

объединенный
 институт
 ядерных

 исследованийдубна
591
E2-89-244
V.K.Suslenko*, I.I.Haysak, G.I.Kolerov,
A. Konstantinescu

A STUDY OF ONE-PION EXCHANGE MODEL MATRIX ELEMENT OF THE pp $\rightarrow n p \pi^{*}$ REACTION AT INITIAL PROTON ENERGY OF 800 MeV

Submitted to III International Symposium "Pion-Nucleon and Nucleon-Nucleon Interactions", Gatchina, April 17-22, 1989
*V.G.Khlopin Radium Institute, Leningrad, USSR

The $\mathcal{N} \mathcal{N} \rightarrow \mathcal{N} \mathcal{N} \mathscr{C}$ reactions represent a traditional source of an information on strong interactions. Since a theory of strong interactions is not constructed as yet, any results of inveatigations of the $\mathcal{N N} \rightarrow \mathcal{N} \mathcal{N} \pi$ reactions are greatly important in selecting some preferable approaches between various proposed theoretical assumptions for these interactions. It is obvious, by the way, that a possible amount of information which has to be related to the $2 \rightarrow 3$ reactions (five independent kinematical variables) may be much more diverse and fundamental in comparison with that related to the $2 \rightarrow 2$ reactions (two independent variables) which previously attracted a lot of attention. The very important recent achievement consists in realisation namely for reaction $p p \rightarrow n p \pi^{+}$of detection at the initial energy $\mathbb{T}=800 \mathrm{MeV}$ in coincidence of (any) two final particles, which permits then to extract an information of differential cross section densities of the highest admissible order of differentiality $\eta=5 / 20,21 /$, directly connected with the squared matrix element of this reaction. In what follows we analyse these new and very important data.

In tentative approaches to explain the pp-interactions at intermediate energies in the region from 0.6 to 1 GeV there exists an important problem of applicability of the one-pion exchange model (OPEM) propositions $/ 1 /$.

As it is known, the main idea on which the OPEM is based consists of a proposition that for the collision reactions $\mathcal{N N} \rightarrow \mathcal{N} N \mathcal{\pi}$ there correspond any set of Feynman pole diagrams containing a pion as an intermediate Firtual particle. Namely, it means that for the reaction

$$
\begin{equation*}
p+p \rightarrow n+p+\pi^{+} \tag{1}
\end{equation*}
$$

there correspond four Peynman pole diagrams of Flg. 1, in which full lines represent nucleons, the dashed ones represent pions

and $p_{1}, p_{2}, q_{2}, q_{1}, q$ are 4 -momenta corresponded to particles in (1), and \mathcal{I}_{i} is $\pi \mathcal{N}^{-s c a t t e r i n g ~ a m p l i t u d e ~}(i=1,2,3,4)$.

Fig. 1. Four Feynman pole diagrams corresponded to reaction (1) according to the OPEM version in /19/.

In the energy re-. gion under consideration, the applicability of the OPEM version in which every contribution from four Feynman pole diagrams of Fig. 1 and the most valuable interferences between them are taken into account, was demonstrated in refs especially, as an example, for reaction (1). Furthermare, the improved OPEM vertion /6-8,19/, in
which every interferences are exactly taken into account, was used to analyse a variety of the 3 -rd order experimental information consisted of the energy and/or momentum spectra of positive pions detected in reaction (1) at their different outgoing angles. The given OPEM version $/ 19 /$ contains only one free parameter A entering into a function of the so-called "pionnucleon form factor" $G\left(K_{l}^{2}\right)$, which cannot be determined in a frame of the OPEM. A shape of this function can be established by comparison with experimental data collected at any energy fixed inside a range of applicability of the OPEM basing on a statement that in the case of dominance of the one-pion exchange the form factor $G\left(K_{i}^{2}\right)$ has to depend on the transferred momentum K_{i}^{2} only and thus not to depend on the initial energy T

In $/ 2-6 /$ it was established, that a function of the shape

$$
\begin{equation*}
G\left(K_{i}^{2}\right)=A \mu^{2} /\left[K_{i}^{2}+(A+1) \mu^{2}\right] \tag{2}
\end{equation*}
$$

where μ is pion mass, at $A=8+9$ can be used to describe well the whole amount of experimental data on reaction (1) inside the initial energy range $T=0.6+1 \mathrm{GeV}$. Namely, the general result of comparison of the improved OPEA version /19/ with the
experimental data for ${ }^{3} \sigma_{\pi}^{L}$ at $T=660,730,800,991$ and 1000 WeV $/ 4,5,9,13-18$ claims that within the $10-15 \%$ accuracy at $A=9$ in (2) a good agreement with experiment is stated, i.e. the "pion-nucleon fora factor" extracted from experimental data has the following shape $/ 2-6,19 /$:

$$
\begin{equation*}
G\left(K_{i}^{2}\right)=9 \mu^{2} /\left(K_{i}^{2}+10 \mu^{2}\right) \tag{3}
\end{equation*}
$$

