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1. Introduction 

The processes for the generation of the different type 
hadron systems (components or resonances) are studied very 
intensively during last 15 years (see, e.g., (1- 11 )). 

When discussing of physical characteristics for the 
exclusive processes 
(1) a+ b ~ n 1 + n2+; •• + nv' 
in which n1 ,n

2
, ••• , nv hadrons of v-types take a part, the fol

lowing hypothesis by Koba, Nielsen and Olesen (KNO) (1 )'appears 
to be mentioned first of all: Let o(n1, ••• ,nv) and o are topolo
gical and inclusive (total) cross-sections for the prosesses (1 ). 

Then 1) their combination with the average multiplicities <n1> 
leads to the following multidimensional scaling 

V 

(2) TI <n1>•o(n
1

, ••• ,n )/a= /(z
1

, ••• ,z ), 
1=1 V . V 

where·z
1 

= n
1
/<n

1
>; 

2) from (2) it also follows a one-fold KNO-function 
(3a) < n

0
>•0n

0
/0 = ~(Z

0
) = J; dz2 ••• ra dzv /(Z

0
,Z2 , ••• ,zv) 

for the n
1 

= n
0 

charged particles in the semi-inclusive re
action 
(3b) a+b~ n +x 

0 

3) The relation (3) means a "invariance under the resonanace 
decay (emmision?)" 

We do not quite catch the third item of this hypothe~ 
sis. First, according to the well know Causby formula for 
v~fold quadrature the expression (3a) is reducing to one-fold 
(4) ~(z ) = __ !._ __ ~ (t-z )v-2 /(t)dt. 

o (v-1)1 Z
0 

o 

if the arguments of the function (2) are additive as t=~ z1 . 

Thus,e.g., ~ may depend on v. This may also take place when 
the resonances 'are produced in the limited amounts and distribu
ting (or decaying) as the Kroneker a(z1-a1 ) function, where 
a1 are the decay parameters with i=2, ••• ,v. Then quadra-
tures do not accur at all, but/ may d~pend on v and, 
consequently,the relation (3a) is broken just as that takes 
place for the central pseudorapidity windows l~I (14

•
15

). 



Secondly, in some works, where it was possible to catch 
these effects of hadronization, unfortunately, the two-co
mponent mod.els are considered only (8•9•11 ). In order to 
show incorrectness of this restriction, we give.the following 
example. It is not difficult to obtain the correlation rela
tion between the mean number of the neutral particles <n0(n

0
)> 

and the number of the charged one n 
,no(nc)> 1 f:c (t-zc)v-1c/(t) dt 

(5) -------- = --- --------------------
<no> v-1 J00 (t-z )v-2 /(t) dt 

Z C 
C 

Here we substitute the function 
(6) /(t) = ta-v exp[-(a/v)t], 
which will be called the generalized gamma(r)-distribution. 
Then at v<a the formula (5) describes the negative correla
tion (-1.e. the right part is the de.creasing function of z ) . 

. C 

When v>a the saturation of the positive correlation is rea-
ched. Such a behaviour is in agreement with the experimental 
data (see, e.g., (7•10•13 )), that denotes once more the pos
sibility of the correlated component number fluctuation. 

The question now arises how well this number is defined 
(13 ) and of whether. this is a reason for the "mystery" of the 
well known negative binomial distribution (i.e. the origin 
of KNO scaling violation?). 

Speaking a priori, the answer is positive: in term of 
KNO scaling explanation of the enigma are the generalized r
distribution (6) and uncertainty principle between the num
ber v·and the correlation intensity. 

Generally speaking, the methods of the investigation of 
(1) have reduced to solution of the problems of algebraic (4), 
differential (D) (6•10) and differential-difference (DD) (5•8 ) 
equations. DD-eqs.(see (11 · 12 ) and refs~ therein) are being 
investigated most intensively in the last years. Giovannini has 
derived them 10 years ago with the assumption that the gluon
gluon fussion, gluon bremsstrahlung and quark-antiquarke em
mision processes have the stochastic (Markovian) nature. 
The authors of refs.( 11 •12 ) seem to transpose these eqs. from 
sub-hadronic (quark-gluon) level to hadronic one without 
any changes. 

