


I. Introduction

The investigation of the vacuum stability in the frame-
work of different field theoretical approaches presents a

considerable interest 1-4

. This problem is closely tied with
many questlons arising in quantum field theory and concerning
the structure of the vacuum. For instance, there 15 an in-
dication ° that in the case of the massless Yang-Mills theory
the one-loop radiative corrections to the classical action
lead to instability of the vacuum. Moreover, it was pointed
out 6_that the magnetic instability of the perturbative va-—
cuum of the non-Abelian Yang-Mills field enables us probably
to solve the problem of the colour confinement in QCD, The
nontrivial expectation value'of>the vacuum field may arise in
two different ways: elther on the classical level whén the

Lagrangian has a term like a negative squared mass 748

which
leads to the broken symmetry of the ground state or on the
quantum level when the quantum corrections can give rise to

the vacuum instabllity E

«- The guantum correotions lead to
divergences which should be removed by the renormalization
procedure. 4s a result, the contribution of quangum fluctua-
tlions may seriously change the olassioal ploture..This situa-
tlion oan be seen, for example, in the (éﬁal sealar field

mod el 9-11 . The theory is desoribed by the Lagrangian

Ly (x)= F 00 [B-m* ) +hp%0) L@

where /é 1s the bare self-interaoting coupling oonstant
and 77 1s the boson mass. In the real ,{7‘7 space~time
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this theory is renormalizable. The classical potential 1s
bounded below and glves rise to a ground state with a zero
expectation value of the field §9 . The quantum corrections
after eliminating the corresponding divergences lead 9,10
to the effective potential unbounded below, l.e. to instabi-~
1lity € the model.

The theg{y under consideration may be made finite by

introducing into it a nonlocal interaction. Then, the bo-

son propagator in the Euclidean space-time 1s given by

o~ 202
D(KZ)‘—:—I?—K—%Z' (2)
- 2 +K ‘

Here szfzj 1s a nonlocal formfactor and [ 1s a parame-
ter of nénlocality. Due to the fastly decreasing (2) as
#%5c0 the theory has no ultraviolet divergences. ‘The quan-
tum contribution,hés a finite value and the stability of the
theory and its ground state is preserved.

Bﬁt the situation may be changed by introduction of an
additional locai Yukawa-type interaction with fermions. The

Lagrangién of the fermion seotor 1s
L tx) = Y] 5~ M] ) + 7 Z ") pe) s &)

where A/ ana 57 are the fermion mass and the Yukawa

coupling constant, respeotively.

The fermion-propagator has the standard form

A {
Stid) = -iZ ’ ' - (4)

S

A
Here A(féi@% apd 4; are the Dirac matrices. The
Yukawa-type model with the Lagrangian

Lx) =L, ex) + L20x) ()
1s superrenormalizable because of the finite boson part CI).
Here gc; 1s the lagranglan of the nonlocal boson sector.

When the quantum corrections are taken into account
there arise divergences connected with fermion loops. After
eliminating these divergences by renormalization one obtains
a finite contribution from a boson-fermion interaction which
can give rise to instability in the theory.

The alm of the present paper is to investigate the role
of reqonnalization procedure in the vacuum instability in
this model.

For a qualitative investigation of the first quantum
correlations one usually uses perturbative methods, such as
1,9

loop expansion of the effective potential. In the in-

teresting for us reglon of strong coupling nonperturbative
methods should be used. On the way, the variétional estima—-
tions 11,13,15 are more attractive, first of all, from the
polnt of view of universality and simplioity of oaloulafions.
In this paper we will use the varlatilonal estimation method
suggested in Ref. 11 . ' v

2. The superrenormalizable Yukawa-type model

The Yukawa-type model with the boson—fermion interaoc—
11~
tion is widely used 15 for testing different methods and
new ideas in the field theory. In the chiral-invariant 7

Yukawa theory with scalar ooupling, the fermion part of the




effective potential haé been investigated 12 in the one-loop
approximation. It has been found that at certain ratio of
coupling constants é; and 44 the instability of the ini-
tial ground state arises. The presence of fermions encoura-
ges spontaneous symmetry breaking and destabilizes the theo-
ry. Stability requires 13 the bare é? being‘in%initesimal.
It should be noted that this contrasts with large-N studies
14 4n which éz remains finite. The last paper contains an
indication of the existence of the phase with a nontrivial
vacuum expectation value of the bosonic field.

