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1 Introduction 

Supersymmetric field theories are adequately formulated in superspace via 
unconstrained superfields. Unconstrained superspace formulations make man­
ifest the invariance properties of a given theory (b~th on classical and quan­
tum levels) and bring to light its intrinsic geometry. One of central problems 
in supersymmetry consists in finding out the group-theoretic and geomet­
ric structures inherent in the theories of interest (such as super-Yang-Mills, 
supergravity or superstring theories) and selecting superspaces where these 
structures reveal themselves in a most unambiguous way. For supergravity 
(SG in what follows) that program is now completed in the cases of N = 1 
[1-5] and N = 2 [6]. 

Since supersymmetry in Nature is believed to be spontaneously broken, 
it is of importance to understand in full how this breakdown is inscribed in 
the s~perspace geometric pictU:re of supe;symmetric theories. 

An appropriate framework for analyzing theories with spontaneously bro­
ken symmetry is provided by no~linear realizations (group realization_s in 
coset manifolds) [7].The main advantage of the nonlinear realization method 
is that it allows one to reveal the geometric;, model-independent content of 
spontaneous breakdown by identifying the relevant Goldstone fields with the 
coordinates of a coset manifold where the group of spontaneously broken 
symmetry acts as left shifts. Given an invariant action with spontaneously . 
broken symmetry, one can always rewrite it, by means of an equivalence field 
redefinition, in terms of fields having standard transformation properties with 
respect to the corresponding nonlinear realization. In this parametrization, 
the minimal self-interaction of Goldstone fields is described by a unique ef­
fective Lagrangian whatever the initial action is.The pure consequences of 
spontaneous breakdown (low-energy theorems, Higgs effect, etc.) turn out to 
be separated from those connecte? with the specific mechanism of this break­
ing.In fact, the range of applications of nonlinear realizations is not limited 
to conventional spontaneously broken symmetries. For instance, gauge theo­
rie_s (including gravity) can be interpreted as nonlinear realizations of certain 
(infinite-dimensional) symmetries [8]. Recently, it has been pointed out that 
the theories of current interest, such as those of strings and membranes, can 
also be understood as nonlinear realizations [9-12]. 

For rigid N = 1 Poincare supersymmetry the nonlinear realization has 
been constructed in the pioneering papers by Volkov and Akulov [13] (see 
also [14]} with employing standard techniques of refs. [7]. -These techniques 
equally apply to other rigid supersymmetries (see, e.g., [15]}. The relation­
ship between the nonlinear realization of N = 1 supersymmetry and linear 
realizations of the latter in superspace has been investigated in detail in our 
papers [16, 17] and in [18]. 

The standard nonlinear realization method as it was described in [7] ide­
ally suits to rigid supersymmetries but ceases to be too useful when trying to 
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tries in the context of superspace geometric formulation's·~f SG theories.The 
origin of difficulties lies in that the underlying gauge groups of SG's are 
infinite-dimensional and, as a rul~, cannot be obtained via a naive gauging 
of corresponding rigid supergroups (1,6). Thus there emerges the problem of 
how to set up nonlinear realizations of such nontrivial groups with preserving 
the original group-theoretic and geometric structure. 

Attempts to extend the geometric set-up of spontaneously broken rigid 
N = 1 supersymmetry (13, 16-18) to the case of SG have been undertaken in 
(19-21). In the letter (21) we argued that this can be done most naturally with 
taking advantage of the unconstrained superspace formulation of N = 1 SG 
given by Ogievetsky and Sokatchev ·(OS hen'ct!forth )[1,2j. We have shown 
how to formulate a nonlinear realization of the N = 1 SG group consistently 
with the intrinsic geometry of unbroken theory. 

Our consideration in [21) was rather schematic and it concerned mainly 
the case of conformal N = 1 SG. Now we find it 'timely to return to this 
theme and to give a more detailed exposition of our approach in application 
both to conformal and Einstein N = 1 SG's. Our motivation is two-fold. 
First, for the last years there was a considerable growth of interest in phe­
nomenological models based on N = 1 SG, especially in connection with the 
study of the point-lik~ limif of superstring theories (see, e.g., [22)). Spon­
taneous breakdown of supersymmetry is an important ingredient of these 
models, so it is desirable to have a clear understandirig of its intrinsic nature. 
As a second reason, we wish to point out that the methods we use to describe 
spontaneously broken N = l supersymmetry are in fact more universal and 
can be applied for a model-independent treatment of spontaneous breakdown 
of any symmetry realized by coordinate transformations. This regards higher 
N SG's, the theories of extended objects, etc. In particular, these techniques 
may hopefully be used for analyzing the phenomenon of partial supersymme­
try breaking in the superstring and supermembrane theories along the lines 
of refs.[10-12). 

The modified approach to nonlinear realizations of spontaneously broken 
supersymmetries we have applied first in [21) and which we follow here has 
the advantage of being equally suited for treating the rigid and curved cases. 
It proceeds from the realization of corresponding unbroken supergroup in an 
appropriate superspace and goes straightforwardly once a realization of that 
sort is known. Surprisingly, it opens up a way to construct the nonlinear 
realization covariants without resorting to the customary f~rmalism of Car­
tan's forms (at least, in the examples we are-considering here). One more 
attractive feature of this approach is that it immediately yields the relations 
between linear and nonlinear realizations of underlying symmetry. 

The paper is planned as follows. In Sect.2 we illustrate the basic features 
of our approach by the hand-book example of the Volkov-Akulov nonlin­
ear realization. In Sect.3 we construct the minimal nonlinear realization of 
superspace group of conformal N = 1 SG containing only one extra field, 
goldstino .V'(x), in addition to the fields of SG multiplet and establish the 

2 

/ 

relation of this realization to the OS geometric picture of conformal N = l 
SG. Our consideration preserves manifest invariance and does not require 
any gauge-fixing.· Sect.4 treats, along the same lines, the case of minimal 
Einstein N = 1 SG in the formulation with a chiral compensator. In Sect.5 
we extend to curved space the basic ingredients of the relationship between 
the linear and nonlinear realizations of rigid N = 1 supersymmetry [16, 1 i) 
and discuss the flat space limit of our formulas. Sect.6 c~llects concluding 
remarks and outlines perspectives of applying our methods in some theories 
of similar nature. 

2 Superspace view on Volkov-Akulov non­
linear realization 

To fix the basic ideas of our approach, it is instructive to begin with refor­
mulating the nonlinear realization of rigid N = 1 Poincare supersymmet.ry 
[13, 14). 

2.1 Superspace genesis of N = 1 goldstino 

What we need to proceed is the familiar transformation law of N = 1 super­
symmetry in chiral N = 1 superspace C 4

1
2 = {xi,'' on = { (f} I 

x';' = am((L) = 
0'{ = G"((L) 

x';: +am+ 2i0LO:ml + ifqml 

0';, + £", (2.1) 

am,£" being the parameters of ordinary and spinor translations. A •direct·way 
to get the nonlinear realization is to restrict (fin (2.1) to the 4-dimensional 
hypersurface 

xi,'= y';:,0';, = i."(yL) (2.2) 

This way, the Zumino's version of nonlinear realization of N = 1 super­
symmetry [23) emerges. However, looking at the transformation laws of 
YL, i."(yL) it is difficult to immediately figure out how to construct the rele­
vant covariant quantities. 

Another, more suggestive possibility we shall follow is based on viewing 
(2.1) as a finite element of N = 1 Poincare supergroup (modulo_ Lorentz 
transformations) parametrized by am,£",l;,.. Successive transformations of 

1 We use the standard two-component spinor formalism with the conventions 

(unla)l = (l,a')a)l• (un)ila = ,ili>,a/J(un)/Ji, = (1, -a)ila 

<12 = •21 = 1, ,,mn = diag(I, -1, -1, -1 ), , 0123 ~l. 
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(fl generate the left action of N = 1 supergroup in the space of its parameters 
{am,f", l"}.: 

G~(G((L)) = GM'((L) => 

am' :::: am+ a;_"+ ifO'mf1 - if10"mf 

e"':::: e" + fj,f,;,:::: i'" + fr 

(2.3) 

Here the primes refer to the parameters of the resulting transfor~ation rather 
than to the superspace coordinates (fl which are regarded to be unaffected. 

