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1 • Introduction 

One_ot the possible approaohes to nonperturbative string theory 

is to oonsider disoretized (latti~e) strings. Most attempts up to 

now were applied to the world sheet disoretization whioh is 

dittioUlt to interpret in terma ot hamiltonian dynamios (see e.g. 

the pioneer papers [1], reoent reviews [2] and reterenoes 

therein). It woUld be ot great interest to have some finite 

dimensional hamiltonian systems whioh imitate strings with their 

symmetries and tor whioh one might hope to develop nonperturbative 

quantum dynamios. 

Reoently, one ot us [3] has developed a gauge approaoh to 

oonstruoting oonstrained theories ot relativistio partioles bound 

by harmonio toroes, inoluding a model · ot ohain-like objeots 

resembling in some aspeots relativistio strings. Unfortunately, 

their relation to the oontinuous string is not olear, and here we 

propose a new olass ot disorete "string" models oonstruoted in 

olose analogy with the standard strings. Ot partioUlar importanoe 

tor us is the ohiral struoture ot the gauge group aoting on the 

ohiral phase spaoe string variables (left and right movers) and 

the teohnique ot quantization based on path integral methods tor 

oonstrained systems. We introduoe an exaot disorete analog tor the· 

ohiral variables as well as tor the ohiral gauge group o! the 

string theory, and suggest one o! the possible approaohes to 

quantizing the models !or arbitrary gauge groups. A possibility o! 

inoluding tennionio degrees o! freedom is also pointed out. The 

!ennionio disorete "strings" oan possibly be applied either to 

ha~n physios or to unified theories. At least, they oan be used 

as finite-dimensional approximations to superstrings whioh have 



simpler dynamioal struoture making a nonperturbative approaoh to 

solving them more feasible, 

The paper is organized as :follows. In Seot.2 we develop the 

hamiltonian :formulation o:f the new disorete "string" models. 

Seot.3 deals with quantizing these models with·the use o:f the path 

integral methods. In partioular, the heat kernel and the 

propagator are oonstruoted. In oonolusion (Seot.4). we summarize 

the results and outline problems and prospeots :for :future 

development. 

2, Classical discrete "strings" 

The oanonioal aotion o:f the standard olosed bosonio string may 

be written as (see [4],[5]): 
T 2-n; 

S = rdtrds (q' rf' - !z z2 + !z z2 ), JJ fl, 4++ 4--
(1 ) 

0 0 

where all variables are :funotions o:f t and periodio tunotions o:f s 

(more often these variables are known as~ and a), the dot denotes 

Bt, µ · is the D-dimensional Minkowski spaoe-time index, and 

z~ = rf' ± B
8

qfl- are the usual ohiral string variables in the phase 

spaoe (p,q). This theory is easily seen to be invariant under the 

gauge transformations whioh are most olearly expressed in terms o:f 

the ohiral ·variables z±: 

Oz~ =: B,J\Z~; OZ± = /± + [/±. l±la = /~ + /±Bal± - l±Bsf± • • ' .(2) 

Remind that the invarianoe ot the aotion (t) requires oertain 

boundary oonditions on /± at t = O, T. ColllllUlting two suooessive 

transformations ot z or z, + . -

C02,01]z = B/3z •. /3 = f1Bsf2 - f2Bsf1 = C/1.f2 1a • 

one :finds that they :form the representation o:f the algebra 
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Vect(S 1
) © Vect(S 1 

), as the Lie braoket •[,]
0 

defines the Lie 

algebra ot one"':dimensional veotor fields. In Eq. (2) the gauge 

potentials l·± and infinitesimal tunotions / ± may be thought o:f as 

symmetrio matrioes depending on the oontinuous indices s',s",-e.g. 