At present the mentioned above quark-gluon subproces-

2 

., 

ses are exactly calculated in the a3 order of QCD (16 ) and 
N=1,2 supersymmetric QCD (17 ·20) thanks to the modern power
ful! methods (18 •21 -23 ). It should be noted, that the 
higher order calculations of the squared matrix element for 
the gauge invariant set of the Feynman diagrams require full Le 

automatization of all computing steps and as long as that can
not be accomplished by means of the universal system REDUCE-3 
(22 ). Attempts to automate for the hadron exclusive processes 
of the a5 order obeying the well-known "quark counting rule" 
( 19 ), have been made by Farrar and Neri (23 ) in the programming 
language "C". We do not know the details of the calculations 
and below we should use some results from (18 ), which consist 
in determining a common structure for the parton squared 
matrix elements in the an order. Thus, using the 
principle of automodelity (19), we are starting from D-eq. 
for the homogenous function. Its degree is exactly defined 
by simple dimentional analysis. Further in sect.2 on the 
basis of the assumption of generating several hadronic compo
nents (resonances) by means of the given number of quarks, we 
make averaging with the Bogolubov method (24 i that leads to the 
chain of the D-eqs. for mean multiplicities with matrix of the 
multiplicity correlation. Similarity with Bogqlubov equations 
appears more in possibility of parametrization of this matrix 
with the aim of cutting the chain. 

In sect.3 we solve the CaushY problem by the moment me
thod and by the combination of the characteristic equations. 
It should be mentioned that the arising correlation parameters 
obey the principle of "universality" (26 ), according to 
which the parameters do not depend on the "time" variable ,i; 

and the number v. However, as it will be see below, we do not 
refer to a standard renormalization scheme (25 •26 ). Moreover, 
we do not see any disagreement with the previous results 
(6, 10,26). 

2. Chain of the D-eqs. with the correlated hadronic 
components 

Recently a common structure of the differential cross
section for the n-parton processes was established in QCD 

~ ~;::.-c':',1,J.:,~...:::....._~.,...:r..:::::-~ .. ,:_,,,...,.,. 
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(18 ).This squared matrix element for n-gluon processes is able 
to reproduce, for instance, the known formulae of the 4 - and 
5 - gluons processes and has the following structure 

2 _, 4 
(7a) IMlng"' u (pipj) L Ci/l,(P1P2><P2P3>•··<PnP1> 1, 
where Ci are independent isotopical constants. 

Gluon replacement by means of quarks, as we have veri
fied in the a3 order (17 ) leads ·to the negligible change of the 
factor in (7a) so 

4 
1 2 

(7b) L (pipj) ⇒ L (pipj)'Y (pkpf)'Y ' 
where ..,1+ ..,2 = 4. 

Testing of formulae (7) in the higher order of the per
turbative theory is not possible by the standard methods of 
the quantum field theory (25 ) and computer algebra (21 ) beca
use of the absence of complete automatization of all computing 
steps (22 ). So let us restrict ourselves by formula (7) when 
considering of n-quark tree diagrams with gluon exchange too. 
The exclusive hadron scattering at the large transferred momen
ta (19 ·23 ) is taken to be realised by these diagrams. 

The expression 1·M 12 as a function of the momentum p1 , ••. 
,Pn satisfies the automodelity principle, i.e. under momentum 
scale transformation pi ⇒ ~pi has.to trasform as homogeneous 
function of corrElsponding dimension ( 19 ). It is easy to deter
mine this dimension as m=-(n-4). In other words, IMl 2 satis
fies the following D-eq. 

n fJ 2 2 
(8) LP --- IMI = - m IMI • i=1 i (Jpi 

Now turn to the hadronic level. 1. Let us suppose that 
the given number n of quarks is so large that we can generate 
the several (v) hadron components with multiplisities n1, .•• , 
n., so that 

" (9) n = E N
1
ni » 4, m £! - 2n , 

i=1 
where Nj are the q1mr1': number in i-type hadron; 

2. lnL(;grate (8) over "entra" momenta of quarks in such 
way, that some of them remain for composing one (or two) in 
the final (initial) state; 

3. Make averaging over some type of multiplicities and 
define from physical point of view the additional (and 
initial) condition for solving the chain of D-eqs. 
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It is easy to prove that integrating of the left part of 
(8) over (n - 1) - momenta gives 