In this language, the transformations of special form 

ym((L) 

Y"((L) :::: 

x'E, + 2i0LO'mf + ifumi' 

0';, +e" (2.4) 

represent the left cosets of N = 1 supergroup over its Poincare su15group. 
Clearly, the whole supergroup can be realized on these restricted elements. 
The supertranslations act as 

G~(Y((L)) yM'(Go((L)) 

e"' = e" + fj 

G;;'((L) 

G~((L) 

x';:' :::: ·x';: + iim(e, ei) :::: x';: + frumi' 1 - ie 1umi' 

0{ = 0';, 

(2.5) 

A difference as compared with (2.3) is that i~ (2'.5) there appears an induced 
4-translation with the composite parameter iim( e, ei) :::: frumi'1 - ie 1 umi'. This 
phenomenon is typical for group realizations in coset spaces [7]. The left 
action of some group G on the coset elements G / H induces a "gauge" right 
transformation belonging to the stability subgroup H, with the parameters 
properly composed out of the original coset coordinates and the parameters 
of the group transformation 

91, 9 = 91(9,9i) · h(9,9i), 91 E G; 9,9
1 

E G/H; h ~ H (2.6) 

To construct a genuine -nonlinear realization of given group in some coset 
space, one has to regard the coset parameters as fields defined on some man­
ifold, For consistency, coordinates of this manifold should either be inert· 
under the action of the group ( this occurs in the case of internal symmetries) 
or transform through themselves and/or via the coset parameters. 

In the case at hand one meets just the second'possibility. Let us change 
the constant parameters €,i' in (2A) to the fields .X(xL), A(:h) = (.X(xt)1 

ym((L) 

Y"((L) 
x'E + 2i0LumA(xL) + i.X(xL)u!".\(xL) 

0';, + .X"(h) 

and keep for f'M((L) the same transformation law (2.5) 

4, 

(2.7) 

\ ! 
l 

G~(Y((L)) = yM'(Go{(L)) {2.5') 

Here we have substituted (f for (f because the newly introduced coordi­
nates Cf.behave differently under N = l·supe_rsymmetry., One gets from 
{2.5') . . 

.X"' (x~) = N'(xL) + ef 
x'E' = x'E + iim(.X(xL), €1) :::: x'E +.i.X(xL)O'mE1 ;-- if1um A(xL) (2.8) 

0{ = 0:, 

The pair {:i:T, .X"(xL)} is easily recognized to constitute the Volkov-Akulov 
nonlinear realization [13] 2 while the coord_inate 0';, turns out to be inert with 
respect to N = 1 supersyrµmetry. The fact that xT is complex whereas in the 
original Volkov-Akuliov approach the space-time coordinate is real should not 
lead to confusion because the transformation of A'' at ~ fixed point is given 
by . 

8*.X"(x) = e" - iim(.X(x),e1)8m.X"(x) (2.8') 

irrespective of whether xm is real or complex.Nevertheless, the complexity 
of xT turns out to be important for deducing the covariants of nonlinear 
realization in the present approach. 

2.2 Covariants from an axial vector superfield 

The coordinates (f = (xT, 0';,) are adequate to spontaneously broken super­
symmetry as they transform according to its nonlinear re~lization. On the 
other hand, the transformation law (2.5') impli~s tp.at 'the coset space rep­
resentatives Y M ( (L) transform under N = 1 supersymmetry as the original 
superspace coordinates (f {c.f. ( 2.5') and (2.1) )and sci c~n be id~ntified 
with them 

(f = yM((r,) (2,9) 

This relation is just the one derived by us ten years ago [16). With. its help 
any superspace action with spontaneously broken N = 1 supersymmetry can 
be expressed in terms of fields of the nonlinear realization. 

In [16, 17) we did not to full extent exploit the property that xT is com­
plex. One may take advantage of this property to reproduce the basic co­
variants of the nonlinear realization within the present framework. 

To this end, we first recall the well-known relation between the flat chiral 
and real N = 1 superspaces C 412 = {xT,0'i} and R 414 = {xm,0",0"} = 
{zM}; 

x'E = xm + i0umo, 0';, = 0", (0'i) = 0" 
2This realization is related to (2.2) via changing variables as 

Y';: =ii'£+ U(iiL)umX(iiL), 1,l'(YL(iiL)) = ~"(ii£). 

5 

• 

(2.10) 



Likewise, one may single out in C:412 = {xi,',Ba = {(f} a real 414 dimen-- - -:;,. 
sional subspace R 414 = {xm,0",0 } = {.zM}: 

-m -m .H-m(- 0- -0-) 0-,. 0-,. (0-") 0"" :,;L =:,; + i :,;, , , L = , L = (2.11) 

.and,taking into account (2.9) and (2.10), 

:,;m = xm + io'um X( X + ill) - i>.( X - ill)umo 

+f>.(x + ill)um X(x + ill) - f >.(x - ill)um X(x - ill) (2.12a) 

- - -· -=ii - • -
0" = 0" + >."(x + iH) , 0" = 0 + >."(x - iH) (2.12b) 

0umo = llm(x, 8, 8) + P(x + ill)um X(x +ill)+ ½>.(x - ill)um X(x - ill) 

+o'umX(x +ill)+ >.(x - ill)umo 

It is a simple exercise to evaluate llm(z) using (2.12 b,c ) 

llm(z) = (T-1 
):;' [ouno - 88 (oukunv kx) 

+BB (v k>.unuko) + 88 88 (vk >.unv kX)] 

where 
T;:' = 6:;' + i>.umanX '- i8n>.um.X 

V m = (T-1 )::,an, (T-1 
)::, = s::, - i>.unv mX + iV m>.un X 

(2.12c) 

(2.13) 

(2.14) 

(2.15) 

So, the axial superfield llm collects two basic entities of the Volkov-Akulov 
nonlinear realization: the vierbein T;: and the covariant derivative of Gold­
stone fermion Vm>."(z).In the conventional approach (13) the same objects 
come out as the coefficients of Cartan's one-forms associated, respectively, 
with the 4-translation and supertranslation generators. Notice a close resem­
blance at this point to the OS formulation of N = 1 SG where the primary 
geometric object is the axial vector prepotential Hm(:,;, 0, 0) replacing the 
flat quantity 0um0 [1,2). In the next Sect. we shall see that this similarity is 
not accidental; the intrinsic geometry of spontaneously broken N = 1 SG in 
superspace is formulated most elegantly via an axial vector superfield llm(z) 
the flat limit of which is just (2.13). In fact, all the formulas of the super­
~eld formalism in the "splitting'? basis (16) can be compactly rewritten via 
Hm(z) (2.13) (with taking account of the remark below ). Thus, this super­
field proves to be the basic geometric object of the Volkov-Akulov nonlinear 
realization re-examined within the superspace context. 

Before closing this Sect. we remark that one could choose as a starting 
point, instead of (2.1 ), the realization of N = 1 supersymmetry in real N = 1 
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supersp~ce R 414 = { :,;m, 0", 9;,.} .. Proceeding as before, one again arrives at the 
Volkov-Akulov realization. However, the relations (2.12a,c) are replaced by 
the following ones (16) . . 

:cm= xm + iOumX(x) - i>.(x)umo, xmt = xm 

0" = 0" + >."(x), ijf,. = 7/ + Xj,.(x) (2.16) 

>."' (x') = >."(x) +'ff, xm' = xm + i>.(x)uml1 - iE 1um .\(£) (2.17) 

0"' = 0" 
Both changes of variables,although looking quite different at first sight, are 
related to each other by the equivalence redefinition of the coordinates in-
volved · 

xm = xm + !..oo OO(VkV k>.um X - >.umvkv kX) 
4, -

0" 
FP(x,8,0) 

-FP(x,8,0)(T- 1
);;' 

O" + FPV p>." + illn8n>." - lln8n(ll181>.") 

i [00 (oukupV kx) + 00 (v k).qPukO) 

+ i00 00(V k>.ukvpX - v;, >.ukv kX)] (2.18) 

The transformation properties of x,0,0 following from (2.8), (2.11) imply for 

i, 0, 0 the transformation laws (2.17). 
To summarize, the main lesson one draws fro~ the above consideration 

is that nonlinear realizations of rigid supersymmetries can be constructed in 
an algorithmic way, if the coordinate realizations of these supersymmetries 
in some appropriate supe~spaces (C4

12 in the N = 1 case) are known. We 
shall demonstrate in Sect.3 and 4 that the same procedure, with minor mod­
ifications, works in the case of spontaneously broken N = I SG's. With its 
help it becomes possible to define nonlinear realizations of the superspace 
SG gauge groups consistently with the intrinsic geometries of these theories. 

