

объединенный институт ядерных исследований

> E2-89-280

A.T.Filippov, A.P.Isaev

GAUGE MODELS OF DISCRETE STRINGS

Submitted to "Modern Physics Letters A"

1. Introduction

One of the possible approaohes to nonperturbative string theory is to oonsider disoretized (lattioe) strings. Most attempts up to now were applied to the world sheet disoretization whioh is diffioult to interpret in terms of hamiltonian dynamios (see e.g. the pioneer papers [1], reoent reviews [2] and referenoes therein). It would be of great interest to have some finite dimensional hamiltonian systems whioh imitate strings with their symmetries and for whioh one might hope to develop nonperturbative quantum dynamios.

Reoently, one of us [3] has developed a gauge approach to construoting oonstrained theories of relativistio partioles bound by harmonic foroes, inoluding a model of ohain-like objeots resembling in some aspeots relativistio strings. Unfortunately, their relation to the continuous string is not olear, and here we propose a new olass of disorete "string" models oonstruoted in close analogy with the standard strings. Of particular importanoe for us is the ohiral struoture of the gauge group aoting on the ohiral phase space string variables (left and right movers) and the teohnique of quantization based on path integral methods for constrained systems. We introduoe an exaot disorete analog for the ohiral variables as well as for the ohiral gauge group of the string theory, and suggest one of the possible approaches to quantizing the models for arbitrary gauge groups. A pobsibility of inoluding fermionio degrees of freedom is also pointed out. The Iemionio disorete "strings" oan possibly be applied either to hadron physios or to unified theories. At least, they oan be used as finite-dimensional approximations to superstrings whioh have

simpler dynamical structure making a nonperturbative approach to solving them more feasible,

The paper is organized as follows. In Sect. 2 we develop the hamiltonian formulation of the new disorete "string" models. Seot. 3 deals with quantizing these models with the use of the path integral methods. In partioular, the heat kernel and the propagator are construoted. In oonclusion (Seot.4), we summarize the results and outline problems and prospeots for future development.

2. Classical discrete "strings"

The oanonical action of the standard olosed bosonio string may be written as (see [4],[5]):

$$
\begin{equation*}
S=\int_{0}^{T} d t \int_{0}^{2 \pi} d s\left(\dot{q}_{\mu} p^{\mu}-\frac{1}{4} l_{+} z_{+}^{2}+\frac{1}{4} l_{-} z_{-}^{2}\right) \tag{1}
\end{equation*}
$$

where all variables are functions of t and periodic functions of s (more often these variables are known as τ and σ), the dot denotes δ_{t}, μ is the D-dimensional Minkowbki space-time index, and $z_{ \pm}^{\mu}=p^{\mu} \pm \partial_{g} q^{\mu}$ are the usual ohiral string variables in the phase space (p, q). This theory is easily seen to be invariant under the gauge transformations whioh are most clearly expressed in terms of the ohiral variables $z_{ \pm}$:

$$
\begin{equation*}
\delta z_{ \pm}^{\mu}=\partial_{s} f_{ \pm} z_{ \pm}^{\mu} ; \quad \delta l_{ \pm}=\dot{f}_{ \pm}+\left[f_{ \pm}, l_{ \pm}\right]_{\theta} \equiv \dot{f}_{ \pm}+f_{ \pm} \partial_{s} l_{ \pm}-l_{ \pm} \partial_{a} f_{ \pm} \tag{2}
\end{equation*}
$$

Remind that the invariance of the action (1) requires oertain boundary conditions on $f_{ \pm}$at $t=0, T$. Commuting two suooessive transformations of z_{+}or z_{-},

$$
\left[\delta_{2}, \delta_{1}\right] z=\partial f_{3} z, \quad f_{3}=f_{1} \delta_{s} f_{2}-f_{2} \delta_{s} f_{1} \equiv\left[f_{1}, f_{2}\right]_{\theta}
$$