New and the most important stage in studying reaction (1) starts with collecting the experimental data of the 5-th order of differentiality which directly correspond to the squared matrix element $\left|M_{f i}\right|_{19}$ of the $P P \rightarrow n p \pi^{+}$reaction. Therefore, our OPEM version $/ 19 /$, which has successfully described the $3-\mathrm{rd}$ order data in the energy range $T=0.6-1.0 \mathrm{GeV}$, was also used $122,23 /$ to analyse a new set of the 5-th order experimental data up to now collected only at $T=800 \mathrm{WeV} / 20,21$. The 5 -th order data collected in $/ 20,21 /$ contains 16 measurements when in coplanar geometry there were detected in coincidence final protons and positive pions produced in reaction (1) and there are obtained the 5 -th order distributions

$$
\begin{align*}
{ }^{5} \sigma_{p \pi}^{L \exp } & \Longrightarrow d^{5} \sigma / d q_{p}^{L} d \cos \Theta_{p}^{L} d \cos \Theta_{\pi}^{L} d \varphi_{p}^{L} d \varphi_{\pi}^{L} \simeq \tag{4}\\
& \simeq\{\text { phase space density }\} \cdot\left|O M_{f i}\right|^{2}
\end{align*}
$$

at fixed angles $\Theta_{p}^{L}, \varphi_{p}^{L}$ for protons, and $\Theta_{\pi}^{L}, \varphi_{\pi}^{L}$ for pions within their "smearing" accuracies of ± 30.

For every experimental distribution $5^{5} \mathcal{T}_{p^{\pi}}^{\text {exp }}$ we have calculated nine theoretical functions ${ }^{5} \sigma_{p \pi}^{1}$ theor corresponding to the pair of angles $\left(\Theta_{p}^{L}, \Theta_{\pi}^{L}\right)^{\text {exp }}$ and their "smearing" limits equal to $\pm 3^{\circ}$. A part of our calculation is shown in Figs 2 and 3. As a result, it follows that:
a) inside the given ranges of angles there are considerable variations in magnitude and positions of maxima for ${ }^{5} \mathscr{O}_{p \pi}^{1 t h e o r}$;
b) inside the given "smearing" limits $\pm 3^{\circ}$ for every ${ }^{5} \mathcal{O}_{\mathrm{p} \pi}^{1} \exp$ measured in $/ 20 /$ and $/ 21 /$ there are some calculated functions ${ }^{5} \mathrm{O}_{p \pi}^{\text {Ltheor }}$ which are near by their behaviour and magnitudes to the experimental one;
c) by such a way of analysis, from our calculations related to the 5-th (i.e. maximal) order data and, therefore, to the matrix element squared of the reaction (1), an applicability of

Pig. 2. Comparison of results of our OPDM calculations with the 5-th order experimental data obtained in ref. /20/: a) the experimental distribution $5 \sigma_{p \pi x p}^{L}$ obtained by measuring pr coincidences at $\Theta_{P}^{L}=30^{\circ}$ and $\Theta_{\pi}^{L}=28^{\circ}$, and nine theoretical curves calculated taking into account the "gmearing" limits of theoretical curves which are the most close to experimental distribution. Two dashed curves are the averaged values $\left\{5^{5} \widehat{S}_{\mathrm{P} \pi}^{\text {Ltheor }}\right\}_{A V}$.
our OPEM version and, consequently, a dominant contribution of one-pion exchange are clearly shown;
d) the results of calculations in ref. /21/ mentioned there as related to "peripheral model" sharply disagree with experimental data and cannot be reconciled with our calculations

Fig. 3. Our theoretical distributions analogous to those in Fig. 2 represented in comparison with experimental data of ref. /21/. Dashed curves are calculations in accord to peripheral model" proposed in ref. $/ 21 /$. Dot-dashed curves contain an input of dibarion intermediate state/21/.
according to the improved OPEM version $/ 19 /$ (see Fig. 3);
e) the previously extracted "pion-nucleon form factor" $G\left(K_{i}^{2}\right)=9 \mu^{2} /\left(K_{i}^{2}+10 \mu^{2}\right)$ can be also reconciled with the recent $5-$ th order experimental information $/ 20,21 /$.

Also, we have to mention that to extract the so-called "pion-nucleon form factor" $G\left(K_{i}^{2}\right)$ it is necessary to know the "off-shell correction function" $T^{\top}\left(K_{i}^{2}\right)$ included in the amplitude \mathbb{S}_{i}. Because throughout all our calculations only 33-amplitude
 the off-shell correction $T_{33}\left(K_{i}^{2}\right)$, derived in ref. /11/ uaing dispersion relations corresponding to the case (see Fig. 4). Earlier it was shown $/ 6 /$ that an approximation of taking into account the 33-amplitude only does not exceed few percents.