3 Model-independent description of sponta­
neously broken conformal N=l supergrav­
ity 

3.1 Geometric basics of N = 1 supergravity 

To generalize the consideration of previous Sect. to the SG case we need 
first to recall the basic facts about the geometric description of N = I SG in 
superspace. 
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The most elegant superspace formulation of N == I SG is that due 
to Ogievetsky and Sokatchev(OS)[l,2]. They have shown that the funda­
mental gauge group G of N == I SG has an adequate realization as the 
group of analytic diffeomorphisms of complex chiral N == I superspace 
C412 == {xi,Ot} = {(f} 

x';:' = Gm((L) ==xi+ am(xL) + ibm(xL) + O';,cp;:'(xL) + OLOLsm(xL) 
• 1 

0';, = G"((L) == 0';, + £"(xL) + 01,w:(xL) + -OLOLT/"(xL) (3.1) 
. 4 

(factor 1/4 is introduced in (3.1) for further convenience). The basic geo­
metric object of N == 1 SG is the axial vector gauge superfield Hm( x, 0, 0) 
appearing as the imaginary part of xi 

Im xi== Hm(x, 0, 0) 

Re xi== xm, Olj, = 0", (Oi,) = 0" 

xm' = ½ [Gm(x + iH,O) + c"'(x - iH,0)] 

Hm'(x',0',0') = f; [Gm(x + iH,0)- c"'(x - iH,0)] 

(3.2) 

(3.3a) 

(3.3b) 

The role of the conditions (3.2) is to single out in C 412 the real N == 1 super­
space R 414 = {xm,0",0"} = {zM} as a 4 j 4-dimensional hypersurface. As it 
follows from (3.1), (3.3), Hm(z) and the coordinates of R 4 l4 are transformed 
nonlinearly and nonpolynomially in Hm(z) .. 

The group (3.1), (3.3) with unconstrained parameters corresponds to con­
formal N = 1 SG. The relevant gauge multiplet is comprised by Hm(z ). For 
further use, we quote the 0-decomposition of the latter 

Hm(z) = Bm(x) + O"x;:'(x) + 0;,.x"m(x) + OOFm(x) + 00Fm(x) 

+oaa0e;:'(x) + 00 O",J,;:'(x) + 00 0;,.{r"(x) 

+00 00 ( Am(x) - i£mnk•ean8ke~) (3.4) 

The components Bm(x), x;'(x), Fm(x) represent pure gauge degrees of free­
dom while e;;'(x), ,J,;:'(x), ,J,;I'(x), and Am(x) are, respectively, the fields of 
graviton (vierbein) and gravitino and the U(l) gauge field (canonic.al dimen­
sions for the fields ,t,m(x), Am(x) are achieved by exhacting from them the 
Einstein constant 1e; we shall not ·worry here about this).· All the superspace 
geometric objects of conformal N = I SG (curvatures, torsions ... ) have an 
adequate representation in terms of Hm(z) [24]. 

To pass to Einstein N = 1 SG one should either constrain the group G 
(3.1) by the condition of preserving the "voluine'' of C412 [l] 

Ber (
&GN(()) = l 

o(M 
(3.5) 
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or add to Hm(x, 0, 0) a properly chosen compensating superfield [3,4] with 
maintaining the original group structure. In this way, one arrives at the "old 
minimal" vers.ion of Einstein N = 1 SG. The other known versions can be 
given a sim.ilar geometric descrlption [3-5). · 

3.2 Nonlinearrealization ofN=l conformal SG group 

In this Section we consider the conformal case.3 A nonlinear realization ad­
equate to spontaneous breaking of local supersymmetry in minimal Einstein 
N = I SG will be constructed in the next Sect. Hereafter, we shall ,refer to 
the standard unbroken realization of ·N' = 1 SG group G' as· the linear one 
(despite nonlinearitieidn H(z)) to distinguish it from the genuine nonlinear 
realization of G involving a Goldstone fermion in. addition to the fields ~f SG 
gauge multiplet. · · 

In constructing a nonlinear realizatio~ of G we shall closely follow the lines· 
of previous Sect. Let both local ·supersymmetries present in (3.1) · (parame­
ters £"(x),T/"(x)) be spontaneously broken by some mechanism the precise 
nature of which is of no interest for us here ( other patterns of spontaneous 
breaking are also admitted, see the end of this Sect.). How to describe this 
particular situation in a modeUndepe~dent way consistent with the under­
lying superspace geometry of N = 1 SG ? The strategy is prompted by the 
rigid case. One has to define the stability subgroup G0 , to construct the 
coset space G / G0 and to implement G as left shifts of the coset elements. 
Among the coset parameters one may then expect to find the corresponding 
Goldstone fermions with the transformation laws completely specified by the 
constructed coset realization of group G. · 

A ·specific feature of "linear realization" of N = 1 · SG group consists in 
that the symmetries associated•with the parameters bm(xL),cp;:'(xL);s~(xL) · 
in (3.1) are broken from the very beginning. Indeed, the group variations of 
pure gauge components of Hm(z) start with these parameters · 

,5Bm(x) = bm(x) + ... 

6x;:'(x) = _i [r,,;:'(x)- 2i(aml(:z:))"] + ... 
2 . 

6Fm(x) = _ism(x) + ... 
2 

(3.6) 

indicating that the above symmetries are spontaneously broken and Bm(x), 
x;:'(x),Fm(x) are corresponding Goldstone fields. When local supersymme­
tries are also assumed to be broken, we are left with the ordinary general co­
variance transformations (parameters am(x)) and the tangent space L(2, C) 
rotations (parameters w; ( x)) as the only unbroken symmetrie.s 

xi' = G;;'((L) = x';: + am(xL) 

3 A brief account of this case has been already given in our letter (21]. 
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of= G:((L) = O';, +w~(xL)OL (3.7) 

. The next step is to find an appropriate representation for the elements of 
the coset G/G0 • One may proceed by observing that an arbitrary element 
(3.1) of the group G can be uniquely decomposed as 

GM((L) = yM(Go((L)) (3.8) 

ym((L) =. x'J: + ibm(xL) + O';,i,o;;'(xL) + OLOLsm(xL) 

Y"((L) = 0';, + i"(xL) + !oLOLfi"(xL) (3.9) 4 . 

where G:1((L) is given by (3.7) and the parameters with a hat are related 
to the initial ones via an evident redefinition. The group elements (3.9) 
collect all the parameters of the coset GI Go and hence can be taken as 
the represeritatives of the latter. These are the true curved space analogs 
of YM((L) (2.4). Doing as in Sect.2, one may now cons_truct a''nonlinear 
realization of Gin the coset space G/G0 by identifying the group parameters 
in (3.9) as the Goldstone fields 

ym((L) = 

Y"((L) = 
x'J: + iBm(xL) + 11';,x;;'(xL) + OLOd'"'(xL) 
- 1- -
oi;, + -'"(xL) + -OLOLt/'(h) 

4 
(3.10) 

and postulating the following transformation law for them (c.f. (2.5')) 

GM(Y((L)) = yM'(Go((L)) 

a::'((L)) = x';:' = x'J: + iim(GM, Y) 

a:([L) = 0';, = of +w~(GM,Y)ov 

(3.11) 

(3.12) 

The induced general covariance and L{2, C) transformation parameters ap­
pearing in {3.12) are composed out of the group parameters entering into 
GM((L) and of the G/G0 fields. They can be read off from the explicit form 
of the transformations of x';: and 11';, 

x';:' = ! [Gm(xL + iB(xL), ,\(xL)) + am(xL - iB(xL), .X(xL))] 2 . . 

where 

of = OL"DvG"(xL + iB(xL), OL),. - = i,o:(xL)OL 
ll=J.(zL) 

- - - a 
Vv = 8v + X~(xL)(A-~)::.8n, 8M = -M 

8(L 
A::, = o::. +i&mBn(xL) 

We quote the transformation laws of several coset fields 

(3.13) 

(3.14) 

(3.15) 

13m' (ii~) = i [am(xL + iB(xL), ,\(xL)) - &m(xL - iB(xL), .X(xL))] (3.16) 
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xm,.' (x~) = 2iV,..Gm(xL + iB(xL),
0

0L)j.. . 
' . 9L:J.(zL) 

,\v' (x~) = Gv(xL + iB(xL), ,\(xL)) . 

(3.17) 

(3.18) 

The group transformations of the remaining fields can also be explicitly writ­
ten (we ·give below the transformation law of q", eq.(3.37})' but these do not 
look too enl/ghtening. As was expected, all these coset fields in their trans­
formations involve inhomogeneous pieces typical for the Goldstone fields. 