one
finds that they form the representation of the algebra
$\operatorname{Vect}\left(S^{1}\right) \otimes \operatorname{Vect}\left(S^{1}\right)$, as the Lie braoket $\cdot[,]_{0}$ defines the Lie algebra of one-dimensional veotor fields. In Eq.(2) the gauge potentials $l_{ \pm}$and infinitesimal funotions $f_{ \pm}$may be thought of as symmetrio matrioes depending on the oontinuous indices a^{\prime}, a^{n}, e.g. $\left(f_{ \pm}^{\prime}\right)_{s^{\prime} a^{n}}=\int d s f_{ \pm}(t, s) \Gamma_{a, s^{\prime} g^{n}}$ where $\Gamma_{g, s^{\prime} g^{\prime \prime}}=\delta\left(s^{\prime}-s\right) \delta\left(s-s^{n \prime}\right)$. Then, ∂_{s} is the skew-symmetrio matrix, $\left(\partial_{s}\right)^{s^{\prime} a^{\prime \prime}}=\delta^{\prime}\left(g^{\prime}-s^{\prime \prime}\right)$, and the gauge transformations may be presented in a more standard form by identifying $\left(O_{a^{\prime}} f_{ \pm}\right)_{a^{\prime \prime}}^{a^{\prime}}$ with the generators $\left(F_{ \pm}\right)_{a^{\prime \prime}}^{a^{\prime}}$ of the gauge transformations while considering $\left(\partial_{a^{\prime}} \tau_{ \pm}\right)_{g^{\prime \prime}}^{D^{\prime}}$ as matrices of the gauge potentials $\left(A_{ \pm}\right)_{s^{\prime \prime}}^{s^{\prime \prime}}$. Then, Eq. (2) can be rewritten in the standard form

$$
\begin{equation*}
\delta z_{ \pm}=F_{ \pm} z_{ \pm} ; \quad \delta A_{ \pm}=\dot{F}_{ \pm}+\left[F_{ \pm}, A_{ \pm}\right] \equiv \dot{F}_{ \pm}+F_{ \pm} A_{ \pm}-A_{ \pm} F_{ \pm} . \tag{3}
\end{equation*}
$$

Now, we construot a disorete version of the string theory introduoing canonioal variables $p^{a}(t), q_{a}(t)$ and a skew-symmetrio matrix $\partial^{a b}, a, b, c=1,2, \ldots, N$. This matrix is considered as a disorete analog of the derivative ∂_{s}. Aocordingly, we introduce the chiral variables $z_{ \pm}^{a}=p^{a} \pm \partial^{a b} q_{b}$ and the oanonioal aotion

$$
\begin{equation*}
S_{1}=\int_{0}^{T} d t\left(\dot{q}_{a} p^{a}-\frac{1}{4} l_{+}^{m} z_{+} \Gamma_{m} z_{+}+\frac{1}{4} l_{-}^{m} z_{-} \Gamma_{m} z_{-}\right) \tag{4}
\end{equation*}
$$

where $\Gamma_{m}=\Gamma_{m, a b}$ are some symmetrio $N \times N$ matrioes, $m=1,2, \ldots, \boldsymbol{Y}$. Defining the matrioes similarly to the oontinuous case

$$
\begin{gather*}
T_{m}=\left(T_{m}\right)_{b}^{a}=\partial^{a c} \Gamma_{m . c b}, T_{m}^{*}=\left(T_{m}^{*}\right)_{a}^{b}=\Gamma_{m . a c} \partial^{a b}, \tag{5}\\
P_{ \pm}=\left(F_{ \pm}\right)_{b}^{a}=f^{m}(t)\left(T_{m}\right)_{b}^{a}, A_{ \pm}=\left(A_{ \pm}\right)_{b}^{a}=l^{m}(t)\left(T_{m}\right)_{b}^{a},
\end{gather*}
$$

it is easy to find that the gauge transformations (3) with these matrices $A_{ \pm}$and $F_{ \pm}$are olosed if Γ_{m} satisfy the oommutation relations

$$
\begin{equation*}
\Gamma_{m} \partial \Gamma_{n}-\Gamma_{n} \partial \Gamma_{m}=\left[\Gamma_{m}, \Gamma_{n}\right]_{\theta}=t_{m n}^{l} \Gamma_{2}, \tag{7}
\end{equation*}
$$

from whioh the standard Lie algebra relations follow for T_{m}, T_{m}^{*}

$$
\begin{equation*}
\left[T_{m}, T_{n}\right]=t_{m n}^{l} T_{l}, \quad\left[T_{m}^{*}, T_{n}^{*}\right]=t_{m n}^{l} T_{l}^{*} . \tag{8}
\end{equation*}
$$

From the definitions (5) we see that T_{m} and T_{m}^{*} are traceless matrices and $\left(T_{m}^{*}\right)_{a}^{b}=-\left(T_{m}\right)_{a}^{b}$.

Thus, to construct our disorete model we need a skew-symmetrio matrix δ and the symmetrio matrioes Γ_{m} satisfying Eq. (7). The complete system of the $N \times N$ symmetrio matrices olearly satisfies Eq. (7). One oan see that in this case the matrioes T_{m} generate the real nonoompaot algebra $s p(N, R)$. Any other possible algebra must be represented as some subalgebra of $s p(N, R)$. If we wish to have a good analogy with the continuous string theory the number of generators in this subalgebra must be of the order of $2 N$.

