, the following relations with the dependence on x_{w} and p remain:

$$
\begin{align*}
& \tilde{R}_{1 L, R}=\frac{N_{1}^{ \pm}}{\mathrm{G}_{1}}=-x \frac{m_{p}^{2}}{Q^{2}} \varepsilon_{L, R}^{e}\left(\beta+\frac{\delta}{3}\right) \doteq-x \frac{m_{P}^{2}}{Q^{2}}\left(p \varepsilon_{L, R}^{e}\right), \tag{25}\\
& \tilde{R}_{3 L, R}=\frac{N_{3}^{ \pm}}{C_{3}}=-x \frac{m_{p}^{2}}{Q^{2}} \varepsilon_{L, R}^{e}\left(\delta+\frac{\beta}{3}\right)=-x \frac{m_{p}^{2}}{Q^{2}\left(\frac{\rho}{3} \varepsilon_{L, R}^{e}\right),} \tag{26}\\
& \mathrm{R}_{5 \mathrm{~L}, \mathrm{R}}=\frac{\mathrm{N}_{5}^{ \pm}}{\mathrm{C}_{5}}=-\frac{\chi_{\mathrm{mm}}^{2}}{Q^{2}} \frac{\varepsilon_{\mathrm{L}, \mathrm{R}}^{\mathrm{e}}}{2 \cos ^{2} \theta_{\mathrm{c}}}(f+1)(2 \lambda \delta+\beta)=-\frac{\mathrm{mm}_{\mathrm{p}}^{2}}{Q^{2}} \frac{\varepsilon_{\mathrm{L}, \mathrm{R}}^{\mathrm{e}}}{2 \cos ^{2} \theta_{\mathrm{c}}}(f+1)\left(\rho \varepsilon_{\mathrm{L}, \mathrm{R}}^{\mathrm{e}}\right), \quad \text { (27) } \tag{27}\\
& \tilde{\mathrm{R}}_{6 \mathrm{~L}, \mathrm{R}}=\frac{\mathrm{N}_{6}^{ \pm}}{\mathrm{C}_{6}}=-\frac{\chi \mathrm{m}_{\mathrm{p}}^{2}}{Q^{2}} \cdot \frac{\varepsilon_{\mathrm{L}, \mathrm{R}}^{e}}{2 \cos ^{2} \theta_{C}}(f-1)(2 \lambda \delta-\beta)=\frac{\lambda_{\mathrm{m}}^{2}}{Q^{2}} \frac{\varepsilon_{\mathrm{L}, \mathrm{R}}^{e}}{2 \cos ^{2} \theta_{C}}(f-1)\left(\rho \varepsilon_{\mathrm{L}, \mathrm{R}}^{\mathrm{e}}\right) \text {, (28) } \tag{28}\\
& \tilde{R}_{7 L, R}=\frac{N_{7}^{ \pm}}{C_{7}}=-\frac{\chi \mathrm{m}_{\mathrm{p}}^{2}}{Q^{2}} \frac{\varepsilon_{L}^{e}, \mathrm{R}}{\cos ^{2} \theta}(2 \lambda \delta f+\beta)=-\frac{\chi \mathrm{m}_{\mathrm{p}}^{2}}{Q^{2}} \frac{\varepsilon_{\mathrm{L}, \mathrm{R}}^{e}}{\cos ^{2} \theta_{c}}\left(\rho \varepsilon_{\mathrm{L}, \mathrm{R}}^{e}\right), \tag{29}\\
& \tilde{R}_{N}=\frac{N_{1}^{+}}{N_{1}^{-}}=\frac{N_{3}^{+}}{N_{3}^{-}}=\frac{N_{5}^{+}}{N_{5}^{-}}=\frac{N_{6}^{+}}{N_{6}^{-}}=\frac{N_{7}^{+}}{N_{7}^{-}}=\frac{\varepsilon_{L}^{e}}{\varepsilon_{R}^{e}}=\frac{2 x_{H}-1}{2 x_{W}} . \tag{30}
\end{align*}
$$

The right hand sides of these relations are determined by inter-
ference of electromagnetic and weak axial current interaction.
To make it shorter, we introduce the following notation:

$$
\begin{aligned}
& N_{1}^{ \pm}=\frac{d^{2} \alpha}{d x d Q^{2}}\left(e_{L}^{F} N^{I=0} \rightarrow e_{L}^{F} \quad X\right)-\frac{d^{2} \alpha}{d x d Q^{2}}\left(e_{R}^{ \pm} N^{I=0} \rightarrow e_{R}^{ \pm} X\right) \text {, (31) } \\
& N_{3}^{ \pm}=\frac{d^{2} \sigma}{d x d Q^{2}}\left(e_{L}^{\bar{I}} p \rightarrow e_{L}^{\bar{I}} \quad X\right)-\frac{d^{2} \sigma}{d x d Q^{2}}\left(e_{R}^{ \pm} \quad p \rightarrow e_{R}^{ \pm} \quad X\right)- \\
& -\frac{d^{2} \sigma}{d x d Q^{2}}\left(e_{L}^{\bar{F}} \quad n \rightarrow e_{L}^{\bar{F}} X\right)+\frac{d^{2} \sigma}{d x d Q^{2}}\left(e_{R}^{ \pm} \quad n \rightarrow e_{R}^{ \pm} \quad X\right), \\
& N_{5}^{ \pm} \quad=\frac{d \sigma}{d Q^{2}}\left(e_{L}^{\mp} \quad p \rightarrow e_{L}^{F} p\right)-\frac{d \sigma}{d Q^{2}}\left(e_{R, L}^{ \pm} p \rightarrow e_{R, L}^{ \pm} p\right), \\
& N_{6}^{ \pm} \quad=\frac{d \sigma}{d Q^{2}}\left(e_{L}^{\bar{f}} n \rightarrow e_{L}^{\bar{f}} n\right)-\frac{d \sigma}{d Q^{2}}\left(e_{R}^{ \pm} n \rightarrow e_{R}^{ \pm} n\right), \\
& C_{1} \quad=\frac{d^{2} \sigma}{d x d Q^{2}}\left(e_{L}^{-} N^{I=0} \rightarrow \nu X\right)-\frac{d^{2} \sigma}{d x d Q^{2}}\left(e_{R}^{+} N^{I=0} \rightarrow \bar{L}\right),
\end{aligned}
$$