(/.). ~= fds /.(t,s)r •sH where r , ff= O(s'-s)O(s-s"). Then, - as - a, s s. s s 
s's., , ,, B8 is the skew-symmetric matrix, (B

8
) = O'(s-s ), and the gauge 

transformations may be presented in a more standard :form by 

identifying (Bsf±>:: with the generators. (P±>:: ot the gauge 

transformations while considering (B
8
l±):: as matrices of the 

gauge potentials (A+)s:· • Then, Eq. (2) can be rewritten in the 
- B 

standard torm 

Oz± = P±z±; OA± = P± + [P±,A:t] = P:t + P:tA:t - A±P±. (3) 

Now, we conetruot a discrete version ot the string theory 

introducing canonical variables pa. ( t), qa. ( t) and a ekew-eynmetric 

matrix Ba.b, a,b,c = 1,2 •••• ,N. Thie matrix is considered'as a 

discrete analog o! the derivative B
8

• Accordingly, we 

the chiral variables z: =pa.± Ba.bqb and the canonical 
T 

s1 = fat (qa.pa. - ¼z: z+rmz+ + ¾z~ z_rmz_). 
0 

introduce 

action 

(4) 

where rm= rm,a.b are some eynmetric N • N matrices, m = 1,2 •... ,ll. 

Defining .the matrices similarly to the continuous case 

T = (T )a= Ba.a r , T* = (T*)b = r {)0 b, 
m mb ,m,cb m ma. m,a.o 

P± = (P:t>: = ,f'(t)(Tm>:, A:t = (A:t): = zm(t)(T~):, 

it is easy to ,!ind that the gauge tranetormations (3) with 

(5) 

(6) 

these 

matrices A± and P:t are closed it rm satiety the oonmutation 

relations 

rm{) rn - rn {)rm= [rm,rn]B = t~ rl, 

trom which the standard Lie algebra relations :follow tor Tm 
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(7) 

• T* m 



[Tm,Tn] = t~ Ti, [T* T*] = ti T* 
m' n mn 1 

(8) 

From the definitions (5) we see that T and T* m m are traceless 

matrices and(~)!= -(Tm>!-

Thus, to construct our discrete model we need a skew-symmetric 

matrix {J and the symmetric matrices rm satisfying Eq. (7). The 

complete system of the N x N symmetric matrices clearly satisfies 

Eq. (7). One can see that in this case the matrices Tm generate the 

real noncompact algebra 8p(N ,R). ·Any other possible algebra mus·t 

be represented as some subalgebra of sp(N,R). If we wish to have a 

good analogy with the continuous string theory the number of 

generators in this subalgebra must be of the order of 2N. 

Now we discuss the hamil tonian structure of our system. The 

Poisson brackets for the canonical and chiral variables are 

{q Pb} = Ob• {za zb} =- Q• {Za zb} ·= +2{Jab (9 ) 
a' a.' +' - ' ±' ± - , 

and the equations of motion have the form·. 

q = !r (lmzb _ zmzb); pa= !_(Jao I' (lmzb + zmzb), (10) 
a. 2 m, ab + + - - 2 m, ob + + - -

r± = ±!r z': z~ = o. (11) m 4 m,ab _ - , 

Eqs.(11) are the constraints on the canonical variables. They form 

the Lie algebra (8) with respect to the ·Poisson brackets 

{T± T±} = t 1 7± {7+ 7-} ·= O. 
m' n. mn 1 ' m.' n. · 

(12) 

These first-class constraints generate the gauge transformations 

Oq = !. r (/1:zb - rzb); Opa = !. {Jao r (f1:zb + rzb), (13) 
a 2 m,ab + + -:- - 2 m,ob + + - -. 

The action S1 is invariant under these gaug~ transformations if i; 
transform as gauge potentials, 

· oi: = f; + ~ t~n l"', (14) 

and if f; satisfy the boundary conditions 

f;(O) = ti;, /;(T) = t;. (15) 

Eqs.(13),(14) can easily be rewritten in the standard form (3). 
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Remark that the matrices T act on momenta while T* act on 
m • m 

coordinates similarly to the standard reparametrizations. 

The equat.ions·of motion for z+ and_z_ are independent, 

z~ = i; (Tm)~ z~, (16) 

and the Cauchy problem tor them can formally be solved, 

Z~(t) = V±(t,to>~ Z~(to>• (17) 

t 

V ± (t, t 0 ) = Pexp {Jdt •z;(t' )Tm }• (18) 
. to 

Taking into account that the finite gauge transformations 

corresponding to Eqs. (3) have the standard form, one can easily 

find the transformations of the evolution matrix 

V±(t,t0 )+ exp(f;(t)Tm) V±(t,t0 ) exp(-f;(t0 )Tm), (19) 

z~(t0 )+ exp(.t;(t0 )Tm) Z~(t
0

), z~(t)+ exp(,G(t)Tm) z~(t). 

