


1. Introduction .

One of the possible apéroaohes to nbnperturbative string theory
is to oonsider disoretized (1atti6e) strings. Most attempts up to
now were applied to the world sheet vdisoretizationb which is
difftioult to interpret in terms of hamiltonian dynamios (see e.g.
the pioneer papers [1], recent. reviews [2] and referenoes
therein). It would be of great interest to have some <finite
dimensional hamiltonian systems whioh imitate strings with their
symmetries and for whioh one might hope to develop nonperturbative
quantum dynamios. '

Reoently, one of us [3] has developed a gauge approaéh to
oonstruoting oconstrained theories of relativistio partioles bound
by harmonic foroces, inoluding a model 'of ohainQIike objects
resembling in some aspeots relativistioc strings. Unfortunately,
their relation to the oontinupus string is not olear, and here we
propose a new olass of disorete "string" models oonstruoted in
oclose analogy with the standard strings. Of partiocular importance
for us is the ohiral structure of the gauge group acting on the
chiral phase space string variables (left and right movers) and
the teohnique of quantization based on path integral methodé. for
oconstrained systems. We introduce an exaoct discrete analog for the
ohiral variables as well as for the chiral gauge group of the
string theory, and suggest ohe of the possibie " approaches to-
quantizing the models for arbitrary gauge groups. A possibility of
inoluding fermionic degrees of freedom is also pointed out. The
fermionioc disorete "strings" oan possibly be applied either to
hadron physios or to unified theories. At least, they oan be used
as finite-dimensional approximations to superstrings which have
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simpler dynamioal structure making a nonperturbative approach to
solving them more feasible.

The paper iB organized as follows. In Sect.2 we develop the

° hamiltonian formulation of the new discrete "string" models.

Sect.3 deals with quantizing these. models with the use of the path
integral methods. In partioular, the heat kernel and the
projﬁagator»are oonstructed. In conclusion (Sect.4), we summarize
the results 'and outline problems and prospects for future
development. 4 '

2. Classical discrete "stirings”

The oanonical action of the standard closed bosonic string may
be written as (see [41,[51):
T 2n :
= ; _17 2 017 2 .
S = J'dtJ'ds @, - 31,72 + 120, 1)
0 0 .
where all variables are functions of t and periodic funotions of 3
(more often these variables are known as T and O), the dot denotes
o 5
zh = p* + 8,g" are the usual ohiral string variables in the phase

*

- is the D-dimensional Minkowski space-time index, and

space (p,Q). This theory is easily seen to be invariant under the
gauge transformations which are most clearly expressed in terms of
the ohiral variables 2z,: -

GZI: = asf:z}:; ot, = }: + 17011, }1: + f:aal: = 10 .. (@)

Remind - that the invariance of the action (1) requires certain

boundary conditions on f, at t = 0, T. Commting iwo successive
transformations of z_ or z_, :

185,812 = 8f3Z, [y = 110,05 = 150,01 = 17216 »
one finds that they form  the representation of the algebra

e /'m-.._\gw i

Vect(S') @Vect(S'). as the Lie braokét -[,]o defines the Lie
algebra of one-dimensional veotor fields. In Eq.(2) the gauge
potentials l'z‘ and infinitesimal funotions J, may be thought of as
symmetrioc matrices dependirxg on the oontinuous indioces 8',8",-e.g.
(F,) ggn= Jas fi(t.a)ra.a,a,, where T  _, . = 8(8'-8)0(8-3"). Then,
0, is the skew-symmetric matrix, (65)5""'= 8'(s%g"), and the gauge
transformations may be presented in a more standard form by
identifying (8 E‘,]’t):,', with the generators ,(P:):,', ot the gauge
transformations while oonsidering ‘(0812):,', as matrices of the
gauge potentials (A:):"" . Then, Eq.(2) ocan be rewritten in the
standard form