The investigation of this problem within the framework

15 gives

of the modified variational Gaussian approximation
the effective potential unbounded below. The‘Yukawa—type
theory turns out to be unstable.

A1l the above-mentioned papers deal with the local
qukawa—type model. In the superrenormalizable theory conside~
red here we have another picture due to the nonlocality of
tﬁe bosonle sector. This model has the boson and fermion
propagators defined by (2) and (4), respectively, and the

total Lggrangian is written as

L= 2! ;ﬂ(x}[ﬂ-ﬂf]m’} +Pooli 7- M) - A /,(/([fy) ;o(x)]ig %c)); %()[ (7)) ;myi(s)

where the monlooal boson field W= K(€a)Qpa) - 1is in-
troduced. The nonlocal operator W—fzﬂjs [/((!Zﬂ)jz obeys
some special conditions (see Ref, 11 ). To concretize eq.
(6) we choose the pseudoscalar interaction f'=fé there.
The Lagranglan (6) is invariant under the transforma-

tions

Px) —~-pr-x)

Yix) —>xy WY-x) .
7

But the ground state may have no this symmetry due to the
contribution of the fermionic sector.

9,16,17 s the vacuum state of a

As is well known
theory is defined by the absolute minimum of the effective
potential. N

We investigate now the behaviour of the effective poten-

tial which is defined by -°

Vg (h1=-b & a < Sh47> ©

where

CSatd1> =L [55P8V 54~ [dhorm) G’A;Déf/x[(y’)} L@

Here 12 is the space~time total volume and JC is the Lag-
rangian given by (6). Thne unique point <;é:= 92 which oorres-
ponds to the minimum of Z-ﬁ,[sé] is treated as vacuum expec-
tation value of the field..

In the superrenormalizable Yukawa-type model under oon-
sideration, in order to remove all the divergenges induced
by fermionic loops Lt is sufficient to introduce counter—
terms only for the rlenormalization of the boson mass and
the aelf-invteraotion coupling constant A o

The total Lagrangian (6) can be rewritten as

£ =55 p[o-nlp+ y‘x;:iﬂ%-éa% yé +

- (T0)
A(r-2,)4"'- Z'P



where

g, =-g2/7t-mY (11)
»£Z¢ ==é;?/;iﬂzeacacy) _
dn? = 572'/6i£ﬂ”f/ .
Here , R
ey = /(g;j% z‘r/fn’p‘) '5'71;5 +ié) ] w

We make now the following regularization

Ve (K9 = Jleey - 7 - (m*+£Y [7%mY
, (13)

Vg Borfp) = / s fi) = 1 10,0,0,0)

Substitution of (I0)-(13) into (9) removes all the divergen—

ces in the theory.

We will caloulate the integrals in (9) in the following
way. The Gausslan integration over fermionic variables can be
ocarried out exactly. Further, we employ the variational
method to the remaining functional integral over the bosonic
field. Finally, onme obtains the estimation for the right —
-hand side of equation (9),

It is convenient to make the following chénge of the

11

integration variables in functional integral (9)

94?x} ==~/:)é'-crzr~;).27(g)
(14
¢2ﬂx) = ~/Qk§ “Afx-z)- 42 , )

where the functions 0 (¥-2) and A(X-Z) are defined by

J?(}1?V'=i/;é'Cﬁﬂr-2j- 6:L21;j

- (15
Dix-y) ={)QZE-‘afév~z;)-zﬂ(za:;4) .

The new integration variables &/2) and /fz)  can be ex~
panded into the basis orthonormalized functions u (};(x{f

uz) =L gz

(16)
7=y g0 . :
In (7) we pick out the Caussian 1ntegration mea§u;gs
;ﬂ& .
a6, = {77 -5 ‘

G, = ”f/zé‘XPff?]
which obey the usual conditions

[l =1 , [do =1 e

The functional integral over fermionio fieids in (9);1§‘ 

carried out exactly

[fdt,. e,n;o/szodr %rj/ Yoo [¢rXJ+F‘]/— a/el‘ﬂ?*j/‘/) s

where the matrix /{m has the form

Hon = //x G, (%) . O (x)- [¢a)+‘g5 ]

Note that in’ the Euclidean metric where tha fermion propaga—ff,t N

tor has the. form KO the matrix (20) is nonhermitian. ‘But-
it ia possible to- substitute the fermionic propagatorf""'

é?/tﬁc) 3'§’{,




Gty = v/.SA{/z'KA)/ ' (21)

As a result, the matrix A4W1 becomes hermitian provided

that

Glry) = ff/z_» otr-2)-6(2-9) =/ G0 6w -

The replacement (21) does not alter the ultraviolet behaviour

(22)

of the fermionic propagator which plays the main role in our
consideration.