These finite gauge transformations form the gauge group g @ g 

corresponding to the group G generated by the Lie algebra of the 

matrices Tm. It is analogous to the chiral group of the continuous 

theory Vect(S 1 ) @ Vect(S 1 ). This completes our construction ot 

the classical discrete "string" models. Above, we have considered 

general canonical coordinates. To .obtain a closer correspondence 

with the relativistic strings one introduces the relativistic 

phase space (qa, pa) = (q~, pa+') where_ µ is the D-dimensional 

space-time index,µ= 0,1, ••• ,D-1. By contracting these_ indioes in 

Eq.(4) one trivially obtains the Lorentz-invariant theory •. To add 

space-time translation invariance, consider the transformation. 

~(t)-+ qµ(t) + Cµ~ I a a a 

where cµ and ~ are t-independent. The action is invariant under a 

these transformations it . ~a{Jab = O, i.e. {Jab is degenerate and 

~a is an eigenvector with zero eigenvalue. 
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3. Quantizing discrete "strings" 

Following the rules for quantizing constrained hamil tonian 

systems [6,7] consider the path-integral representation for the 

transition amplitude (propagator) 
T • 

. ~[qf,qt] = Jrµ exp{!Idt (q
0
p0 ~Ji; T~ - i7,~ T~)}, (20) 

Lµ = n Dpa Dq D7,m D7,m [AP TI ..,] , 
O~t~T a + - ""]' g.._ 

where the integration is perfo:'lled.over all Lagrange multipliers 

1.:(t) and all phase-space trajectories p0 (t), q (t) with fixed 
- a 

coordinates at the boundaries of the evolution interval 
t 

qa(O) = qa, qa(T) =; q~ • 

We also include in the definition of the integration measure the 

Faddeev-Popov determinant '7p and the gauge-fixing term Ilg:f" 

We fix the gauge by choosing 7,~(t) independent of t, 

7,~(t) = 4i;. (21) 

In this gauge the evolution matrix V+(T,O) is simply exp(!: T ), 
- - m 

see Eq~ (18). It the end-point values of /;(t) vanished, all !~ 

would be invariant under gauge transformations (19). In fact, as 

,t;; and /; in Eq. (15) are arbitrary parameters, there are residual 

transformations of l~, q(O), and q(T) which can be obtained from 

Eqs. (17)-(19) 

exp(!; Tm)+ exp(/; Tm) exp(!; Tm) exp(-,t;; Tm), (22) 

q(O)-+ exp(,t;; Tm) q(O), q(T)-+ exp(/; Tm) q(T). 

The transformations (22) are automorphisms of the group G © G 

which generate a subgroup G
0 

in G © G. Therefore, the invariant 

combinations of the parameters i; may be considered as coordinates 

on the coset space (G © G)/G
0 
•. The transformations of the 

end-point coordinates are analogous to reparametrizations of the 

boundary contours in the string theory, and the invariant 
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:) 

combinations of the parameters. i; 
parameters. 

coITespond to the Teichmuller . 

Our gauge condition . (21 ) is implemented by setting 
•• } A ,A 

n ... = Il+Il_; Il+ = dl. nan: - T-7.:1), 
Ag.._ - -t.fl, •- -

(23) 

where d7,± is the left-invariant measure over the Lie group G. . 
Using the standard technique [6] we now present '7P in the form 

'7P = det(at - 1.: Tm) det(at ~ 7,~ Tm)= A+A- = (24) 
T 

= Jrµg exp{tJdt [B+(at - 1.: Tm>C+ - B-(at - 7,~ Tm)c_J}, 
0 

where Lµ is an integration measure g 

variables B± , c: , and the matrioes 
fl, -

representation of our algebra 

(T ) l = t l • 
. m n mn 

for the standard ghost 

T realize the adjoint 
m 

(25) 

Following [7] we extend the phase space by adding ghost terms to 

the action 
T 

S2 = Jdt (q
0
p0 + !(B!O'!:. - B~~) - !{7.:B:,n+} + !{7,~B~,n-}), (26) 