Now we discuss the hamiltonian struoture of our system. The Poisson braokets for the oanonioal and ohiral variables are

$$
\begin{equation*}
\left\{q_{a}, p^{b}\right\}=\delta_{a}^{b} ; \quad\left\{z_{+}^{a}, z_{-}^{b}\right\}=0 ;\left\{z_{ \pm}^{a}, z_{ \pm}^{b}\right\}= \pm 2 \partial^{a b}, \tag{9}
\end{equation*}
$$

and the equations of motion have the form:

$$
\begin{gather*}
\dot{q}_{a}=\frac{1}{2} \Gamma_{m, a b}\left(l_{+}^{m} z_{+}^{b}-l_{-}^{m} z_{-}^{b}\right) ; \dot{p}^{a}=\frac{1}{2} \partial^{a c} \Gamma_{m, c b}\left(l_{+}^{m} z_{+}^{b}+l_{-}^{m} z_{-}^{b}\right), \tag{10}\\
T_{m}^{ \pm} \equiv \pm \frac{1}{4} \Gamma_{m, a b} z_{ \pm}^{a} z_{ \pm}^{b}=0 . \tag{11}
\end{gather*}
$$

Eqs.(11) are the constraints on the oanonioal variables. They form the Lie algebra (8) with respeot to the Poisson brackets

$$
\begin{equation*}
\left\{T_{m}^{ \pm}, T_{n}^{ \pm}\right\}=t_{m n}^{l} T_{l}^{ \pm}, \quad\left\{T_{m}^{+}, T_{n}^{-}\right\}=0 \tag{12}
\end{equation*}
$$

These first-olass constraints generate the gauge transformations

$$
\delta q_{\mathrm{a}}=\frac{1}{2} \Gamma_{m, a b}\left(f_{+}^{m} z_{+}^{b}-f_{-}^{m} z_{-}^{b}\right) ; \delta p^{a}=\frac{1}{2} \partial^{a c} \Gamma_{m, c b}\left(f_{+}^{m} z_{+}^{b}+f_{-}^{m} z_{-}^{b}\right)
$$

The aotion S_{1} is invariant under these gauge transformations if $l_{ \pm}^{m}$ transform as gauge potentials,

$$
\begin{equation*}
\Delta l_{ \pm}^{m}=\dot{f}_{ \pm}^{m}+f_{ \pm}^{k} t_{k n}^{m} l^{n} \tag{14}
\end{equation*}
$$

and if $f_{ \pm}^{m}$ satisfy the boundary conditions

$$
\begin{equation*}
f_{ \pm}^{m}(0)=f_{0^{0}}^{m}, f_{ \pm}^{m}(T)=f_{T}^{m} \tag{15}
\end{equation*}
$$

Eqs.(13),(14) oan easily be rewritten in the standard form (3).

Remark that the matrices T_{m} act on momenta while T_{m}^{*} act on coordinates similarly to the standard reparametrizations.

The equations of motion for z_{+}and z_{-}are independent.

$$
\begin{equation*}
\dot{z}_{ \pm}^{a}=l_{ \pm}^{m}\left(T_{m}\right)_{b}^{a} z_{ \pm}^{b} \tag{16}
\end{equation*}
$$

and the Cauohy problem for them oan formally be solved,

$$
\begin{gather*}
z_{ \pm}^{a}(t)=V_{ \pm}\left(t, t_{0}\right)_{b}^{a} z_{ \pm}^{b}\left(t_{0}\right), \tag{17}\\
V_{ \pm}\left(t, t_{0}\right)=\operatorname{Pexp}\left\{\int_{t_{0}}^{t} d t t_{ \pm}^{m}\left(t^{\prime}\right) T_{m}\right\} . \tag{18}
\end{gather*}
$$

Taking into aooount that the finite gauge transformations corresponding to Eqs. (3) have the standard form, one oan easily find the transformations of the evolution matrix

$$
\begin{gathered}
V_{ \pm}\left(t, t_{0}\right) \rightarrow \exp \left(f_{ \pm}^{m}(t) T_{m}\right) V_{ \pm}\left(t, t_{0}\right) \exp \left(-f_{ \pm}^{m}\left(t_{0}\right) T_{m}\right) \\
z_{ \pm}^{a}\left(t_{0}\right) \rightarrow \exp \left(f_{ \pm}^{m}\left(t_{0}\right) T_{m}\right) z_{ \pm}^{a}\left(t_{0}\right) . \quad z_{ \pm}^{a}(t) \rightarrow \exp \left(f_{ \pm}^{m}(t) T_{m}\right) z_{ \pm}^{a}(t)
\end{gathered}
$$