‘Further, we may use the following 1nequality' H
: ¢
; 7 * 2 4 (23
det (I+igH) > exp{Etr i~ 41" )

valid for arbltrary hermitian matrices // . Substituting
(23) into the integral (9) we have

CSLlhIY > exp 0 (FH L) oy exp (£ 4ttt -
LUk’ 2 [l oDl + Frif'n -
/4‘24/)1//1/%&} +6 b+ ;{9 - %f‘é"/fw‘/‘éz}] )

-
Let us introduce new integration varlables . 4, —> &, //*Z) /z’

(24)

where 4?; are positive numbers obeylng the oondition
A

Fh<ee
S, exp Wip > expds, Wiy 2)

valid for real functionals M/p) - we obtain the follow-
ing estimation for (9):

St > epl-2 L [btrg) el alEa i )

S

ST

. Using the inequality 3'.l
)

q
wenpfe, (£t ey +
Z: y '
5oy gty oy + Emd - 26)

4-2,) [ [l Einsd +4)- iﬁ@;//x/—%{?x) +4Y ]

where .
b=y |
7 O A ' (27)

b = (rg) 2 W (1eq) .

From (26) we obtain the final estimation for the effective

potential
7 . g (A %
(A1 Vtdi=pin O (55 ) lhing )]

AL g 9° y
P Ja b 17+ foty 41
‘f‘zﬁﬂ/ iy é(uﬁbgf}g 00~ g 4

(42 ) b [ oo '+ )+ B fob (et ] -

The varlational problem (28) with erbitrary positive num-—

(28)

bers /%;} 1s very compliocated and for simplicity we can
choose % such that the following asymptotic inequali-

ties are satisfiled

G, AT [htrg)- e ] = (25 [lttew)- £ ]

7+
2 (29)
2 ~
b §7 a0 (d% Doy,
v G 12 T )(E)Y e
9



where 7(,(’2) 1s a positive function obeying the condition
[ owy<oo .

Let us direct the volume to infinity: 2->e0 . Substi-
tuting (29) into (26) and picking out the dimensional factor
hy we obtzln a variational estimation for the upper bound

of the effective potential

Virki=mtmis (4 /M///f )7z ]

~~ facd }’ Y (034
/;;(fxpf,()-/- /2/5/#- %/ZE (0}7‘-';/Z ?;')EVQ(/)’
977 (00pp) + 2k }
[ 896P)+ 2 e (00pP) + 5 /] A% G0
- where
~ Dy
Df /+7(A’7) (1)

kfs(ola;oﬁ) (.7}3/%(&"’ -/ 4//"' ‘ﬁ(_/::(_ﬂ-)

, , /.

~/7£c(ac>,/é,/>)=-;,,7faéz %{ﬁ Lp )

, .
I M+ K1

tz:;("z/ [/A’ "‘fﬂé//:(/"d)] /Mz"""‘z"/"“oj&—zi;ﬁ]
It 18 convenient to represent formula (30) by dlagrams. ir
we introduce com‘entiona.l notation shown 1in Fig.1l, the

right-hand side of inequality (30) can be described by the
set of graphs shown in Fig.2, T

DgIK?) = 7 , ~ *)
Ngeg (K2) ~<>* . | -
* ’ —O_ - ' A

ngg(PpPz.Pg.PL‘ J ~ i:} »
. \\ //’
Pelx) e X ST B
Fig.l. Notation for the Fig.2. Graphical representation o
Feynman diagrams. of the effective potential. -

Minimization procedure applied to the right-hand side
of (30) results in the complicated integral equation. -But we
can overcome this obstacle in the following way. Let us take -
the function , E
. L2 ¥4 =
7/(}:\7(-/)7 - Dk s o (32)
where f:f(jj is a variational parameter. Now we look for the

solution of the equation.

&/Df =0 , o (33
o=t it ; . S
which obeys the condition _/K///z >({ . Substituting

the solution of eq. (33) into (30) and taking into account
(29) we finally get

T/’:[?g]»_—/774’./(0’+ag¢,v{;]f).54z+éé7/ .