{J 2 " [ p --- - (n - I ) l f IM I II dp · 1 op 1-2 1 
1 -

(8a) 

If interpreting the appearing integral as a differential 
cross-section of the "quasiexclusive" processes 

(10a) a+ b ⇒ c(p) + n1 + n2 + ... + n.,, 
where c(p) is the single separated hadron with given momentum 
p=p1, from (8) and (9) we get the following characteristic 
eq.: 
(10b) d --- a (n1 , ... ,n ) = - (~ N1n1) •O ( n1 , ••. , n ) . 

d~ " . " 
The physical meaning of time variable~ can be obtained 

if pµ = P6 et is a solution of eq. d pµ = pµ dt, so 
~ = ln(pp0 )/p~. When momentum p is linked with initial 

particles in the reaction a+ b ⇒ n + X, then~= ln s/2m2 . 
C p 

And now it is not difficult to obtain ·a characteristic 
eq. for the inclusive processes a+ b ⇒ c(p) + X differential 
cross-section· (26 ) 

d V 
d~ o = -( E N1 <n1 >)o, 

1=1 
( 11 ) 

and for mean (associated) multiplicities for all i=1, .•. ,v 
d v 

(12) d~ <ni> = -k~1NkDik' 

where values D1k = <n1~> - <n1><~> form the matrix of cor
relation (dispertion) between multiplicities of the different 
type hadrons also. D1k are linked to the higher multiplicity 
moments equation of the following form: · 

(13b) ~~ C(q1•···•q.,) = L:=1{ Ni<ni>[C<q1•···•q1.+1•···•q.,) -

C(q1•···,qi, •.• ,q.,)[1+q1D11./<n1>2 J]} • 
Here normalized multiplicities moments are defined as 

00 " qi (13a) C(q1, .•• ,q.,) = f 0 /(z1, •.. ,z.,)
1
~

1
z1 dz

1 
= 

_ q1 · q.. q1 q .. 
= <n1 ••. n., >l<n1 > ... <n., >. 

We are going to make a procedure of splitting (cutting) 
starting from DD-eqs. (13a). 

In order to compare we write the simple form of DD-eq. 
given by Giovannini et al. (5,8 , 11 ) 

d N (14) --P = - A,n,P + A,(n-I)P , 
dt n n n-1 
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where Pn denotes the normalized cross-section for then-gluon 
sub-processes, A and A are arbitrary constants. We see that 
the right-hand side of eq. (14) differs from (10b) one 
mainly by second terms. However, the hadronization in our 
approach more resembles the chain of Bogolubov than 
Markov's one. It is interesting to note that analogous eqs., 

in our opinion, may result from the renormalization group 
analysis in the framework of QCD 

3. Solution of the Cauchy problem by methods of recurrence 
and combination 

Let us show that nontrivial and the physically interested 
solutions of eqs. (10)-(13) occur only for correlated components. 
We start from the noncorrelated case, where Dik=0 when i#k, 
i.e. matrix of correlation 

(
D11•···D1v'} 

(15a) D = •• . • . . . .• • • , 

Dv1 '• · .Dvv' 
is diagonal. We line the remainder elements as 
(15b) Du= ¼i (<ni>-ai)2 

and consider the constants ai 11 ai as "universal", i.e. inde
pendent of the parameters of the theory:~ and v. This law 
is well known, for instance, for charged particles (27 ). 

As all <ni> are independent and, moreover, 
d C ( I , ... , I ) = I , 1. e. ii1: C ( I , ••. , I ) = 0, 

from eq.(13b) we get solution with index 2: 
C(2,I, ... ,I) = {I+[I- (2a1/<n1>)+(a~/<n1>21}. 