These finite gauge transformations form the gauge group $\mathcal{G} \otimes G$ corresponding to the group G generated by the Lie algebra of the matrices T_{m}. It is analogous to the ohiral group of the continuous theory $\operatorname{Vect}\left(S^{1}\right) \otimes \operatorname{Vect}\left(S^{\prime}\right)$. This completes our construction of the olassical disorete "string" models. Above, we have considered general oanonical coordinates. To obtain a oloser correspondence with the relativistio strings one introduces the relativistio phase space $\left(q_{a}, p^{a}\right)=\left(q_{a}^{\mu}, p^{a \mu}\right)$ where μ is the D-dimensional space-time index, $\mu=0,1, \ldots, D-1$. By contracting these indices in Eq. (4) one trivially obtains the Lorentz-invariant theory. To add space-time translation invariance, oonsider the transformation

$$
q_{a}^{\mu}(t) \rightarrow q_{a}^{\mu}(\dot{t})+c^{\mu} \Sigma_{a}
$$

where c^{μ} and Σ_{a} are t-independent. The aotion is invariant under these transformations if $\Sigma_{a} \partial^{a b}=0$, i.e. $\partial^{a b}$ is degenerate and Σ_{a} is an eigenveotor with zero eigenvalue.

3. Quantizing discrete "btrings"

Following the rules for quantizing constrained hamiltonian systems $[6,7]$ consider the path-integral representation for the transition amplitude (propagator)

$$
\begin{gather*}
\mathscr{D}\left[q^{f}, q^{i}\right]=\int q_{1} \exp \left\{t \int_{0}^{T} d t\left(\dot{q}_{a} p^{a}-\frac{1}{4} l_{+}^{m} T_{m}^{+}-\frac{1}{4} l_{-}^{m} T_{m}^{-}\right)\right\} \tag{20}\\
q_{1}=\prod_{0 \leqslant t \leqslant T} D p^{a} D q_{a} D l_{+}^{m} D l_{-}^{m}\left[\Delta_{\mathrm{FP}} \Pi_{\boldsymbol{g f}}\right]
\end{gather*}
$$

where the integration is performed over all Lagrange multipliers $l_{ \pm}^{m}(t)$ and all phase-space trajectories $p^{a}(t), q_{a}(t)$ with fixed coordinates at the boundaries of the evolution interval

$$
q_{a}(0)=q_{a}^{l}, \quad q_{a}(T)=q_{a}^{f}
$$

We also inolude in the definition of the integration measure the Faddeev-Popov determinant $\Delta_{F P}$ and the gauge-fixing term $\Pi_{g f}$.

We lix the gauge by ohoosing $l_{ \pm}^{m}(t)$ independent of t,

$$
\begin{equation*}
\tau_{ \pm}^{m}(t)=\frac{1}{T} \hat{t}_{ \pm}^{m} \tag{21}
\end{equation*}
$$

In this gauge the evolution matrix $V_{ \pm}(T, 0)$ is simply $\exp \left(\hat{l}_{ \pm}^{m} T_{m}\right)$, see Eq-(18). If the end-point values of $f_{ \pm}^{m}(t)$ vanished, all $\hat{l}_{ \pm}^{m}$ would be invariant under gauge transformations (19). In faot, as f_{0}^{m} and f_{T}^{m} in Eq. (15) are arbitrary parameters, there are residual transformations of $\hat{l}_{ \pm}^{m}, q(0)$, and $q(T)$ whioh can be obtained irom Eqs. (17)-(19)

$$
\begin{equation*}
\exp \left(\hat{l}_{ \pm}^{m} T_{m}\right) \rightarrow \exp \left(f_{T}^{m} T_{m}\right) \exp \left(\hat{l}_{ \pm}^{m} T_{m}\right) \exp \left(-f_{0}^{m} T_{m}\right) \tag{22}
\end{equation*}
$$

$$
q(0) \rightarrow \exp \left(f_{0}^{m} T_{m}\right) q(0), \quad q(T) \rightarrow \exp \left(f_{T}^{m} T_{m}\right) q(T)
$$

The transformations (22) are automorphisms of the group $G \otimes G$ which generate a subgroup G_{0} in G. Therefore, the invariant combinations of the parameters $\hat{\imath}_{ \pm}^{m}$ may be considered as coordinates on the ooset space $(G \otimes G) / G_{0}$. The transformations of the end-point coordinates are analogous to reparametrizations of the boundary contours in the string theory, and the invariant
combinations of the parameters $\hat{\imath}_{ \pm}^{m}$ oorrespond to the Teiohmuller parameters.