The field configuration ¢:= é giving the absolute

(34) -

minimum of the pbtential 4) corresponds to the vacuum state
of the system. We see in (34) that the potential is bound



below at an arbltrary constant h > 0, i,e., the theory re-
mains stable. The factor aCf/Aj]{;) is given by

gitit)=4- 277 e 2 21 Dy

[4 tf;(”¢0/0)+2'e“(44ff)+}ié- . .(35)

From (28) it is easy to see that QC//’/{;J{,) may have
different signs at fixed h , i.e.

Qikif) 20 at 259 .(F)

and

Qihif) <O at 2>9.0 (k) .
So, in this theory the initial vacuum stability may be bro-
ken and there exist two phases with different vacuum expec—
tation values of the field. It should be noted that here the
second order phase transition takes place.

The qualitative behaviour of the effective potential
V[yﬂ] at different values of f is shown in Fig.3. 4t
small ¢i_ the potential V behaves as ~¢ ~ ¢;y

and ~-¢i for curves 1,2 and 3, respectively (see Fig.J).

v, ()

for fixed é at different
The curves 1,2 and 3 correspond
Y to the coupling constants f’ » 97

and f”’! respectively, where
: 7’ V4
i f <£ =%ﬂt‘ <£”/

12

/ 3 Fig.3. The behaviour of Vio[d]

3. Conclusion

We have investigated the appearance of the instability
in the superrenormallzable Yukawa~type field theory which .is
an extension of the 6§o¢ scalar field model with a nonlocai
self-interaction., At the infinitesimal coupling constant f
we have a finite theory. In this case, the vacpum state is
stable and has a trivial expectation value of the field. An
additional interdction with fermions breaks the vacuum sta-
bility. 4s a resuit, a finite oritical value for the boson-
—fermion coupling constant arises. For 24((%”? the interac—
tion is small and the system is found in the phase with
*normal™ vacuum. When the constant j increases the fer-
mionic destabilizing role becomes more important and for
£>£"# the boson field {ﬂ acquires nontriv.ial vacuum
expectation value and the system goes into a new phase.
Here, the second order phase transition takes place. Thus,.
in the renormalized theory under consideration the synunetry‘

Q—»—;ﬂ turns out to be spontaneously broken. °
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E¢mmoB T'.B., Tan6onp T'. E2-89-263
HecrabunpHocTp BakyyMa B cynepnepeHopMHPYeMoil R
TeOopHH l0kaBm

Hceneayerca ycTOMYHBOCTD OCHOBHOIO COCTOAHHA H BO3MOX—
HOCTb MOABNEHHA Gas3oBOoro nepexona B CyneprnepeHOPMHpYeMoOi
HenoxkanbHON MopmenH W0kaBrl. TlonydenHa BapHauHOHHas OLEHKa
cBepxy Ana sdpeKTHBHOro moTeHuHana. [lokazaHo cymecTBOBa—
HHe KOHeYHOr'o KPHTHUECKOl'o 3HaueHHd [JIf KOHCTaHTh Go30H-~
tepMHOHHOrO B3auMopeicTBHA. [IpH Gollee CHIBHOH CBA3M . HCXOA—
HBIT BaKyyM TepsAeT YCTOHYHMBOCTH H CHCTEMa MEePEeXOHAHT K Ho-—
Boii dase C HeHyneBhM BAKYYMHbM CPEfHHM 3HaUeHHeM IOoJA. -

PaGoTa BhmonHeHa B ﬂaﬁopaTopHH TeopeTuqecxou ¢H3HKH
OHsH. k

Ipenpunt O6Be1MHEHHOr0 HHCTHTYTa AEPHBIX Heenenopaxmi. Jly6ua 1989

Efimov G.V., Ganbold G. - ‘E2-89-263
On the Vacuun Stability in the
Superrenormalized Yukava-Type Theory

The stability of the ground state and the. possibility -
of appearance of the phase transition in the superrenorma-
lizable nonlocal- Yukawa—type field theory are investiga-
ted. A variational estimation of the upper bound for the
effective potential is obtained. It is shown that there
exists a finite critical value for the boson-fermion
coupling constant. The initial vacuum becomes unstable-
when this coupling constant exceeds the critical value.

As a result, the system under consideration goes into the
phase with nonvanishing expectation value of the field.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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