One may directly check that (3.13)-(3.18) indeed possess the group struc- · 
ture inherent in transformations ( 3.1) we started with: It is worth mentioning 
that these transformations involve nonlinearities in the coset fields even upon 
restriction to the stability subgroup G0 • Neveithele~s, th~ latter preser.ves 
the origin in the manifold of Goldstone fields, in full agreement with the g~n­
eral definition of the stability subgroup in the theory of nonliriear realizations 
[7]4. 

3.3 Relation to initial superspace formulation 

At this stage, the nonlinear realization constructed bears no direct relation 
to the geometry of unbroken theory. One deals with the superspace C:412 = 
{x';:, on = {of} and the superfields of specia!'form yM ((i) given Oil it. Put 
together, these constitute a closed nonlinear representation of the group G 
in their own right. 

Recall, however, that the fields possessing inhomogeneous transformation 
laws similar to those of the above G / G0 coset fields ( except for goldstinos) are 
already contained in the linear realization gauge superfield Hm(z) (eqs:(3.6)), 
To avoid the doubling of degrees of freedom we are then led to relate both sets 
of fields by an equivalence transformation. This can be dope after establishing 
a link with the linear realization of N = 1 SG group. · · · 

A key step in revealing the relationship between the two realizations of 
G is to get sight of the fact that YM((i) transfor~ under Gin precisely the 
same manner as the original coordinates (f of C 412 and therefore can be 
identified with them 

(f = yM((L) (3.19) 

This relation generalizes (2.9) to curved space. 
Further, one may single out in C:4

12 = { (f} a 4 I 4-dimensional real 

hypersuiface ii.414 = {xm,0",t} = {zM} by the embedding conditions anal­
ogous to (2.11) 

Imxr, ir(x, o, o) 
.. - --- -=/J. 

Rexr, = xn, 01
;, = 0", (O'i) = 0 (3.20) 

• According to the linearization lemma (7], the transformations of this type can always 
be made linear by a field redefinition. 
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Putting together eqs.(3.2}, (3.19} and (3.20} yields the relations between the 
coordinates of superspaces R 414 and R.414 

xm = i [fm(x + iii,o) + Y(x - iii,o)] 

- - - - • -=;-µ - -= 
()" = Y"(x + ill, 8), ()" = Y (x - ill, 8) 

Hm(x,8,0) = °ii [fm(x +iH,0)- Y(x - iH,o)] 

(3.21} 

(3.22) 

The G transformation properties of x" and iim(x, 0, 0) are as follows 

xm' = im + ½ [am(x +iii}+ am(x - iii)] (3.23a) 

iim' (x', o•, 8') = iim(x, o, 0) + f; [am(x + iii) - a".'(x ~ iii}] (3.23b} 

By inspecting the transformation laws (3.23} one concludes that the lower­
dimensional components of iim(z}, in contrast to those of Hm(z} in (3.3b}, 
transform homogeneously, with no field-independent gauge shifts. Moreover, 
their set is closed under the action of G beca\lse ,the ,comp,onents of higher 
dimension do not enter into transformations of the components of lower di­
mension. Thus one can put 

nm<i) 10= 0 = a,,nm(z}l0=
0 

= a,.a.nm(z)l0=0 
= o (3.24} 

without conflicting with G covariance. These constraints settle the sought 
equivalence relation between the Goldstone fields iJm, x;:', pm and the pure 
gauge components of Hm(z} 

ir(xi) 

x;:'(xL) 

F'm(xL) 

where [2) 

Hm(xL, .X(xi), .X(xi}) 

2if:.µHm(x, 8, O}j. 
ZL 

-~ [t:."t:.,.Hm(x,8,0)- q"(x)f:.µHm(x,8,0)]1. (3.25) 
ZL 

t:.,. = 8,. + it:.,.H"8,. 
t:.,,Hm = (1 - iH);;.'"8,.Hm, H;:, = 8mH" (3.26) 

and the symbol IY hereafter means restriction to the four-dimensional hyper­
surface 

Xm = Ym, ()" = A''(y), 9;. = _xf,(y). 

Thus we succeeded in formulating the nonlinear realization of G in the 
coset space G/G0 via gauge multiplet of conformal N = 1 SG and two extra 
goldstinos N'(x),q"(x). Substituting the expression (3.25) for iJm(xL) into 
(3.13) yields a model-independent transformation law of the first goldstino 
in N = 1 SG group. This field transforms through itself and the components 
of Hm(z). 
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3.4 Eliminating second goldstino · 

It turns out that the above set of fields is not yet minimal. It can be further 
reduced by ~liminating q"(x) at the expense ofthe remaining fields. 

To see thi~, we need to plunge into the structure of iim( z). After imposing 
constraints (3.24) it takes ~he form highly resembling Hm(z) in the WZ gauge 

iim(x,0,8) 
- -= -:;-: - - -- -= -:;mp 
8u"8e;:'(x) + ,88 ()",v;(x) + ()() 8;.t/J 

+ 08 88 ( A".'(x) - iemnkaean(x)ake:(x)) ' (3.27) 

However, in contradistinction to theWZ gauge for Hm(z), this form of iim(z) 
is retained under the action of full gro~p G . . . 

6•ema e""8,.6a"':... 6a"a,.e""' - 6,;re;-
6*~;:' = .i.n[J am - 6a"8 .i.m - 6w"·i.m - 6GJ~.i.m 'f"µ n n"f'µ µ.'Yi, µ.'f"µ (3.28) 

6* .4m = A"8 am - 6a"8 .4m - !6w" A - ~fJm(Sw" - SGJ~) (3.29) . n n 2 a 4 µ µ 

where 6w"< = I/2(u"u<6GJ)·~ I/2(u<u"Sw) and Sw~)GJ! = (Sw~)',6am are 
infinitesimal parameters of transformations (3.12). We .see that e;:' and .4m . 
have the t~~n~formation properties characteristic of the ;ierbein and the 
U(l) gauge.field.,It is easy to check that they are relat.ed via an equivalence 
transformation to their counterparts in Hm(z)., 

I 
e"m(x) = e"m(x) + .. . 

Am(x) = Am(x) + .. . 
where dots stand for the terms of higher order in the involved fields. An 

- -=mj,,. ' 
important point is that t/Jm", t/J transform homogeneously and so carry de-
grees of freedom inherent in a massh:!! spin 3/2 field. The linearized structure 
of ~mµ is as follows . 

~m ='Pm+ s;:~(8,..Xu"ci) + 6::'(u"q) + ... , (3.30) 
' ' ' 

thus indicating that 'if,"' is' a covariant c~inbination of massless spin 3/2 grav-
itino 'Pmµ and goldstinos .A", q". It is worthwhile to mention that eY;', ~mµ 
are the obvious gauge-covariantization of the flat space objects rma, V mA" 
(2.14), (2.15). In the flat space limit iim (3.27) goes· over to (2.13)(see Sect.5). 

In fact, it is straightforward to find the explicit expressions for e"m, ~m", .4m 
-:=mfo 

in terms of Hm and .X", q". For our purpose it suffices to know e"m, 'P 

e"m(x) = (T-1);:'c""lz (3.31) 

~t = e':,.(ua)"°;;: = ir:,U ( f:.Pr;;;.) 1£ - 2i(u")ie:fJ,._xu - ~q0 6i (3.32) 
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riJfJ = Apl!.pHm, c',:' = i(A~.,l!. - l!.a-.,A)Hm (3.33) 
I ",. 

T;:' = ~;:'-,i8,.)."AaHm 1- - i8,.>.0 l'!.,;Hm1_, (3.34) 

He~e r~ and c;:' are :J.ell-known building blocks _of the differei'itial geom­

etry formalism of N = I SG in the OS approach [2] (the vertical line 
indicates as before that all these objects are placed on the hypersurface 
xm = xm,0" = )."(x),iii- = ,Xi-(x)). The matrix (3.34) is the genuine curved 
space generalization of the Volkov-Akulov vierbein (2.14) while (3.32) gauge­
covariantizes the flat space covariant derivative V ,.>.;.. Thus these quantities 
can be regarded as the coefficients of Cartan's forms associated with the 
nonlinear realization of N = I SG group we have constructed .. 

The transformation property (3.28) and the explicit structure of ,(i;m,. 
suggest that q"(:i:) can be covariantly eliminated by imposing the constraint 

-;:c,p 
'Pp = 0 and h.c. (3.35) 

whence 

q"(:i:) = !r~0 AP!'pal - 2ie;:'(8m>.u")" 
2 . • ' (3.36) 

Eq. (3.35) is manifesUy covariant with respect to the group G which guar­
antees that q"(:i:) (3.36) possesses correct transformation properties. 