Our gauge condition (21) is implemented by setting

$$
\begin{equation*}
\Pi_{g \mathrm{~g}}=\Pi_{+} \Pi_{-} ; \Pi_{ \pm}=\int d \hat{l}_{ \pm} \prod_{t, \mu} \delta\left(l_{ \pm}^{m}-\frac{1}{T} \hat{l}_{ \pm}^{m}\right) \tag{23}
\end{equation*}
$$

where $d \hat{l}_{ \pm}$is the left-invariant measure over the Lie group G. Using the standard teohnique [6] we now present $\Delta_{\text {FP }}$ in the form

$$
\begin{aligned}
& \Delta_{\mathrm{FP}}=\operatorname{det}\left(\partial_{t}-l_{+}^{m} \tilde{T}_{m}\right) \operatorname{det}\left(\partial_{t}-l_{-}^{m} \tilde{T}_{m}\right)=\Delta_{+} \Delta_{-}= \\
= & \int D_{\mu_{g}} \exp \left\{i \int_{0}^{T} d t\left[B^{+}\left(\partial_{t}-l_{+}^{m} \stackrel{\tilde{T}}{m}^{T}\right) C_{+}-B^{-}\left(\partial_{t}-l_{-}^{m} \tilde{T}_{m}\right) C_{-}\right]\right\}
\end{aligned}
$$

where $q_{\mu_{g}}$ is an integration measure for the standard ghost variables $B_{n}^{ \pm}, C_{ \pm}^{n}$, and the matrices ${\underset{T}{T}}_{\tilde{m}}$ realize the adjoint representation of our algebra

$$
\begin{equation*}
\left(\tilde{T}_{m}\right)_{n}^{l}=t_{m n}^{l} \tag{25}
\end{equation*}
$$

Following ['7] we extend the phase space by adding ghost terms to the aotion

$$
\begin{equation*}
S_{2}=\int_{0}^{\mathrm{T}} d t\left\{\dot{q}_{a} p^{a}+\ell\left(B_{m}^{+} \dot{C}_{+}^{m}-B_{m}^{-} \dot{C}_{-}^{m}\right)-\ell\left\{l_{+}^{m} B_{m}^{+}, \Omega^{+}\right\}+\ell\left\{l_{-}^{m} B_{m}^{-}, \Omega^{-}\right\}\right\} \tag{26}
\end{equation*}
$$

where $\Omega^{ \pm}=C_{ \pm}^{m} T_{m}^{ \pm} \mp \frac{i}{2} B_{Z}^{ \pm} t_{m n}^{l} C_{ \pm}^{m} C_{ \pm}^{n}$ are the standard BRST oharges corresponding to our constraints $\mathcal{T}_{m^{ \pm}}^{ \pm}$, and the Poisson superbraokets are $\left\{B_{m}^{ \pm}, C_{ \pm}^{n}\right\}=\mp\left\{\delta_{m}^{n},\left\{B_{m}^{ \pm}, C_{\mp}^{n}\right\}=0\right.$. The ghost equations of motion

$$
\begin{equation*}
\dot{C}_{ \pm}^{m}=l_{ \pm}^{n} t_{n l}^{m} C_{ \pm}^{l}, \quad \dot{B}_{m}^{ \pm}=-B_{l}^{ \pm} l_{ \pm}^{n} t_{n m}^{l} \tag{27}
\end{equation*}
$$

oan be solved similarly to EqB. (17),

$$
\begin{equation*}
C_{ \pm}(t)=\tilde{V}_{ \pm}\left(t, t_{0}\right) C_{ \pm}\left(t_{0}\right), \quad B^{ \pm}(t)=B^{ \pm}(t)\left(\tilde{V}_{ \pm}\left(t, t_{0}\right)\right)^{-1} \tag{28}
\end{equation*}
$$

where $\tilde{V}_{ \pm}$is obtained from $\nabla_{ \pm}$by substituting \tilde{T}_{m} for \mathcal{I}_{m} in Eq: (18).
To construot the heat kernel and the propagator for our system we change the ghost variables $B_{m}^{ \pm}$and $C_{ \pm}^{m}$ to the standard canonioal coordinates $\rho^{m}, \bar{\rho}_{m}$ and momenta $\pi_{m}, \bar{\pi}^{m}$ by using linear canonical transformations

$$
\begin{equation*}
B_{m}^{ \pm}=a_{ \pm} \bar{\rho}_{m} \pm i b_{ \pm} \pi_{m}, \quad C_{ \pm}^{m}=a_{\mp} \rho^{m} \pm i b_{\mp} \bar{\pi}^{m} \tag{29}
\end{equation*}
$$

where $a_{+} b_{-}+b_{+} a_{-}=1$. The new ghosts have the canonical Poisson superbrackets $\left\{\rho^{\mu}, \pi_{v}\right\}=\left\{\bar{\rho}_{v}, \vec{\pi}^{\mu}\right\}=-\delta_{v}^{\mu}$. others being zero.