0 

where n± = ~ T! +~Bi t!n ~ a; are the standard BRST charges 

coITesponding to our constraints T±, and the Poisson superbrackets 
m 

+ n, . + -. 
are {B-,C.} = +!an, {B-,~} = o. The ghost equations of motion 

m - m m + 

a':_= 7,~ t:1 C!, B± = -B± 7,n t 1 
m l ± nm (27) 

can be solved similarly to Eqs.(17), 
,v ± ± ,v -1 

C±(t) = V±(t,to> C±(to>• B (t) = B (t) (V±(t,to>> , (28) 

where v. is obtained from v. by substituting T tor p· in Eq.(18). 
- - m m 

To construct the heat kernel and the propagator for our system 

we change the ghost variables B! and~ to the standard canonical 

coordinates pm, p and momenta~, ;cm by using linear canonical m m 
transformations 

B± = a±p ± !b+~ , m m _ m C! = a_pm ± !b_;j;tll 
- + + 

(29) 
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where a+b- + b+a- = 1. The new ghosts have the canonical Poisson 

superbrackets {pl-L,'lt} = {p ,ii"'}= -014, others being zero. ,, ,, ,, 
Returning to the propagator (20) we now write· it in the 

!D = Jdi+dl_ JDi: D!~ TIO(!: - ir:> 0(!~ - ir~) 1:.tL' 
t,14 

e e -e I~ 1:.tL = 1:.(q ,p ,p) = Lµ exp(LS3 ), e = /,L. 

form 

(30) 

(31) 

Here, the measure l:\'I corresponds to integration over all paths 

X(t) in the extended phase space X = (q ,pa,pm,'lt ,p ,1i:"1) with 
. a m m 

fixed end points in the coordinate subspace 

q (t ) = qe; pm(t ) = pme; p (t ) = pe; t, = 0, t
1 

= T. (32) ae a e me m. 
The action S3 is related to S

2 
as follows 

s3 = s2 + Pm(T)1i:"1(T) -·pm(0)1i:"1(0). (33) 

The functional t::.1 L implicitly depending on i:ct) is the kernel of 

the evolution operator (heat kernel) for 01.1r extended system. 

Performing the integrations in Eq. (30) one can obtain it in an 

explicit form. 

With this aim we first find the classical trajectories X01 (t) 

satisfying the boundary conditions (32). This can easily be dorie 

by using the solutions of the Cauchy problem (see Eqs.(17), (18), 

(28)). Then, shifting the integration variables in the integral 

(31), X(t) ➔ X(t) + X01 (t), one can easily show that 

1:.tL = Z exp(!S01
), (34) 

... 
Z = JL\'Io exp ( !53), (35) 

where S01 is the stationary value of the aotion S
3 

s01 = S{X01
} = 1cq~pa(T) - q!_pa(O)) + (p~1i:"1(T) - P!1t"1(o)]. (36) 

The measure l:\'I0 is obtained from l:\'I by restrioting integrations to 

trajeotories X(t) with zero b~undary oonditions, i.e. in Eqs.(32) 

one has to set qe = O, pe = O, pe = O. Using the solutions of the 

8 

Cauchy problem (see (17),(18),(28)) orie can express pa(t) and 
. e 

1i:"1(te) in terms of the boundary values of the coordinates in (32). 

Substituting these expressions in Eq.(36) we obtain the final form 

of S01 entering into_Eq.(34): 

S01 
= ![q1(V + V )(V - V )- 1aq1 - 4q 1 (V - V )- 1aqf + 

2 + -+ - + - (37) 
+ q'(V+ - V_)- 1 (V+ + V_)aq'J + 

+ L[p1 (c+V+ +c_V_)(V_ - V+)- 1p1 - <c+ + c_)p1V_(V_ - V+>- 1V+Pt 
- (c+ + c_)p'(V_ -V+>-1p1 + p'(V_ - V+)- 1 (c_Y+ ~c);_)p<J •. 

Here c± = a±/b±, and.the matrices 
N 

V± and V± are defined in (18), 

(28), v± = V±(T,O), v± = V±(T,O) (note that the matrio'es v± are 

defined in our original representation (5) while V± depend on the· 

generators of the adjoint representation (25)). The inverse 

matrices in Eq. (37) may have zero eigenvalues which have to be 

treated in a usual way. The necessary moditfoations of this 

formula depend on the detailed group structure of.the model and 

are not considered in this letter. 