82, =Fz,; 84, =F, +I[F,4,]=F +FA - AP, (3)
‘ Now, we oonstruct a disorete version of the string theory
introducing canoniocal variables p®(t), q,(t) and a skew-symmetrio
matrix 8%%, a,b,c = 1,2,...,N. This matrix is ‘oonsidered“as a
disorete analog of the derivative Os. Aooordingly, we introduce
the ohiral variables 2% = p* s a“"qb and the canonical aotion

T
S,=fat @p* -t zrz, v lm2Tz), ()
o : o
where I‘m = I‘m.ab are some symmetrio N x N matrices, m = 1,2,...,H.
Defining the matrioces similarly to the ocontinuous ocase : = . ..
Tm = (Tm)g = aac, rm.cb ’ T:; = (T:;)Z = Pm.ac acb' ‘ - 5)
P, = (F)5 = fMENT,)5 . 4, = (4)2'= T™E)EL)S,  (6)

it is easy to find that the gauge transformations (3) with these
matrices 4, and P; are olosed if I, satisfy the commtation

relations

- = )
r,or -T 0T =1, .1,=t, T, S
x

from whioh the standard Lie algebra relations follow for Tm‘ ’ Tm



(r,°1=tl T, [TT=tl T/ . (8)
From the definitions (5) we see that T and T; are traceless
matrices and (T:;): = -(Tm)g.

Thus, to oconstruct our disorete model we need a skew-symmetirio
matrix 6 and the symmetrio matrioces I‘"l satisfy:‘uig Eq.(7). The
complete system of the N » N symmetric matrioces clearly satisfies
E.q‘. (7). One oan see that in this case -the matrioces I, generate the
real nonooml;aot algebra 8p(N,R). Any other pogsible algebra must
be represented as some subalgebra of gp(N,R). If we wish to have a
good analogy ~with the oontinuous: string theory the number of
generators in this subalgebra must be of the order of 2N.

Now we discuss the hamiltonian structure of Qiu‘ system. The
Poisson brackets for the ocanonical and chiral variables are

{q,.p°) = 8% (22,28} = 0; (23,20} = 2207%, (9)
and the equations of motion have the form-* '
(IT2% - 1m2%); P = 3070 T, (720 + 1720, (10)

__1 , _ . :
T, __AI‘mabz z 0. S (11)

Eqs.(11) are the constraints on the oanonical variables. They form

qa’._=2mab

the Lie algebra (8) ﬁith respect to the ‘Poisson bmokets
E P S | 3 + -1 i
(7., T} =t T » I, T }=0. (12)
These first-olass oon.stramts generate the gauge transformations
by, a _ 1 sac b b
0q, = 2 m ab(fmz f:‘,z-)’ op~ =50 I‘m.cb(ffz-b + f-':z—?’ (13)
The action S, is invariant under these gauge transformations it l’:

transform as gauge potentlals.

v olT = e f’; the 1™ S (14)
and if j”: satisfy the boundary oconditions )
770 = 13, 15 = fo. ~ (15)

Eqs.(13),(14) oan easily be rewritten in the standard form (3).

—

’

Remark that the matrices ’.l"”l act on momenta while T; act on
coordinates similarly to the standard reparametrizations.

The equatvié‘ns-or motion for z, and z_ are independent,

23 =10 (T,) z, (16)
and the Cauchy problem for them ocan Iormally be solved,
b
Z:(t) = Vi(t-t )a z, (t ) (17) -
t
V. (tto) = pexp { [ar1tcen, ). (18)
‘ o]

Taking into account that the finite gauge transformations

ocorresponding to'Eqs.(.B) have the standard form, one ocan easily

find the transformations of the evolution matrix

V, (T,t) > exp(fR()T,) V, (t,t) exp(-f7(t,)T,), (19)
Z5(tg)> e (fT(t,)T,) 25( ). 25(t)> exp(F(1)T,) 23(L).