Returning to the propagator (20) we now write it in the form

$$
\begin{gather*}
\mathfrak{D}=\int d \hat{l}_{+} d \hat{l}_{-} \int D l_{+}^{m} D l_{-}^{m} \prod_{t, \mu}^{\Pi_{+}} \delta\left(l_{+}^{m}-\frac{1}{T} \hat{l}_{+}^{m}\right) \delta\left(l_{-}^{m}-\frac{1}{T} \hat{l}_{-}^{m}\right) \mathcal{K}_{f l} \tag{30}\\
\mathcal{K}_{f i}=\mathcal{K}\left(q^{e}, p^{\theta}, \bar{\rho}^{e}\right)=\int \tilde{\mu} \exp \left(l S_{3}\right), e=f, l \tag{31}
\end{gather*}
$$

Here, the measure $D \tilde{\mu}$ corresponds to integration over all paths $X(t)$ in the extended phase space $X=\left(q_{a}, p^{a}, p^{m}, \pi_{m}, \bar{\rho}_{m}, \bar{\pi}^{m}\right)$ with fixed end points in the coordinate subspace
$q_{a}\left(t_{e}\right)=q_{a}^{\theta} ; \quad \rho^{m}\left(t_{e}\right)=\rho^{m e} ; \quad \rho_{m}\left(t_{e}\right)=\rho_{m}^{\theta} ; \quad t_{i}=0, t_{f}=T . \quad$ (32 The aotion S_{3} is related to S_{2} as follows

$$
\begin{equation*}
S_{3}=S_{2}+\bar{\rho}_{m}(T) \bar{\pi}^{m}(T)-\bar{\rho}_{m}(0) \bar{\pi}^{m}(0) . \tag{33}
\end{equation*}
$$

The functional $\mathcal{K}_{f i}$ implicitly depending on $l_{ \pm}^{m}(t)$ is the kernel of the evolution operator (heat kernel) for our extended system. Performing the integrations in Eq. (30) one can obtain it in an explioit form.

With this aim we first find the classical trajectories $X^{c l}(t)$ satisfying the boundary conditions (32). This oan easily be done by using the solutions of the Cauchy problem (see Eqs.(17), (18), (28)). Then, shifting the integration variables in the integral (31), $X(t) \rightarrow X(t)+X^{c Z}(t)$, one can easily show that

$$
\begin{align*}
\mathcal{K}_{f i} & =\mathcal{Z} \exp \left(t S^{c l}\right) \tag{34}\\
\mathcal{z} & =\int \tilde{\mu}_{0}^{\sim} \exp \left(t S_{3}\right), \tag{35}
\end{align*}
$$

where $S^{c l}$ is the stationary value of the aotion S_{3} $S^{c l}=S\left[X^{c l}\right\}=\frac{1}{2}\left[q_{a}^{f} p^{a}(T)-q_{a}^{i} p^{a}(0)\right)+\left(\bar{\rho}_{m^{f}}^{f}(T)-\bar{\rho}_{m}^{i} \bar{\pi}^{m}(0)\right]$. (36) The measure $D \tilde{\mu}_{o}$ is obtained from $\tilde{\mu}$ by restrioting integrations to trajectories $X(t)$ with zero boundary conditions, i.e. in Eqs. (32) one has to set $q^{e}=0, \rho^{\theta}=0, \bar{\rho}^{\theta}=0$. Using the solutions of the