An important property to be taken 'into account when checking the last 
statement is that the L(2, C) matrix cp;1"(xL) in (3.14) ~ith x;:'(xL) defined 
from eqs.(3.25) coincides with the linear realization L(2, C) transformation 
matrix [2, 24] restricted to the hypersurface :i:m = x';:,0" = )."(xL),0" = 
).i-(xL) 

cp~(xL) = v,G"(xL + iB(xL), BL) ls;>.(hl = 
, = A,G"(:i: + iH(x, 0, 0), 0) '•L = <p~(z)I.L (3.37) 

where· A, is defined in' (3.26). Note that the transformation law of q" is 
essentially simplified after substitution of the explicit expr~ssions (3.25) for 
the G/G0 coset fields 

q"'(x~) 

cp(xL) 

cp-1(xL)1P~(xL)q"(h) - cp-1(xL)A"cp~(z)I_ 
•L 

det cp;(xt) (3.38) 

One more remark c_oncerns the uniqueness of constraint (3.35) and hence 
of the nonlinear. realization constructed. , Generally speaking, one might 

-::aP 
equate 'Pp to any extra spinor x" having the same transformation prop­
erties under G 

-::a{J 
t/Jp (x) = ¾x"(x) 

.s*x"(x) = -.Sa"&,.x"(x) - .sw;x"(x)+ .sw~x>.(x) 

H,; 

(3.35') 

(3.39) 

~ 

Although there is no appropriate X in the pure SG sector, a field of this kind 
may be present among the components of matter or Yang-Mills superfields 
~ritten in the nonlinear realization superspace bases. The explicit expression 
for q" ded~ced ~n · the ground of (3,-35') differs from ( 3.36) by a lim;ar term 
proportional to _x"(:i:), so the expressions for the G/G0 coset superfields (3.10) 
with the coefficients (3.25) are modified in the ihih terms. However, ·one 
returns to the previous case after the analytic replacement 

. . ~ ~ . 

0~ -+ 0~ - oLoL~"(xL) 
. l , ., ,, ,(3.40) 

preserving the transformation property (3.14). This change.of Gra,ssmann 
.. < ~ • • 

- ... --::;mµ 
variable can cells all the extra terms in q" and F and also redefines y,mµ, 1/, 

-;;mji --::;mjl I. • 

"• .1. -,.(-")"-m 'I:' -+ 'I' - X CT. ,.eb 

so that they satisfy the previous constraint (3.35). Thus the latter is most 
general and the nonlinear realization we are considering is unique. 

3.5 Resume 

We have constructed the nonlinear realization of the conformal N = 1 SG 
group G in the coset space G / G0 , G0 being the subgroup of G consisting of 
the general covariance transformations in R4 and the tangent space L(2, C) 
rotations. This realization is compatible by construction with the super­
space geometry, of conformal N = I SG and is minimal in the sense· that , 
it contains only one extra field, goldstino )."(:i:), in addition to the fields of 
SG gauge multiplet (8 + 8 fields off shell in the WZ gauge). In Sect.5 we 
shall demonstrate how to represent the superfield actions with spontaneously 
broken local supersymmetry in ma~ifestly geometric terms of the nonlinear 
realization (in application to the case of Einstein N = 1 SG). 

Before ending this Sect. let us remark that other choices of G0 arc in 
principle admissible. All these can be treated along similar lines. For in­
stance, it is a conceivable option to include into G0 the local supersymmetry 
with parameter 77"(:i:) · 

G;:'((L) 

G~((~) 

xi+ am(xL) 
- - 1--· ,, = 0~ + w~(xL)0~ + -0LOL1t(xd 

4 
(3.41) 

These transformations are easjly checked to close. The corresponding coset 
representatives yM ((L) can be got from (3.10) by putting there q"(h) :" 0. A 
formal difference with the case already considered is that the relevant 1/-•m"(i) 

-=:mj,. 

and ,f; (x) transform inhomogeneously under 77-supersymmetry. However, 
one may completely fix this gauge freedom by imposing the gauge condition 
coinciding by form with constraint (3.35). Under this choice of gauge the 
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theory in question coincides with the previous one taken in the gauge qµ ( x) = 
0. 

Finally, we wish to point out that it is a matter of the choice of a concrete 
model which pattern of spontaneous breakdown G -+ Go really comes about. 
However, once that pattern is fixed, it can be further treated in a model­
independent geometric way within the scheme presented here. 

I 

1 ·~ 

4 Geometric structure of spontaneous su­
persymmetry breakdown in Einstein N =1 
supergravity 

For simplicity, we confine our consideration in this paper to the old minimal 
version of Einstein N = 1 SG.Other versions (nonminimal and new minimal 
ones) can be treated analogously, based upon their geometric superspace 
formulations [5]. 

4.1 Sketch of unbroken case 

Like in the preceding Sect. we start with a brief account of geometric basics 
of the unbroken theory. 

For our purpose most suitable is.the formulation of Einstein N = 1 SG via 
a chiral compensator [3,4]. In this formulation, the underlying gauge group is 
the same as in the confo'rmal case and.it is given by'transformations (3.1).The 
crucial new feature is the presence of a compensating chiral superfield S( (i) 
which transforms under the group G according to ' 

S'((~) = r 1((i)S((i), I((L) = B_er (~'!{) ( 4.1) 

This superfield is pure gauge and it is assumed to start with a unity. So it 
can be made equal to unity by choosing an appropriate gauge. The subgroup 
of G which preserves this gauge is just the subgroup singled out by. constraint 
(3.5).This subgroup does not contain local conformal supersymmetry and lo­
cal L(2, C)/ SL(2, C) transformations which thus turn out to be completely 
compensated. Correspondingly, some components of the axial-vector prepo­
tential Hm( z) lose their status of pure gauge degrees of freedom and become 
auxiliary fields. This concerns the field Am(x) and the longitudinal part of 
Fm(x) (8mFm(x)) in the decomposition (3.4). Besides, the gauge group act­
ing on the vierbein and gravitino degrees of freedom is reduced by one local 
bosonic and four local fermionic parameters. As a result, the Einstein N = 1 
SG multiplet contains 12 + 12 fields off shell (in the WZ gauge for H~(z)) as 
distinct from 8 + 8 off-shell fields of conformal SG. In any other gauge, the 
component fields of the SG multiplet are distributed between the superfields 
Hm(z) and S((i). Thus these superfields are the primary geometric objects 
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of minimal Einstein N = I SG. In what follows, we shall not fix their gauge 
with respect to the group G in order to have manifest G covariance at each 
step. 

From the geometric point of view, the distinction between conformal and 
Einstein N = 1 SG'~ roots in the different choice of the tangent space group. 
The latter is L(2, C) in conformal and SL(2, C) in Einstein cases. Having 
at our disposal compensators S((i), S((L), we m~y define the d~nsitiesf'; P 
[2,3) transforming in G as · 

F' = tp½F, F' = ;,o½p 
i 

(4.2) 

where 
'f' = det 'f';(z), 'f'; = Ll,.Gv(z) (4.3) 

ahd construct SL(2, C) covariant spino~ derivatives 

V µ=FA,., V f,. = F'Aj,., v'~ = 'f'½(z)y,; 1v(z)v'v = ,;1v(z)Vv {4.4) 

The objects v' µ,·v ~, F and P are the basic building blocks of the differential 
geometry formalism of Einstein N = 1 SG [2,3). The explicit expression of 
F, P through-superfields Hm( z), S( (L) is as follows 

F == 2lr-½z¼s-½s¼, P == (F)t == 2lz-½r¼s-½s¼ (4.5) 

r = (l)t = det r::', r::' = r:',;(an)°° 

where the matrix r;;:,. has been already defined in (3.33). 

4.2 Nonlinear realization of N=l SG group in Ein~ 
stein case 

After these introductory remarks we are prepared to turn to our task, i.e. to 
constructing a nonlinear realization of G adequate' to spontaneously b~oken· 
Einstein N == 1 SG. 

As before, we begin with specifying the stability subgroup GE(O)• In 
the present case it is natural to choose it to consist of general covariance 
transformations of x';: and the tangent space SL(2, C) rotations of 0µ 

G';(o)((i) = x';' ='xi:+ am(xL) 

G';;(o)((i) = 0{ = 'f'-½(xL)'f'~(xL)0L·= ,:(xL)0L (4.6) 

Respectively, the relevant coset representatives Yff ( (L) should incorpo­
rate the L(2, C)/ SL(2, C) parameters which have dropped from the stability 
subgroup. It is convenient to represent Yff ((L) as a result of the change of 
variables in (3.10) 

x';: -, x';:' Ot -+ Ote~(•Ll; yM -, Yff (4.7) 
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whence 

x'£ = Y;'(CL) 

·oi;, ;;,·f;((L) 

= x'£ + iir(xL) + O';,x;:'(xL)e1(i£) + OLOLF"'(xL)e2
q,(i£l 

= O';,eif>Cz£) + A"(xL) + !thOd'(xL)e24>C'"£) (4.8) 
4 

The additional compl~ fi~ld ef>(xL) is the L(2, C)/SL(2, C}co~et coordinate. 
All the remai~ing Goldstone fields are the same asin (3.10). 

