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1. Introduction 

The problem of renormalization scheme choice in QCD does not 

lose its vitality. It is well known that ·· in practical I 

calculations momentum subtraction schemes turn out to be more I 
I 

preferable than MS ones. However MOM schemes are gauge dependent. 1 

The renorm-group analysis of gauge dependence _of UV predictions 

in MOM schemes yielded the conclusion1
'

2
'

3
/ t~at this dependence 

may happen to· be strong enough even to spoil the property of 

asymptotic freedom for effective coupling. This effect is tightly 

related to the fact that the gauge parameter a being constant in 

the classical Lagrangian in the quantum case due to 

renormalization becomes a momentum function and must be treated 

as a second running coupling a. 
There exists a solution of this trouble for matrix elements, 

say R, satisfying the gauge invariance condition dR/da o. 

combining this condition with 2-coupling RG differential 

equations it is possible to get4
'
5

/ effectively a 1-coupling 

group equation for R that contains the gauge parameter a as a 

fixed number. However this procedure does not influence the RG 

analysis of the UV behaviour of virtual quantities like 

propagators and v~rt~ces. 

Quite recently the problem of scheme choice has been revived 

again by calculation of the 4-loop contribution to the process of 

e + e - hadronic· annihilation. Here an anomalously large value of 

the numerical coefficient of a 3 . 7/' term was found • 

In this paper we propose. an effective drug to cure the 

·trouble of strong gauge dependencies_· in RG analysis of QCD based 

on a rather simple modification of the renormalization procedure. 



2. Renormalization that stops the running gauge 

As mentioned above for momentum subtraction schemes 

perturbation theory results 

constant gauge parameter a 

in QCD explicitly depend on the 

that correspond to the gauge fixing 

term (8B) 2/2a in the Lagrangian. 

According to general renorm-group 'd 'a/ 1. eology __ ,· 

treated as a second coupling constant with the 

effective coupling (or rather effective gauge) 

introduced: 

it must be 

corresponding 

a properly 

- 2 -1 2 a (Q , a, a) = a d (Q , a, a) • (1) . . 
Here d is a dimensionless function describing radiative 

corrections to the transverse part_of the gluon propagator that 

perturbatively can be written as follows 

d = 1 + (a/4rr) d
1

(Q, a) + (a/4rr) 2 d
2

(Q, a) + 

The 1-loop coefficient in.the massless approximation is equal 

d = {~ + 3a - 13} l (Q2/ 2) + ci 
1 3 2 n µ 1' (2) 

Here n is the flavor number and c
1

, a scheme-dependent constant. 

Let us assume now that the gauge fixing term in the Lagrangian 

contains the function dependence 

{f(o) (BB) }
2/2a (3) 

that is equivalent to the transition from a constant gauge 

parameter to a gauge function 

a 
2 2' - 2 

a(Q) = a ,p(Q) , ,p = 1/f . (4) 

This operation modifies Eq.(1) and can be used to provide the 

condition 
- 2 ' a(Q, ••• ) = a = const. (5) 

to fulfil with a proper choice of ,p • on a 1-loop level this 

corresponds to 

tp 
2 2 2 

,p(Q ,a,a) = 1 + (a/4rr) d
1 

(Q ,a) + 0(a) • (6) 

However in the next order one must take into account that 

operation (4) modifies the Feynman rule for the gluon propagator. 

2 

J 

., 

-~ 

In other words the 1-loop correction to the longitudinal gluon 

propagator, as described,py Eqs. (4) and (6), changes results in 

higher order calculations. Hence the second order term in r.h.s. 

of (6) must compensate the· modified 2-loop contribution d
2 

to the 

transverse part _of the gluon propagator. This O(a2
) term again 

must be taken into account in the course of a next order 

calculation and so on. Hence the "proper choice" can be written 

as 
tp = a (7) 

This gauge/ 

theories is of a general nature. It is formulated for covariant} 

change of the renormalization procedure in 

gauges in the same way for different renormalization schemes. We 

shall refer to it as to. the "stopping gauge" renormalization or 

SG modification. 

The nonlocality of the used counterterms does not lead to the 

loss of the theory locality as they can be absorbed by a special 

gradient transformation of a nonlocal form with the parameter 

function depending on the vector field operator 

Bc (x) ➔ i'ic = Bc + F{o) a (8Bc) 
µ µ µ µ (8) 

Let the initial potential B be related to a covariant gauge 

specified by the constant parameter a. Then, as can be easily 

shown
9
/, the new one B will correspond to gauge (3) with 

f(k2
) = [1 + k 2 F(k2

) ]-
1

• (9) 

In other words, nonlo';'al transformation (8) is equivalent to 

1· insertion of corresponding nonlocal counterterms. 

In the case k
2 

F(k
2
)= b = const our transformation results in 

a numerical change of the gauge parameter: a ➔ a(l+ b) 2 • It is 

clear that such · a transformation (like generally (8)) cannot 

change the sign of the gauge parameter. This means that the 

transversal gauge a = o is a singular one. It separates the 

positive and negative gauge domains each of which can be 

considered as a projection.of the orbit of gauge transformation. 