These finite gauge transformations form the gauge group G ® G
corresponding to the group G genérated by the Lie algebra of the
mafrioes Tm. It is analogous to the ochiral group. of the‘oontinuous
theory Vect(S') ® Vect(S’). This completes our construction of
the oclassical disorete "string" models. Above, we have oconsidered
general oanoniocal ocoordinates. To obtain a olloser correspondence
with the relativistio sirings one introduces the relativistio
phase space (q,, p%) = (g, p) where_‘p. is the D-dimensional
Bpa(;e—time index, M = 0,1,...,D-1. By contracting these in¢i6es in
Eq.(4) one trivially obtains the Lorentz-invariant theory. ;’fd add
space—time translation invariance, consider the transformation-: '
gh(t)> gi(t) + ciE,
where cM and 2 are t-independent. The action is invariant. under
these transformations if - 2, Oab 0, i.e. 0%Y is degenerate and

2, 1s an eigenveotor with zero eigenvalue.



3. Quantizing discrete "sirings” ‘
Following the rules for quantizing oonstrained hamiltonian
systems [6,7] oonsider the patﬁ—integral representation for the

transition amplitude (propagator):

o .
®[¢7,q*) = Jm exp{tjdt @qp*-nr - an T;)}, (20)
o]
D= n D Do, DUT DIT [y Ti,),
where the integration is performed .ove;t' all Lagfange multipliers
l’:(t) and all phase-space trajectories p%(t), qa(t). with fixed
ooordinateé at the boundaries of the evolution interval

7,00 =g, g =g .

We also inolude in the definition of the integration measure the

Paddeev-Popov determinant A,, and the gauge-fizing term HEI.
We fix the gauge by choosing 17(t) independent of t,
() = LT ' (21)
In this gauge the evolution matrix Vi(T,O) is simply exp(i";L Tm).
see Eq.‘(18). If the end-point values of f;(t) vanished, all i’:
would be invariant under gauge transformations (19). In fact, as
fg and f':'[." in Eq.(15) are arbitrary parameters, there are residual
transformations of i':, q(0), and - g(T) which can be obtained from
Egs. (17)-(19) ‘
exp(i® T,)> exp(f2 T ) exp(i® T,) exp(-/% T,), (22)
- g(0)= exp(fg T,) q(0), q(T)- exp(fy T,) q(T).
The transformations (22) are automorphisms of the group G ® G
which ‘generate a subgroup Go in G ® G. Therefore, the invariant
combinations of the parameters i'; may be considered as coordinates
on the ocoset  Bpace (G ® G)/Go.. The transrdnnations of the
end-point coordinates are analogous to reparametx;izations of the

boundary oontours in the sti-ing theory, and the invariant

combinations of the parameters i': ocorrespond to the Teichmuller
parameters. ) ]
Our gauge condition (21) is implemented by setting
M,=M0M0;1, = Idi! tr.[pﬁ(}';‘ - %'l":), . (23)
where di + is the lett;invariant measure over the Lie group G.
Using the standard technique {6] we now presént AFP in the form A'

bop =det(d, - 1} T ) det(d, = 10T ) =Ad_ = ©(24)
T : :
- + _mm o _qm m
= [, exp{zjdt [B*e, - T, - B, - 1" Tm)C_]},
[o}
where ms is an integration measure for the standard ghost
variables B:‘; . C: , and the matrioces E’m realize the adjoint
representation of our algebra
(t)r =1l . (25)
Following [7] we extend the phase spaoe by adding ghost terms to

1
mn
the aotion
T . . :
s, = fat (4,07 + LBIOR - BLC™ - LUBELGY) + LIMEL,0TY), (26)
o]

+ 4 ot .1 :
where O~ =C7 T, % 5 Byt C7Cy are the standard BRST charges
corresponding to our constraints T:, and the Poisson superbrackets

are {B:L.C:__‘} = 116:;, {B;.C;"} = 0. The ghost equétions of motion
Mmoo um 1 Rt ptoan L1 RN
C’: = l: tn'l Ct’ Bm = 'BI l: tnm . (@7)
ocan be Bolved similarl(y to Egs.(17), »

C,(t) = ¥,(t,t,) C,(ty), B (t) = BE(t) (V,(t,t;0™",  (28)

where 62 is obtained from V! by substituting ﬁm for T; in Eq.(18).