As in the case of ' \bar{i} 'N- scattering, relations (25)-(30) are valid if p and n in formulae (32), (36) are replaced by nuclei A_{1} and A_{2} with different isospins. Besides, the replacement $\frac{d^{2} \sigma}{d x d Q^{2}} \rightarrow \frac{d o}{d Q^{2}}$ is possible in formulae (31),(32),(35),(36), without violating relations (25),(26).

Relations (25)-(30) can be used for extraction of the SM parameters P and $x_{w}=\sin ^{2} \theta_{w}$ from experimental data. From this point of view relations (30), like $\tilde{\mathrm{B}}_{\mathrm{N}}=\mathrm{N}^{+} / \mathrm{N}^{-}$, are of particular interest. They do not contain CS of the CC eN-scattering which is quite arare
independent of parameter ρ is also an advantage of relation (30) When extracting the value of x_{w} from the data, it allows systematic uncertainties due to correlation between P and x_{w} to be avoided. This correlation takes place in all other relations (7)-(11), (25)-(29) both for eN- and $2 N$ - scattering which contain ρ and x_{w} in the form of a product. Using together relations (30) and (25)-(29) allows this correlation to be eliminated and p and x_{w} to be extracted with essentially lowered uncertainties. It is also important that $\tilde{\mathrm{R}}_{\mathrm{N}}$ of (30) is highly sensitive to x_{W}. This means that during the extraction of x_{w} from the data the error Δx_{W}, results from the relative error of \tilde{R}_{N} measurement, is suppressed by sensitivity factor k :
$\Delta x_{W}=\frac{1}{k} \frac{\Delta \tilde{R}_{N}}{\tilde{R}_{N}} \cong \frac{1}{8} \frac{\Delta \tilde{R}_{N}}{\tilde{R}_{N}}$, where $k=\frac{1}{\tilde{R}_{N}} \frac{d \tilde{R}_{N}}{d x_{W}}=\frac{1}{x_{W}\left(2 x_{W}-1\right)} \cong 8$ at $x_{W}=0.23$.
The sensitivity of relation (8)-(11), (25)-(25) and, in particular, of Paschos-Wolfenstein relation to x_{W} is much lower: $k \cong 1$.

It can be significant for practical applications that
relations (36) are valid not only for the differential $\operatorname{cs} \frac{d^{2} o}{d_{x d} Q^{2}}$ and $\frac{\mathrm{d} a}{\mathrm{~d} Q^{2}}$, but also for the total $\Delta 0$, taken in an arbitrary region of the variables Q^{2} and x. The following substitutions in (30) are possible:

$$
\frac{d^{2} \sigma^{i}}{d x d Q^{2}} \rightarrow \Delta \sigma^{i}=\underset{\max }{x_{\min }} \int_{\operatorname{dx}}^{Q_{\max }^{2}} \int_{\min }^{2} d Q^{2} \frac{d^{2} \sigma^{i}}{d x d Q^{2}} \text { and } \frac{d \sigma^{i}}{d Q^{2}} \rightarrow \Delta \sigma^{i}=\int_{Q_{\min }^{2}}^{Q_{\max }^{2}}{ }^{2} Q^{2} \frac{d \sigma^{i}}{d Q^{2}}
$$

An important question of electroweak corrections [5] to relations (25)-(30) has been left unconsidered, it requires a special consideration.

Finally, we d like to mention the following. Since new physics can manifest itself as a weak deviation from the $S M$ predictions, the relations obtained can be used to searching for these deviations in scattering of polarized electrons and positrons ($\mu^{ \pm}$- mesons) on non-polarized nucleons and nuclei. In this case the nucleon structure, which is difficult to be checked, will not disguise the effect to be found. For example, the contribution of the additional Z-boson, which has been widely discussed recently, is reduced to a redetermination [6] of the parameters β and δ in formulae (25)-(29) and introduction of an additional factor in formula (30). Using the values of ρ and x_{w} obtained in the experiments free of the Z^{\prime}-boson influence, one can try to separate this contribution on the basis of the above relations.

The authors are thankful to D.Yu.Bardin, C.Burdik, Yu.P.Ivanov and B.Z. Kopeliovich for the discussion of the results.

REFERENCES
1.F.Paschos, L.Wolfenstein - Phys.Rev., 1973, D7, p.91;
2.P.Q.Hung, J.J.Sakurai - Ann.Rev.Nucl.Part.Sci.,1981, v. 31, p. 375;
3.V.A.Bednyakov, S.G.Kovalenko - Phys.Lett.,1989,219B,p.96;
4. Particle Data Group - REVIEW OF PARTICLE PROPERTIES, Phys. Lett., 1988, 204B, p.1;
f.D.Yu.Bardin, C.Burdik, P.Ch.Christova, T.Riemann

Berlin-2euthen prepr. PHE 88-15 (1988), subm. to 2.Phys.C.;
D.Yu.Bardin, C.Burdik, P.Ch.Christova, T.Riemann

Dubna prepr. JINR E2-88-682, E2-87-595:
6.V.A.Bednyakov, S.G.Kovalenko - Phys.Lett., 1988, 214B, p. 640.

Received by Publishing Department on April 28, 1989.