Cauchy problem (see (17),(18),(28)) orie oan express $p^{a}\left(t_{\theta}\right)$ and $\bar{\pi}^{m}\left(t_{e}\right)$ in terms of the boundary values of the coordinates in (32). Substituting these expressions in Eq. (36) we obtain the final form of $S^{c l}$ entering into Eq. (34):

$$
\begin{aligned}
S^{c l}= & \frac{1}{2}\left[q^{f}\left(V_{+}+V_{-}\right)\left(V_{+}-V_{-}\right)^{-1} \partial q^{f}-4 q^{l}\left(V_{+}-V_{-}\right)^{-1} \partial q^{f}+\right. \\
& \left.+q^{l}\left(V_{+}-V_{-}\right)^{-1}\left(V_{+}+V_{-}\right) \partial q^{l}\right]+ \\
+l[& {\left[\bar{\rho}^{f}\left(c_{+} \tilde{V}_{+}+c_{-} \tilde{V}_{-}\right)\left(\tilde{V}_{-}-\tilde{V}_{+}\right)^{-1} \rho^{f}-\left(c_{+}+c_{-}\right) \bar{\rho}^{f} \tilde{V}_{-}\left(\tilde{V}_{-}-\tilde{V}_{+}\right)^{-1} \tilde{v}_{+} \rho^{l}-\right.} \\
& \left.-\left(c_{+}+c_{-}\right) \bar{\rho}^{i}\left(\tilde{V}_{-}-\tilde{V}_{+}\right)^{-1} \rho^{f}+\bar{\rho}^{l}\left(\tilde{V}_{-}-\tilde{V}_{+}\right)^{-1}\left(c_{-} \tilde{V}_{+}+c_{+} \tilde{V}_{-}\right) \rho^{l}\right] .
\end{aligned}
$$

Here $c_{ \pm}=a_{ \pm} / b_{ \pm}$, and. the matrices $V_{ \pm}$and $\tilde{V}_{ \pm}$are defined in (18), (28), $V_{ \pm}=V_{ \pm}(T, 0), \quad \tilde{V}_{ \pm}=\tilde{V}_{ \pm}(T, 0)$ (note that the matrioes $V_{ \pm}$are defined in our original representation (5) while $\tilde{V}_{ \pm}$depend on the generators of the adjoint representation (25)). The inverse matrices in Eq. (37) may have zero eigenvalues whioh have to be treated in a usual way. The neoessary modifioations of this formula depend on the detailed group structure of the model and are not considered in this letter.

To finish the oalculation of the heat kernel we have to evaluate the path integral \mathcal{Z} in Eq. (35) which is independent of the end-point coordinates (32). This can be done direotly but a more transparent calculation may be based on the rundamental convolution property of the kernel ("sewing" formula)

$$
\begin{equation*}
\mathcal{K}_{31}=\int d q_{2} d p_{2} d \bar{p}_{2} \kappa_{32} \mathcal{K}_{21} \equiv \mathcal{K}_{32} * \mathcal{K}_{21} \tag{38}
\end{equation*}
$$

where the subsoripts correspond to respeotive initial and inal coordinates in Eq. (31) and the integration is performed over all intermediate coordinates denoted by the subsoript 2 . Substituting Eqs. (34), (37) in Eq. (38) one obtains the equation determining \boldsymbol{Z}. To stress the analogy with the continuous string we write the
solution of this equation for the model in whioh the ooordinates q_{a} are veotors in the D-dimensional Minkowski space

$$
\begin{equation*}
\mathcal{Z}=\operatorname{det}^{D / 2}\left[\left(V_{+}-V_{-}\right)^{-1} \partial\right] \operatorname{det}\left(\tilde{V}_{+}-\tilde{V}_{-}\right), \tag{39}
\end{equation*}
$$

where we have used that $\operatorname{det}\left(\tilde{V}_{ \pm}\right)=1$ (this follows from the tracelessness of $\left.\tilde{T}^{\prime}\right)$. Remark that $\operatorname{det}\left(\tilde{V}_{+}-\tilde{V}_{-}\right)$emerges from the Paddeev-Popov determinant and its zero eigenvalues have to be treated in the standard way.

To obtain the propagator $\mathcal{D}_{f i}$, we perform the integrations over the Lagrange multipliers $l_{ \pm}$in Eq. (30):

$$
\begin{equation*}
D_{f i}=\int d \hat{l}_{+} d \hat{l}_{-} \operatorname{det}^{D / 2}\left[\left(V_{+}-V_{-}\right)^{-1} \partial\right] \operatorname{det}\left(\tilde{V}_{+}-\tilde{V}_{-}\right) \exp \left(t S^{c l}\right), \tag{40}
\end{equation*}
$$

where $\quad V_{ \pm}=\exp \left(\hat{Z}_{ \pm}^{m} T_{m}\right), \quad \tilde{V}_{ \pm}=\exp \left(\hat{Z}_{ \pm}^{m} \tilde{T}_{m}\right)$. For infinite-dimensional gauge algebras one has to regularize the determinants in Eq. (39). One of the regularization methods in the theory of olosed bosonic strings $\left(G=\operatorname{Diff}\left(S^{1}\right)\right)$ was considered in Ref.[5]. To treat some general infinite-dimensional disorete models one has to generalize such methods.