The transformation law of Yff is given by the generic formula (3.11) 
with the obvious replacement G 0 -+ GE(D)• One may easily check that the 
R.4 coordinate x'Z and the old coset fields have the same laws as in the 
conformal case. The quantities O';, -~d ef>(xL) are transformed according to 

, . 
oi;_' = cp-½(xL)'P:(xL)Oz. = :'r:(xL)Of, e4>'(i'.r.) = cp½(zL)e4>(i£) (4.9) 

cp:(xr,,)= cp~(z)lz£ 

It follows from this consideration that constraints (3.24) and (3.35) remain. 
covariant in the case'in ·question, ti).erefore expressions (3.25) and (3.36) f~r 
the fields present in (4.8) do not change. The components or'the nonlinear 
realization prepotential iim( i) are slightly modified as a result of substitution 
(4.7) 

ejt(x) == e4>(i)e¢(i)eam(z) 

~'l;"(x) = e2¢C•le4>C•l~~"(z) • 

AE(x) . = e2.,,cz>e2Jic~> [Am(x) +·~am(4>- ct>)] (4.10) 

. [ ·' 
The meaning of this·modification is transparent. The objects in. tqe l.h.s.of 
(4.10) undergo only induced general covariance and SL(2,C) tran~forma­
tions while the G transformations of the old quantities eam, ~!"",Am involve 
in addition the induced L(2, C)/SL(2, C) terms (recall (3.28) and (3.29)). 
These terms are now compensated by the transformation of ef,(x). 

4.3 Passing to irreducible set o,f fields 
. , . 

The last question to be answered is how to relate ef>(z) to the fields of linear 
realization. Indeed, like in the preceding Sect. we aim at having the mini­
mally possible set of fields in the nonlinear realization of G, that is 12 + 12 
components of SG multiplet plus four fermionic degrees of freedom associated 
with goldstino A"(z). 

We proceed by rewriting the compensator S( () in the nonlinear realiza­
tion superspace basis { (L} 

S((L) = Ber-1 
(

8~!) . S((L) 
. 8(L 

( 4.11) 
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(8(f') (8(f) ·-1 - . Ber --- == J((L) • Ber --- • I ((L) 
8(t1' 8(t1 

S'((~) = j-1((L)S((L) 

(a(M') (a-m') i((L) = Ber aft = det a~; = det(.5;;' + 8nam(xL)) 

(4.12) 

(4.13) 

(4.14) 

where (f and (f are related by (4.8).The conformal density F(z) (4.5) is 
redefined as 

where 

F(z) 
w(z) 

F(z) 

- w½(z). F(z) 

det( 11"0" ( i)) 
2IrH¼s¼s-½ 

w'(i') = cp(z(i)). w(i). ,p- 1 (z), F'(z') = ,p½(.:)F(.:) 

,p(z) = det 'P~(.i), 'P~(.i) = fl,.ov' = -=r;(xL) + (11,,-=r;) OP. 

(4.15) 

(4.16) 

(4,17) 

(4.18) 

and ili,,rJ are defined by eqs. (3.26), (3.33) and (4.5) with Hm(z) replaced 
by iIE(z). 

Keeping in mind ( 4.lii), the transformation law ( 4.17) of F( .:) and the 
property det "r~ = 1 cine reveals that the lowest component of F(z) starts 
with a constant (which can be put equal to unity without loss of generality) 
and does not transform ~nder the group G. So, the constraint 

F'(z)I- = 1 
9=0 

(4.19) 

is manifestly G covariant. Taking into account that 

fl O"(z) I· = c5v eq,(i) 
I' 9=0 I' (4.20) 

one readily deduces from (4.15) and (4.1,9) 

eif><•> = F(z) I• = e-1 sJ (x)s;½ (x) + o(,\, X) (4.21) 

e = det e;."(x) 

where So(x), S0(z) are the lowest components of S, S and dots denote the 
terms of higher order in fields. 

Thus all the originally introduced coset fields proved to be expressed as 
functions of the SG fields and goldstino A"(x). This shows that the nonlin­
ear realization of spontaneously broken Einstein N = l SG group we have 
constructed is indeed minimal (for the given choice of the stability subgroup 
GE(o))- · 
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From (4.16) and (4.19) it follows that 
I 

S-1- _ --1 _ (d t -ma(-))-1 B=O - e = e eE ;z; 

thus indicating that S((i) has the form 

S(Ci) = e-1(&:L) [1 + o~(.(xi) + OiOiM(xd] 

(4.22) 

(4.23) 

· :The component M(xi) is .a scalar of G while {,.(xi) undergoes also the 
induced· SL(2, C) rotations · 

G: {~(x~) = -r;1v(x1,)ev(xi), M'(x~) = M(xi) (4.24) 

Of course, these fields are related by an equivalence transformation to their 
counterparts from the SG multiplet. 

The ultimate result of our study is that the basic geometric objects of 
spontaneously broken Einstein N = 1 SG are superfields ife(z), S((i) acco-
modating the set of fields · 

- -;;mjl. - - -{ee4 (x), t/J';"(x), tpE (x), Ae(x), €"(x), M(x)} (4.25) 
' ' 

Note that the Goldstone fermion ,X"(x) proves to be completely hidden in-
side these objects which can b_e regarded, like in the conformal case, as an 
appropriate generalization of Cartan's forms of the nonlinear realization of 
rigid N = 1 supersymmetry. One can be easily convinced that they carry 
just 12 + 16 essential degrees of freedom. This is verified with taking ac­
count of constraint (3.3,5) 5 and the fact that the group G is.realized on 
these fields by induced general covariance and local SL(2, C) transforma­
tions. Though goldstino ,\"(:z:) does not appear explicitly in the set (4.25), 
it essentially enters into the induced transformation parameters. One should 
keep in mind this property when analyzing the Lie bracket structure of these 
transformations. ' '· 

. , Finally, we mention that another way to construct the nonlinear real­
ization adequate to the Einstein case· is to proceed from the supervolume­
preserving subgroup of G singled out by constraint (3.5) [21 ). It can be. 
shown that the arising theory is related, via an equivalence redefinition of 
superspace coordinates, to the S( (L) = 1 gauge. of ,the theory constructed 
here. In terms of the nonlinear realization objects this gauge is implemented 
as (see eq.(4.11)) 

-- (aa:) S((i) = Ber a(f 

5 According to the remark in the end of Subsect.(3.4), one is free to choose equivalent 
forms for this constraint, e.g. to set 

-=,,.iJ ~ 
'PiJ (z) = {"(z) 

All these options are related by the analytic changes of iJI• of type {3.40). 
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5 Discussion and comments 

Having defined the adequate nonlinear realization of N = 1 SG group. and 
being aware·of how it is related to the conventional superspace formulation 
of N = 1 SG we are ready to promote to curved space all the consider~~ 
tions carried out earlier in rigid N = 1 supersymmetry (16-18]: to rewrite 
the actions with spciiitaneously broken supersymmetry in terms of nonlinear 
realization, to construct superfields from the nonlinear realization fields, etc. 
Here we briefly concern all these issues with emphasis on the peculiarities 
brought about by local supersymmetry. We shall restrict ourselv~s to the 
case of Einstein SG. 

5. 1 S G actions· in t_erms of nonlinear realization 

Given any G invariant model exhibiting the spontaneous breakdown G ⇒ 
GE(o), one can equivalently rewrite its superfield action in the superspaces 
C:4

1
2 = {(f} and/ or ft.4

1
4 = {z} possessing standard transformation proper­

ties relative to the nonlinear realization G / G E(o) constructed in Sect.4. To do 
this, one has to make the change of variables (f ⇒ (f, zM ⇒ zM in the ac­
tion (with taking account of (3.25) and (3.36)). A crucial difference from the 
analogous procedure in the rigid case (16, 17] lies in that these changes have 
the form of original gauge transformations (3.1), (3.3) and (4.1), though with 
the field-dependent parameters.So their net effect on the action is reduced to 
replacing elsewhere Hm(z),S((i) by ll:&'(i),S((L). In this "splitting" basis 
all the other superfields ( the matter or Yang-Mills ones) are represented by 
components which are transformed-under the whole SG group G according 
to its stability subgroup GE(o), with the induced parameters am(x), .:Yt(x). 
To match the numbers of independent degrees of freedom in the initial and 
new parametrizations, one also needs, like in the rigid case (17], to set 

x"(x) = 0 (5.1) 

where x"(:z:) is composed out of the spinor fields of the nonlinear realization in 
precisely the same fashion as the goldstino of the linear realization out of the 
initial spinor fields. This manifestly covariant constraint gives the equivalence 
relation between the goldstinos of the linear and nonlinear realizations. 