To finish the calculation of the heat kernel we have to 

evaluate the path integral Z in Eq.(35) whioh is independent'of 

the end-point coordinates (32). This can be done directly but a 

more transparent calculation may be based on the fundamental 

convolution property of the kernel ("sewing" formula) 

1:.31 = Jdq2dp2dp2 1:.32 1:.21 = 1:.32 * 1:.21 (38) 

where the subscripts correspond to respective initial and final 

coordinates in Eq. (31) and the integration is performed over all' 

intermediate coordinates denoted by the subscript 2. 'Substituting 

Eqs.(34), (37) in Eq.(38) one obtains the equation determining Z. 
To stress the analogy with the continuous string we write· the 
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.eolution ot thie equation tor the model in which the coordinates 

q are vectors in the D-dimensional Minkowski space a 

z = detD12 [(V+ - V_)-1c:JJ det(V+ - V_), (39) 

where we have used that det(V±) = 1 _(this tollows trom the 
N N N 

tracelessness ot T). Remark that det (V + - V _) emerges trom the 

Paddeev-Popov detenninant and its zero eigenvalues have to be 

treated in the standard way. 

To obtain the propagator v
1

, . we pertonn the integrations over 

the Lagrange multipliers l± in Eq.(30): 

v
1

, = Jdi+d!_ detD12 [(V+ - V_)-1o] det(V+ - V_) exp(!Sc1), (40) 

where v± = exp(L: Tm), v± = exp(L: Tm). For intinite-dimensional 

gauge algebras one has to regularize the detenninants in Eq.(39). 

One ot the regularization methods in the theory ot closed bosonic 

strings (G = D!//(S1 )) was considered in Ret.[5]. To treat some 

general intinite-dimensional discrete models one has to generalize 

such methods. 

Using the transtonnations (22) and the corresponding ones tor 

the ghost.coordinates 

pe(0)➔ exp(ro Tm) pe(O), pe(T)~ exp(t; Tm) pe(T) (41) 

we can present the integral in Eq. (40) as .the integral over the 

Teichmuller space (G © G)/G
0 

and over the group G0 which is the 

group ot reparametrization ot the boundaries {q8 ,pe,pe}, see 

Eqs.(22), (41). To complete the calculation of the propagator we 

have to detennine the unique measure ot integration over the coset 

space (G © G)/G
0

• This requires a caretul analysis ot the global 

gauge structure ot the theory and is analogous to tinding the 

moduli space and the measure on it in the continuous string 

theory. ·This problem is easy to solve tor the simplest example ot 

the algebra sp(2,R), or sl(2,R), but the general case requires a 

special investigation which now is in progress. 

IO 

4. Discussion 

In conclusion we would like to stress that the proposed tinite 

dimensional gauge models, being in many aspects analogous to 

continuous strings, should not be regarded as some simple 

discretizations. Each' model is in tact a hamil tonian dynamics 

which can be treated on its own. One can try to apply these models 

to bound states of quarks or to imitate some properties of 

string-based unified theories. Before such applications become 

possible, one has first to include the spin degrees cit freedom, to 

find the spectrum and. to construct the vertices (interacting 

discrete "strings"). It will not be difficult to find the sp_ectrum 

of our models as soon as we succeed in calculating the propagator 

in an explicit fonn (integration over the moduli). Constructing 

the vertices is a more diffioul t problem which can hardly be 

solved without more complete knowledge of the propagators for 

different groups and representations. A more remote goal is to 

construct a field theory of interacting discrete ''strings" 

allowing one to approach nonperturbative calculations. 

The easiest thing to do is to construct a discrete analog ot 

the fennionio string. A simplest approach t; this consists in 

adding tennionio (grassmanian) degrees of freedom t: with 

canonical superbrackets ct;, t;} = -!hmn. For example, if the 

matrices r b in addition to Eq.(7) satiety the identity m,a. 

(r b r d + cyclic(a,b,c))hmn = 0, m,a n.c 

there exists a superextension ot the corresponding bosonic model. 

This extension is equivalent to replacement of the group G by some 

supergroup for which rm,a.b are the structure constants appearing 

in the anticommutator ot odd generators. We will elaborate this 

remark in a separate publication. 
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Finally, we note that it might be interesting to investigate 

eome infinite-dimensional dieorete models baaed on the Kao-Moody 

or Kriohever-Novikov algebras. It would aleo be interesting to 

ooneider the limit or infinite dimension either or the group G or 

or·the representation or the !inite-dimeneional group. 
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