3 

I 



l 

This observation is complementary to the reasoning on the 

existence of 

arguments 12 '
3

~ 

a singularity at a =O based upon UV behaviour 

3. The Electron Propagator in QED 

As a simplest illustration, consider the electron propagator 

in quantum electrodynamics. It is well known that the UV 

asymptotics of the electron wave function factor has the form 

. s(Q2, •.• ) 2 
va 

(Q ) , v = a/ur . (10) 

As was first shown by Logunov8
/ this result can be obtained by 

a standard renorm-group technique using two effective couplings 

- 2 -1 a= a d(Q, a, a) , a= ad (11) 

Starting with the 1-loop perturbative input in the MOM scheme 

s(Q2,a,a) = 1 + !: 1 + O(a2), 

one obtains the Lie equation for s(Q2) 

dlns 
d1 

aa 
41l 

l = ln (Q
2/µ2

) 

(12) 

Taking into account _that according to (11) the r.h.s. is just 

the constant a a= a a after integration we get (10). 

Let us now use the SG modification, in which we have the same 

1-loop input but another differential equation 

dlns 
d1 

aa 
4 Tl 

instead of (12). By solving it we arrive at the expression 

(13) 

s(Q2, •.. ) = (a/a)3a/c = [l - 3: ln(Q2/µ2) l-3a/c (14) 

that is quite different from (10). As we see, even at the 2-loop 

level leading logarithms are different! Power expansion of (14) 

contains the contribution 

a 2 a 12/24 rr2 

that is absent in the usual perturbation expansion summed up in 

(10). However its origin is very transparent. As follows from 

4 

( 

l 
\ 
I, 
t 
j 

11 

~ 
1 

general discussion in Section 2, in SG MOM calculations we have 

to use, in Feynman rules, a modified photon propagator that looks 

'like 

k2 D5 c(k) =k2 D (k) +P 10119 (k) a {~d(k) +O(a2)} µv µv µv • err 1 

Due to this all perturbation calculation results starting from 

the second order ones are changed. For the UV asymptotics one can 

take d
1 

= (c/3) ln (k2/µ2). Inserting this a-order correction to 

D into the 1-loop diagram for the electron propagator we get 

precisely the mentioned contribution. 

4. Application to QCD 

Consider now the QCD case. For propagator scalar factors one 

has to start with the perturbation input 

s(~f,a, a) = 1 + s 1(a)a _1 + q(a)a2 1
2 

+ s 2(a) a
2
1 + O(a

3
) 

and the corresponding Lie equation for the SG case 

dlns 
d1 

- -2 s 1 (a)a + s 2(a) a (15) 

where for the QCD effective coupling a= a
5 

one has to use the 

1-loop RG summed expression a 1 = a (1 + a ~11)-1 in the second 

~J term and the 2-loop one 

- ~ a 2 = a (1 + a ~11 + c 2a ln(l + a ~11)} , c 2 = ~/~1 

for the first term in the r.h.s. Integration of Eq. (15) yields 

s(Q2, a, a) = (a (Q2)/a]-CTl(a) exp { aZ [ a (Q
2) - a ] } (16) 

2 2 I 

with o-1(a) = s 1(a)/~
1 

and Z2 depending linearly on 2-loop 

coefficients ~2, c
2

• 

For the gluon propagator according to (2) we have 

s
1 

= 3(a - a*)/Srr, a*= (39 - 4n )/9. 

Generally, in SG modified calculations it is possible to 

obtain RG improved expressions with an explicit gauge dependence 

in contrast to the usual 2-coupling RG procedure where we have 

solutions on the phase plane (a, a) given implicitely. 

5 



5. Discussion 

It is important for us that the SG modification turns the 

2-coupling renormalization group in the gauge dependent QCD into 

the 1-coupling one. As a result the 2-loop coefficient {3.
2 

of 

the group generator in every SG modified MOM scheme ceases to 

depend o~ the scheme and on the gauge parameter being equal to 

its "usual" invariant p" 5 value. Hence the beta-function gauge 
2. 

dependence is moved aside to the 3-loop level. However the /3
3 

coefficient in each scheme must be calculated anew with account 

of the mentioned Feynman rule SG modification. 

Here it must be said also that·the gauge dependence can still 

arise in the QCD beta-function on the 2- and even 1-loop level 

due to the inclusion of heavy quark masses along the line 

developed in14
~ 

we·· see that the use of the SG trick provides an elegant, 

solution of all troubles with a strong gauge dependence of 

perturbative QCD predictions in MOM schemes. It is clear that 

such "gauge phantoms" as the loss of asymptotic_ freedom for 

effective a observed in_ papers1
'2/ can be avoided not only for 

physical quantities Ras in the aforementioned procedure 4 , 5 / but 

for all quantum field functions simultaneously. 

Simple estimates reveal that the gauge dependence of the 3-

loop coefficient /3
3 

can still lead to appearance of a fixed point 

in some SG MOM schemes. However, for reasonable values of the 

gauge parameter, say lal<lO, it' lies far away from the weak 

coupling region. 

In this connection we would like to notice that in QCD the 

3-loop approximation for a turns out15/ to be physically 

irrelevant as the 3-loop contribution to the a becames essential 

6 

only in the sufficiently low Q2 region where perturbative QCD 

cannot be used for the description of strong-interaction physics 

due to higher twists and hadron mass effects. 

I would like to thank Dr. O. Tarasov and Mr. L. Savchenko for 

valuable discussions. 
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