The importent result of study presented consist in that, in particular for reaction (1), using the 33-amplitude approximation and experimental data of all admissible orders, it is possible to maintain successive and complete differential analysis resulted in extraction of the "pion-nucleon form factor" $G\left(K_{i}^{2}\right)=$ $O \mu^{2} /\left(K_{i}^{2}+10 \mu^{2}\right)$ which reflects the behaviour of strong interactions in pp-collisions at "large" distances and can be used in constructing $Q C D$ models for confinement problems

Fig. 4. Behaviour of the "off-shell" correction function $T_{33}\left(K_{1}^{2}\right)$ derived in ref. $/ 11 /$, the pion-nucleon form factor $S\left(K_{i}^{2}\right)=$ $9 \mu^{2} /\left(K_{i}^{2}+10 \mu^{2}\right)$ and the function $\mathcal{L}\left(K_{i}^{2}\right)=T_{33}\left(K_{i}^{2}\right), ~ Q\left(K_{1}^{2}\right)$ represented in dependence on the 4 -momentum squared K_{i}^{2}, transferred to virtual pion according to diagrams of Fig. 1 .

Finally, it is convenient to stress that the widespead opinion that one-pion exchange mechanism cannot contribute at "small" distances (that correspond to high momenta) is not confirmed by behaviour of the form factor $G\left(K_{i}^{2}\right)$ extracted here. Namely, from (3) it follows that for reaction (1) at $\mathrm{T}=1 \mathrm{GeV}$ for the highest admissible 4-momentum value $K_{i \max } \simeq 8.5 \mu=$ $1300 \mathrm{MeV} / \mathrm{c}$ (that corresponds to distance $\sim 0.2 \mathrm{fm}$) the magnitude of $G\left(K_{i \text { max }}^{2}\right)$ is not smaller than 10%.

So, it is clearly shown that in the given region of inter mediate energies from 0.6 up to 1 GeV our OPEM version $/ 19 /$ can be effectively used to explain the experimental data of any admissible order. As a consequence, agreement of our OPEM version with experiment and behaviour of the pion-nucleon form factor $C\left(K_{i}^{2}\right)$ extracted by us from a lot of experimental data means that the one-pion exchange mechanism for reaction (1) dominates elsemhere for any permissible values of the squared 4 -momentum trangerred to a virtual pion K_{i}^{2} from 0 up to its upper limit $\mathrm{K}_{\text {max }^{2}}^{2}=70 \mu^{2}$ at $\mathrm{T}=1 \mathrm{GeV}$.

References

1. Ferrari E., Selleri F. Nuovo Cim., 1963, 27, 1450; Suppl. Nuovo Cin., 196.
2. Amaldi U., Jr., Biancastelli R. and Francaviglia S. Nuovo Cim., 1967, 47A, 85.
3. Suslenko V.K., Kochkin V.I. JINR, P3-5572, Dubna, 1971.
4. Cochran D.R.F. et al. Phys.Rev., 1972, D6, 3685.
5. Vovchenko V.G. et al. Yad.Fis., 1976, 34, 1161.
6. Suslenko V.K. JINR, 2-10657, Dubna, 1977.
7. Suslenko V.K., Haysak I.I. JINR, P2-83-298, Dubna, 1983.
8. Haysak I.I., Suslenko V.K. JINR, P2-83-348, Dubna, 1983.
9. Cverna F.H. et al. Phys.Rev., 1981, C23, 1698.
10. Suslenko V.K. Elem.Chast.Atomogoyadra, 1975, 6, v. 1, 173.
11. Selleri F. Nuovo Cim., 1965, 40a, 236; Lectures in Theor. Physics, 1965, 7B, 183.
12. Gell-Mann M., Watson K.L.., Ann.Rev.Nucl.Sci., 1954, 4, 219.
13. Meshkovski A.G., Shalamov Ya.Ya., Shebanov V.A. JETPh, 1958, 35, 64.
14. Meshcheryakov M.G. ǐ dr. JETPh., 1956, 31, 45.
15. Vovchenko V.G. DAN SSSR, $1965,163,1348$.
16. Vovchenko V.G. i dr. JETPh., 1960, 39, 1557.
17. Neganov B.s., Savchenko O.v. JETPh., 1957, 32, 1265.
18. Abaev V.V.e.a. Preprint ITYAF AN SSSR, 1569 , Ieningrad, 1980.
19. Suslenko V.K., Haysak I.I. JINR, P2-84-780, Dubna, $7984 ;$ Yad.Fis., 1986, 43, 392.
20. Hudomalj-Gabitzsch J. et al. Phys.Rev., 1978, C18, 2666.
21. Hancock A.D. et al. Phys.Rev., 1983, C27, 2742.
22. Suslenko v.K., Haysak I.I. In: International Conference on the Theory of Few Body and Quark-Hadronic Systems, Dubna 16-20 June, 1987, Abstracts, p. 107, D4-87-237.
23. Suslenko V.K., Heysak I.I., Kolerov G.I. JINR, P2-88-113, Dubna, 1988.