Using the transformations (22) and the corresponding ones for the ghost coordinates

$$
\begin{equation*}
\rho^{e}(0) \rightarrow \exp \left(f_{0}^{m} \tilde{T}_{m}\right) \rho^{e}(0), \quad \tilde{\rho}^{e}(T) \rightarrow \exp \left(f_{T}^{m} \tilde{T}_{m}\right) \rho^{\theta}(T) \tag{41}
\end{equation*}
$$

we can present the integral in Eq. (40) as the integral over the Teichmuller space $(G \otimes G) / G_{0}$ and over the group G_{0} which is the group of reparametrization of the boundaries $\left\{q^{\ominus}, \rho^{\ominus}, \bar{\rho}^{\ominus}\right\}$, see Eqs.(22), (41). To complete the caloulation of the propagator we have to determine the unique measure of integration over the ooset space $(G * G) / G_{0}$. This requires a careful analysis of the global gauge struoture of the theory and is analogous to finding the moduli space and the measure on it in the continuous string theory. This problem is easy to solve for the simplest example of the algebra $s p(2, R)$, or $s l(2, R)$, but the general case requires a speoial investigation which now is in progress.

4. Discussion

In oonclusion we would like to stress that the proposed finite dimensional gauge models, being in many aspects analogous to continuous strings, should not be regarded as some simple disoretizations. Each model is in lact a hamiltonian dynamics whioh can be treated on its owm. One oan try to apply these models to bound states of quarks or to imitate some properties of string-based unified theories. Before such applications become possible, one has first to inolude the spin degrees of freedom, to find the speotrum and. to construat the vertioes (interaoting disorete "strings"). It will not be difficult to find the speatrum of our models as soon as we suoceed in oaloulating the propagator in an explioit form (integration over the moduli). Construoting the vertices is a more diffioult problem which oan hardly be solved without more complete knowledge of the propagators for different groups and representations. A more remote goal is to construot a field theory of interaoting disorete "strings" allowing one to approach nonperturbative caloulations.

The easiest thing to do is to construct a disorete analog of the fermionio string. A simplest approach to this consists in adding fermionio (grassmanian) degrees of freedom $\xi_{ \pm}^{m}$ with oanonical superbrackets $\left\{\xi_{ \pm}^{m}, \xi_{ \pm}^{n}\right\}=-i h^{m n}$. Por example, if the matrices $\Gamma_{m, a b}$ in addition to Eq. (7) satisfy the identity

$$
\left(\Gamma_{m, a b} \Gamma_{n, c d}+\operatorname{oyclic}(\alpha, b, c)\right) h^{m n}=0
$$

there exists a superextension of the corresponding bosonio model. This extension is equivalent to replacement of the group G by some supergroup ior whioh $\Gamma_{m, a b}$ are the struoture constants appearing in the anticommatar of odd generators. We will elaborate this remark in a separate publioation.

Finally, we note that it might be interesting to investigate some infinite-dimensional disorete models based on the Kao-Moody or Kriohever-Novikov algebras. It would also be interesting to consider the limit of infinite dimension either of the group G or of the representation of the finite-dimensional group.

References

1. D.V.Boulatov, V.A.Kazakov, J.K.Kostov, and A.A.Migdal, Nucl. Phys. B275 (1986) 641;
A.Billoire and F.David, Nucl.Phys. B275 (1986) 617.
2. J.Ambjorn, "Strings, Fields and Critioal Phenomena", preprint NBI-HE-87-45, Copenhagen, 1987. C.Thorn, "Lattioe strings", preprint UFTP-88-16, Gainesville, 1988.
3. A.T.Filippov, Pls'ma U Zs.Exptl.Teor.Plz. 46 (1987) 337; JINR communioations E2-87-806, Dubna, 1987;

- Modern Phys. Iett. A4 (1989) 463.

4. P.A.Collins and R.W.Thoker, Nucl.Phys. B121 (1977) 307.
5. A.P.Isaev, preprint IHEP 82-193, Serpukhov, 1982; JINR preprint P2-87-34, Dubna, 1987.
6. L.D.Faddeev, Teor. Mat. Fiz. 1 (1969) 3.
7. E.S.Fradkin and G.A.Vilkovisky, Phys.Lett. 55B (1975) 224; I.A.Batalin and G.A.Vilkovisky, Phys.Lett. 69B (1977) 309.