To: construct the heat kernel and the propagator for our system
we change the ghost variables B:-. and C] to the standard.éanohioél ’
coordinates p", f_ and momenta T_, T by using linear oanéni;sél'
transformations

Bl =ap, + tox , COF=ap™s 1o (29)
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where a,b_ + b+a_ = 1. The new ghosts have the canonical Poisson
superbrackets {p“','n:v) = {p, W} = -6’;’ , others being zero.
Returning to the propagator (20) we now write it in the form
sy m pm m_ 1im m_ 17m
D= Idl+dl_ IDl+ n” t|'[FLC3(1._'_ - i) oz i) Kiﬂ, (30)

Ky = K(g%p%5°) = [B exp(15,), = 7,1, (31)
Here, the measure 1]1 corrésponds to integration over all paths
X(t) in the extended phase space X = (qa,pa,p"‘,'lcm,ﬁm,'if"‘) with
fixed end points in the ocoordinate subspace
%(t,) = qgi. PU(T,) = P™5 p(t) =pp; T, =0, t =T (32)
The action S, is related to S2 . as follows
Sy = 5, + P, (MET) - B, (0)T(0). - (33)
The funoctional Kfﬂ implicitly depending on l':(t) is the kermel of
the evolution operator (heat kernel) for our extended system.
Pérrorming the integrations in ’Eq.(30) one oan obtain it in an
explioit form.

With this aim we first find the olassical trajectories X°!(t)

satisfying the boundary oonditions (32). This can easily be done

by using the solutions of the Cauchy problem (see Egs.(17), (18),
(28)). Then, shifting the integration variables in the integral
(31), X(t) = X(t) + X°*(t), one oan easily show that

K,y = Z exp(ts°}), : (34)

z = [bil, emp(ts,), (35)
’where s°!  is the stationary value of the aotion S3

st = 5tx°hy = JIgZp™(m) - glp*0)) + (BIE™MT) - PEE™MO0)1. (36)
The measure 1].1.0 is obtained from 1].1. by restricting integrations to
trajectories X(t) with zero boundary oconditions, i.e. in Eqs.(32)
one has to set. g° =0, p® = 0, p° = 0. Using the solutions of the

Cauchy problem (see (17),(18),(28)) ore oan express pd(ta) and

'1T:""(t ) in terms of the boundary values of the coordinates in (32).

Substituting these expressions in Eq.(36) we obtain the final fom

of S°! entering into Eq.(34): )

5t = g7 (v, + V)v, - V) lag” - agt(v, - v_) 'ag” + (37)
+ q‘(V -~V )"(V +V_)oq'] +

+ LB (e, ¥, +c V) (T - ¥,) "7 - (e, + cIPTV_(V_ - V)"V pt -
- (o, + Pt - T+ B - ARICAAETAA )p 1.

Here c, = az/b:’ and .the matrices V and V are defmed in (18),
(28), V, = V,(T,0), V, =7,(2,0) (note that the matrioes v, are
defined in our original representatlon (5) while V depend on the
generators of the adgomt ‘representation: (25))." The - inverse
-matrices in Eq.(37) may have zero eigenvalues whioh have to be
treated in a usual way. The necessary mlodi'fi‘o'atio'hs‘ of this
formula depend on.the detailed. group structure of the model and
are not oonsidered in this letter. ;

To finish the oalculation of the heat kernel we have to
evaluate the path integral Z in Eq.(35) whloh is -independent ‘ot
;the end-point coordinates (32) This ocan bé done' direotly but a
more transparent caloulation may be based on the ‘fundamental

convolution property of the kernel ("sewing" formula)

_[dqadpadpa 32 Koy = Kgp * Ky T (38)
where. the subsoripts ocorrespond to respective ‘initial ‘and :final
coordinates in Eq.(31) and the integration is performed over all®
intermediate coordinates -denoted by .the subsoript 2. 'Substituting
Eqs.(34), (37) in Eq.(38) one obtains the equation determining Z.