To be a bit more specific, let us give the generic form of the nonlinearly 
parametrized action of N = 1 SG in the chiral representation 

I= - : 2 j d6(iS((L)R(HE) + j d6(iS((L)i((L) + h~c. (5.2) 

where K. is the Einstein constant, § and HE are defined by eqs.(3.27),(4.10) 
and (4.23), C((L) is the Lagrangi!IJl density of matter and Yang-Mills super­
fields brought into the splitting basis and 

- - - . - -2 -=:-p.-=:- -:-2 
R(HE) = R(H) = fl"fl;,.F = fl fl;,.F (5.3) 
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After performing 0-integration the first piece in sum; (5.2) takes the fa­
miliar form of component Einstein N = 1 SG action in one of WZ gauges 
employed in (3,4), with the SG fields replaced by the corresponding quantities 
from the set (4.25).6Recall that the latter objects as'distinct from the former 
ones carry a representation of the full group G which closes on them with 
the same (field-independent) bracket parameters as in the initial superspace 
realization (3.1). ,, , . 

If supersymmetry is spontaneously broken, i necessarily starts with a 
field~independent term 

i((L) =.m!b(OLOL) + ... 

where m,b is a mass characterizing ,the scale of spontaneous breaking.In view 
of the structure of S((L), (4.23), this term produces the self-interaction of 
goldstino .:V' ( x) 

j d6(L§((~)OLOL ⇒ j d4xLdete:,(xL) = j d4x~detT::,(xL) +... (5.4) 

where detT:, is the familiar Volkov-Akulov Lagrangian density and so it gen­
erates an induced cosmological term proportional to.m!b (25, 26). If there 
is· also an ind,ependeqt. supersymmetric cosmological term in the· pure SG 
sector (it amounts to the presence of 0-independent constant piece in i (3)), 
the component M(x) in S((L) (4.23) acquires·a non-zero vacuum expecta­
tion value, M(x) = const + ... , and,.as a result, additional contributions 
to (5.4) appear both from the first and.second pieces in (5.2). The effective 
cosmological constant can: be then made equal to zero by adjusting param­
eters (simultaneously this fixes the mass of a gravitino). This mechanism 
of annulling th~ cosmological constant by the super-Higgs effect has been 
dis~ove~ed in (26, 27). The no~li¥ear realization form of N = 1 SG action 
permits one to see how this mechanism works without entering into details 
of £((L). 

Let us. now dwell on the relation with the.pioneering paper by Volkov 
and Soroka (25] where spontaneously, b~oken local N = 1 supersymmetry 
has been implemented. as a direct gauging of nonlinearly realized rigid su­
persymmetry in ordinary space-time and w~ere the ,super-Higgs effect has 
been discussed for the first time. The· basic objects ~f this theory are also 
some gauge-covariantized .Cartan's fornis evm.(x),~~"(x) built up from the 
goldstino and the gauge fields of spins 2 and 3/2. Local supersymmetry is 
realized as induced general coordinate transformations of these objects, with 
the parameters composed in a proper way out of the goldstino and spinor 
gauge functions. However, the explicit expression of these objects in terms 

6For entire coincidence with the minimal Einstein SG component action as it is given 
- -=A -;:;µrn. -

in [3], it is convenient to identify{",{ with the spinorial parts of 'PE ,,;,i;;m using the 
freedom mentioned in the previous footnote. 
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of the goldstino and gauge fields essentially differs from that of the quanti­
ties e'i;;m, ~';" given above. Besides, the Lie bracket structure associated with 
the invari~nc~ g~oup of this theory does not,coincide with that of N = 1 SG 
group and, respectively, the transformation laws of the goldstino are different 
in both theories. Nevertheless, despite these distinctions, any action com­
posed of the Volkov-Soroka Cartan 's forms in the invariant way with respect 
to general covariance and local SL(2, C) transformations will be automati­
cally invariant under N = 1 SG group. Indeed , one may identify both sets 
of forms "by hand" and re-express the Volkov-Soroka gauge fields in terms of 
fields of N = 1 SG multiplet and the relevant goldstino. By this procedure, 
one implements N = 1 SG group on the objects of the Volkov-Soroka theory. 
Invariance of the action follows from the fact that this group is again realized 
as general coordinate and ,local SL(2, C) transformations. In other words, 
both the Volkov-Soroka and standard N = 1 SG gauge groups can be l-eal-

0ized on the same set of objects and, as a matter of fact, these groups coincide 
modulo some field-dependent general coordinate transformations and local 
SL(2, C) rotations. From that standpoint, the component form of the first 
integral in (5.2) (with the nonpropagating fields M,Am eliminated7) can be 
interpreted as a special choice of the Volkov-Soroka action containing a non-

- --:mj,, . : 
minimal term which is quartic in VJ';,,., VJv and enters with a fixed coupling 
constant. 

It is noteworthy that any G invariant action in ordinary space-time con-
- -=mj,, 

structed from ejT, VJ';", VJ E can be equivalently rewritten in terms of gauge 
superfields of the linear realization S((L), Hm(z) and goldstino .V'(x). To 
this end, one should simply complete the integrals over R.4 in these actio~s 
to those over R,4

1
4 or C:412 by using ,the identities 

1 = / d
40 (0) 2(0)2 or 1 = / d20L(ih)2 

and then perform the change of variables (f -+ (f and/ or :zM -+ :.M. Extra 
terms appearing in the SG action exhibit in general an explicit dependence 
on .V(x) which disappears only in the unitary gauge .\"(x) = 0. 

5.2 Superfields from nonlinear realization fields 

The main advantage of the present approach should be seen in its manifestly 
. geometric character that allowed us, among other things, to find the explicit 

relation between original N = I SG superspaces C 412 , R 414 and the nonlinear 
realization ones C:4

12 ,R.414 • The knowledge of this relation makes it possi­
ble, as in the rigid case, to work out simple general recipes for constructing 

7 
As distinct from the case of linearly realized G, elimination of nonpropagating de­

grees of freedom in the nonlinear realization does not destroy the off-shell closing of G 
transformations on the rest of fields because all the nonlinear realization fields transform 
independently of each other. 
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superfields of the linear realization_ from the quantities of the nonlinear real­
ization, viz. goldstino .V'(x) and the fields of N = 1 SG gauge multiplet. To 
have such recipes is important, e.g., for the model building along the lines of 

refs.[28). 
The simplest exercise is to build superfields having no external SL(2, C) 

indices. One way to do this is as follows 

rp((i) = 0"(CL)0,.((L) (5.5) 

where 0" are to be expr~ssed through (f from eqs. (4.8) (this can be done 
by iterations).A more complicated problem is to set up superfields possessing 
nontrivial transformation properties with_ respe_ct to local SL(2, C). The 
origin of difficulty lies in that the SL(2, C) frames of the linear and nonlinear 
realizations 'do not coincide and one needs "bridges" relating these frames to 
each (!ther. · · · 

_To constrnct the bridges, we first introduce the objects 

N . .:... 8- '/'N -Im _ 8 -m a,. = ,.~L' aN - NXL (5.6) 

transforming as (the coordinates with prime are defined by (3.1),.(3.12) and 

{4.9)) 

a:· = aMcf' ·a~· t;1"(:h), a-;.1m' = a'r,cf · a-;.r · 8nx';' 

Using them we may ~onvert a:ny covariant world tensor or SL(2, C) spinor 
of the nonlinear realization (e.g., in the left basis) into appropriate chiral 
world tensors of the lin~ar realization ( contravariant world tensors of the 
nonlinear realization can always be transfor~ed into c~variant ones by means 
of contraction with the metric 9mn = e6meEan)- -i:hese objects can further be 
converted into SL{2, C) tensors of the linear reali~ation by contracting them 
with proper components of the left or right supervielbeins If, rf = (If )I [2) 
and of their inverses. For our purpose; it is sufficient to have the components 
~.~: ' . 