So as to continue the recurrence, we have else to suppose, 
that <ni> >> ai for all i=1, ..• ,v. Then it easily can be 

checked that for any set of indices the normalazed multiplici
ty moments do not depend on ~ and we can obtain them recur
sively in the factorized form 

(13c) C(q1, ••. ,qv) = i~
1 
{ I'(ai+qi)/,r(ai) } ' 

We inverse (13a) as the Mellin transformation and see, 
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consequently that the multidimensional KN0-function (2) is 
also restoring as a production of the one-component r-distribu-
tions (26 ): • 

a aii ai-1 
(6a) lI!(z ) = ----- z exp(-a z ) • 

i rca ) i i i 
i 

This function has been used most intensively for the last 
5 years for approximation of the experimental data in the 
large range of the energies and for the dirrefent intervals 
of the pseudorapidity 1~1- However, as was mentioned in Intro
duction, the parameter ai figuring therein is "mysteriously" 
changed (12 •13 ). This points the way to go out from the one
component regime sets and to obtain a physically correct 
solut.ion for the func~ion (2). · 

As it has been seen, DD-eq. (13b) is recurrently solvable 
at the very limited conditions and it does not help us in 
solving this problem. Therefore we turn to the immediate 

analysis of the chain of the D-eqs. (10)-(12). In the general 
case,by linearizing matrix (15a),we can give it in the nondiagonal 
form with the different wheights (intensities) of the correla-
tions 
(15c) 1 , 

Dik= a--<ni><~> 
ik 

for all i,k=1, ••• ,v. 
But the case of the saturation is 

with the same intensities 
aik = a for all i,k = I, ••• ,v. 

conveniently considerable 

Consequantly, the system (12) composed from v-eqs. may be 
reduced to one 

6 d<x> D2 ( (1 ) ii~--= - X), 

where 
(16a) x =~~Nini, <x> = ~~ Ni<ni>, D2(x) = <x2>-<x>2~ ¼<x>2• 

For excluding d~ let us divide (10b) and (11) by (16). 
Thus we get 

d · ax (17a) ---- o(n
1

, ••• ,Dv) = ---2 o(n
1

, ••• ,n) 
d~x> <x> v 

(17b) _g __ o = _!!_ o · 
d<X> <X> 

They are easy integrated 
(18) o(n1 , ••• ,Dv) = C

1
exp(-a-:!-), a= 02<x>a, 

<x> 
where 01 and 02 are first integrals. 
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Let us formulate the Cauchy problems so that the combina
tion of (18) at ~=0 must satisfy the following function 
(19) F(Z)=Za-v exp(-aZ) 
as an initial condition, i.e. 

(20) <x>v ---- = F(Z), 
{ 

o(n •... ,n )} 

0 ~=O 
with argument Z= x/<x>. Then we get equality 

{~1} = xa-v, 
0

2 
~=O 

Inserting the first integrals (18) into the last expres
sion, it is not difficult to check up, that relation (20) is ful
filled for a11·values of~ and one may give it the view of 
(2). 

Since 
d a:~<ni> = _-<ni><x> • 

<ni>/<n1 > = Ci are the first integrals too. And now we can 
determine them introducing the explicit form of (20) into the 
standard definition <ni>. So we get the relations 

· Ni<ni~ = N1 <n1 >, <x> = v N1 <n1 >, Z = ~; zi/v, 
which give to (20) the necessary form as KNO-scaling (2) (10

) 

(21) f(z 1 , ••• ,zv) = /(~ zi) = A(~ zi)a-vexp[- i (~ zi)J 
where 

A = [ ~ ] !'..t~l. 
v r(a) 

Finally, we should explain the r-distribution "enigria" 
mentioned in Introduction by means of (21). Let us consider 

precisely the case when v>1 quadratures do not arise due to 
the Kronecker delta function O(zi- ai). Then the KNO-function 
(3) for n

1 
= n

0
, according to (21), is parametrized in 

the generalized r-distribution form 
. v(a -1} 

(22) W(Z ) q (Z + a ) e exp[-a (z + a}] . 
C C e C 

:Finphasize the means of the parameters arising here 
ae =a/vis effective intensity of all types of correlations, 
constants v and a characterise the birth and decay processes 
of resonances, accordingly. The comparison of the formulas 
(22) with the experimental data ( 15 ) confirms increasing of 
the component number (v = 2,3) in the central,pseudorapidity 
l~I windows and, correspondingly, decreasing of ae so that 
their production will be constant, i.e. v ae = a q 4. 
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This uncertainty principle between number v of correlated 
components and intensity of their correlation was also obser
ved (7

•
10

) at the approximation of the experimental data by 
means of formula (5) for the neutral-charge particles 
correlation. If ~(z1- a 1 ) is absent, the shape of the r-dis
tribution is strongly modified by the averaging over the mul
tiplicities n

2
, •.• ,¾ (7 ). 
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