To stress the analogy with the oontinuous étring we write’ the



.solution of this equation for the model in which the coordinates
9. are veotors in the D-dimensional Minkowski space
Z = aet™2(v, - v_)7'8] et (V, - V), : (39)
where we have used that det(gi) =1 “(this.4rollows from the
tracelessness of 3‘). Remark that det(‘7+ - '{’__) emerges from the
Faddeev-Popov determinant and its zero eigenvalues have to be
treated in the standard way.
To obtain the propagator Dﬂ . we perform the integrations 6ver‘

the Lagrange multipliers 13 in Eq.(30):
_ [+ 37 4usD/2( v - -1 STy 1
D,, = J'dz+dz_ det®/2[ (v, - V_)7'9) aet(¥, - V) exp(1s°Y),  (40)

where V: = exp(i';L Tm). Vt = exp(i';L i'm). Por infinite-dimensional
gauge algebras one has to regularize the determinants in Eq.(39).
One of the regularization methods in the theory of olosed bosonic
strings (G = Dt,f,f(S1 )) was considered in Ref.[é‘;]. To treat some
general infinite-dimensional disorete models one has to generalize
such methods.

Using the transformations (22) and thé .corresponding ones for
the. ghost ‘coordinates : . .

p%(0)—> exp(fT T ) p7(0), p°(T)-> exp(f T ) p°(T) (41)
we oan present the integral in Eq.(40) as the integral over the
Teiohmuller space (G ® G)/G0 and over the group Go which is the
group of reparametrization of the boundaries (qe.pe.ﬁe}, Bee
Eqs.(22), (41). To complete the caloulation of the propagator we
have to determine the unique measure of integration over the ooset
space (G ® G)/Go. This requires a careful analysis of the global
gauge structure of the theory and is analogous to finding the
moduli space and the measure on it in the -continuous string
theory.. - This problem is .easy to solve for the simplest example of
the algebra 3p(2,R), or 81(2,R), but the general case requires a

8special investigation which now is in progress.
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4. Discussion

In oonclusion we would like to stress t'hat the proposed finite
dimensional gauge models, being in many aspects analogous to
continuous- ‘strings. should not be regarded as some Bimple
disoretizations. ©FEaoch’ model is in faect a hamiltonian cwﬁamics
which ocan be treated on its own. One can try to apply these models
to bound states of quarks or to imitate some properties of
Btl‘irig—based unified theories. Before such applicationé beoome
possible, one has first to include the spin degrees of 'frie‘edom, to
find the spectrum and . to construct the vertices (interacting
disorete "strings"). It will not be difficult to ri;1d the spectrum
of our models as Boon as we succeed in oaloulatingy the propagator
in an explicit form (integration over the moduli). Constructing
the vertices is a more diffioult problem which ocan hardly be
solved without more ocomplete knowledge of the propagators for
different groups and representations. A more remote goal is to
oonstruct a field theory of interacting discrete ':'strings"
allowing one to approach nonperturbative caloulations.

The easiest thing to do is to construct a qiéoreté anéldg of
the fermionio- string. A simialest approaoh‘té' this oonsists in

adding fermionioc (grassr{\anian) degrees of freedom ET with

canonical superbrackets ‘(E’:, E';} = -{A™. PFor exzample, if ‘the
matrices T .= in addition to Eq.(7) satisfy the identity ,
T T + oyolic(a,b,c))h™ =0,

m,ab n,cd .
there exists a superextension of the ocorresponding bosonic model.

This extension is equivalent to replacement of the group G by some

supergroup for whioch I‘m are the structure constants appearing

ab
in the anticommutator of odd generators. We will elaborate this

remark in a separate publioation.
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Finally, we note that it might be interesting to investigate

some infinite—¢i:nensional discrete models based on the Kao-Moody

or Krichever-Novikov algebras. It would also be interesting to

consider the 1limit of infinite dimension either of the group G or

of the representation of the finite-dimensional group.
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