1!1'(z') = 1aiz) • lt(z) · aNct 

1%(z') = 'Yp(z) • 1t(z) · a~cf (5.7) 

where 'Yp{z) are defined in {4.4). The explidt form of the~e objects can be 
found, e.g., in [2) and we do not give it here. As a simple example of applying 
this procedure we quote a spinor N = 1 su·perfield whose components are 
functions of the goldstino and the components of SG multiplet 

rp0 (z) = lN(z)a:((L)0"((L) 

It possesses normal transformation properties under the linear realization 
of Einstein N = 1 SG group. ~ote that from the standpoint of the linear 
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realization the superfields of that kind are singled out by the nonlinear con­
straints of the type considered in [20]. The latter look rather complicated 
and, like in the rigid case, it is difficult to indicate any general principle of 
how to seek them. · 

It is worth mentioning that in the local case there are much more possibil~ 
ities to construct the superfields of this sort compared to the r1gid case. The 
reason is that in the nonlinear realization of SG one may form the quantities 
with the tensor type transformation laws not only from 0" (as in the rigid 
case) but also with making use of fields ( 4.25) and the covariants constructed 
from them by standard rules of Riemann geometry. 

Surprisingly, the SG multiplet, in its own right, can be covariantly con­
structed entirely from the goldstino, the linear realization vierbein and pure 
gauge components of N = 1 SG multiplet. All the other components {the 
gravitino field and auxiliary fields) can be expressed as nonlinear functi~ns of 
these entities by equating to zero all the fields in the set {4.25) except for the 
vierbein field that is a ma~ifestly G covariant procedure. Of course, such a 
composite SG multiplet, though possessing correct transforma~ion properties 
under SG group, at the dassical level does not give rise to any new; dynam­
ics beyond that connected with ordinary gravity {in the gauge >."(x) = 0 
and a WZ gauge for the SG multiplet we are left with the single vierbein 
field). However, it could generate nontrivial supergravity interactions after 
quantization, as it was suggested, e.g., in a similar context in [29]. 

5.3 Flat-space limit 

Finally, we discuss the flat Minkowski space limit of formulas obtained in 
Sect.3,4. This limit can be achieved by letting K. -, 0 elsewhere or, equiv­
alently, by equating to zero all the members of the SG .multiplet except for 
the vierbein which reduces to its flat Minkowski part eam = T/am. We have 

H'J!(z) ⇒ nm(z) (2.13) 

ef>(x) ⇒ o 
jjm ⇒ >.um .X, x::' ⇒ 2i( um .x )., 
pm ⇒ i - -

2qum >., q" ⇒ 2i(umv m>.)" 

- - ( acf) S((L) ⇒ Ber _M 
acL 

Correspondingly, relations {4.8) go over to 

- - - i-- . -
x'£ = x'£ + i>.(xi)um>.(xL) + 2i0Lum>.(xL) + 

2
0L0Lq(xL)um>.(xi) 

- i - - -0j, = 0j, +>."(xi)+ -0L0L(umv' mA)" 
2 
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After the additional replacement of Grassmann variable 

- - i-- -01;,-+ 01;, - -0L0L(umV m,\)" 
2 

one arrives at the familiar relations of the rigid case quoted in Sect.2.Note 
that in the flat Minkowski space limit the Lagrangian density of pure SG in 
(5.2) reduces to a full divergence and hence the relevant part of the whole 
action vanishes. The Volkov-Akulov low-energy Lagrangian may appear in 
this case only from the matter and Yang-Mills sectors. 

6 Summary and outlook 
In this paper we have constructed the nonlinear realizations adequate to 
conformal and minimal Einstein 'SG's with spontaneously broken local sii­
persymmetry. In our study we proceeded from the manifestly invariant geo­
metric description of N = 1 SG's in superspace via unconstrained superfield 
prepotentials.• We have defined the superspaces where thes·e nonlin~r real­
izations are formulated in a most natural way and established their relation 
'to conventional N '= 1 superspaces. Our consideration directly generalizes 
the analogous one for rigid N = 1 supersymmetry (HI, 17) arid makes traris­
parent the underlying ·geometry of spontaneous supersymmetry breakdown 
in the N = 1 SG theories. 

Note that many questions we addressed here were earlier treated within 
the component (19) and constrained superfield (20) formalisms. Like in .the 
case of unbroken theory, the group-theoretic and geometric foundations of 
spimtaneously broken SG remain implicit' when employing these approaches. 
In particular, none of the previous authors succeeded in extending to curved 
space the change -of variables which relat~s ordinary N = 1 superspaces 
R 414,C412 to their nonlinear realization ~ounterparts R,414,C:412 • (eqs.(3.19), 
(3.21), (3.22) and (4.8)). This relation lies.in the basis of our consideration 
and it is of key importance for understanding the geometric structure of 
spontaneous supersymmetry breakdown in N = 1 SG. It should be pointed 
out that all the main conclusions of refs. (19, 20) can be reproduced without 
difficulties within the present framework. For instance, the transformation 
law of the goldstino found in (20) follows from ours, (3.18), upon passing to 
a new basis 

]; = x'£ + iHm(xL, ,\(xL), ~(xL)) 

,\"(]L) = ,\"(xL) 

and choosing a proper gauge with respect to the group G. 
The methods we have applied throughout the paper are greatly general 

and can readily be adapted for other versions of N = 1 SG and for higher 
N SG's in unconstrained superspace formulations. What one really needs to 
know is the realization of relevant unbroken SG group in some appropriate 
superspace. 
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Perhaps, the most perspective new area of possible applications of our 
machinery is provided by recent developments in the string and membrane 
theories. It has been suggested (10-12] that these theories (in a fixed gauge) 
could be understood as an effective approximation of appropriate theories 
in higher dimensions which describes self-coupling of the Goldstone modes 
associated with spontaneous breaking of some continuous symmetries or ~u­
persymmetries. It seems that the methods worked out in (16, 17, 21] and 
in the present paper may turn out helpful for singling out such Goldstone 
modes in a manifestly covariant manner and for revealing relations betwl'en 
linear and nonlinear realizations of underlying spontaneously broken symme­
tries (like it has been done by us for spontaneously broken supersymmetry). 
We end the paper with a bit more detailed discussion of how this could work. 

As a matter of fact, the generic transformation formula (2.5) we perma­
nently relied upon applies to any situation where 

i.There is a group'(or supergroup) G acting as coordinate transformations 
on some manifold {17M} (it may i'nvolve both bosonic and fermionic variables) 

G: 1/M' = GM (T/) (6.1) 

and 
ii.There occurs a spontaneous breaking of G down to symmetry with 

respect to some subgroup G0 leaving invariant a subspace { 17"1
} C { 11.lfJ 

Go: nm'= G;;'(T/n) 1/"' = 1/"G~(T/",T/"') (6.2) 

where we have split indices as {M} =:- {m,Jt}. Such breaking may arise, e.g., 
due to some classical solution displaying no dependence on I/"'. 

To describe this situation irrespective of the choice of a concrete model, 
we may proceed by analogy with the supersymmetry case worked out in this 
paper. First, we decompose GM(T/) in a series in T)" (in the cases W<' dealt­
with before I/" was a Grassmann coordinate) and further define the G / G 0 

coset representatives yM (T/m, 1/m) by setting to zero all those coefficit>nts in 
this series which parametrize the stability subgroup G0 • The remaining coef­
ficients are then the G/G0 coset parameters and they can be identifit>d with 
the relevant Goldstone fields. Their behaviour under G is fixed by postulating 
for the G/G0 coset elements the generic transformation law (2.5) 

GM(Y) = yM'(G0 ) = yM'(G;;'(it),i;"°) (6.3) 

The Goldstone fields are defined to live on the manifold { ijm} and they trans­
form under G through themselves and the coordinates ijm while the latter 
transform under the whole G according to the induced G0 transformations 
(6.2), with the parameters explicitly involving the Goldstone fields. Hence 
these fields together with coordinates ijm constitute a closed nonlinear real­
ization of group Gin the coset space G/G0 • The remaining coordinates ii'' 
parametrize the quotient of {ijM} over {ijm} and transform homogeneously, 
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also according to the induced Go transformatiof). law (6.2). As before, the 
relation to the original "linear" realization of G is immediately revealed by 
identifying 

. 1/M = yM(ijm,ij") (6.4) 

and further by imposing the constraints of type (3.24), (3.35) and (5.1). 
, The Jacobian of the ch~ge (6.4), J = def (~) ( Ber in the case of 
graded manifold), being expanded in powers of homogeneously transforming 
coordinates ij", yields in the lowest order the minimal Lagrangian density 
of Goldstone modes. The examples pr~sented in [10-12] naturally fit in this 
general scheme. , · 
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