


al state of a system 1s given on an arbitrary space-like

!hypersurface 1n the Minkowaki space. The correap ‘din:

u;Lagrangian 13 reparametrization-invariant, and consequ-
ently is singular. The Hamilton formalism contains ﬁour
constraints H.L-;H (i=4,2,%);
of the first olasu,.that is the Poisson braoket (PB), for

they are constraints

any pair of the constraints 18 a linear combination of the
constraints. and, which is more remarkable, the coeffici-

ents in these linear combinations éreguniveraéltf(ihey‘
do not depend on thé‘Légrangién)f The PB fbr\*1k¥\{have
the form [1] s
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Dirac’s procedure-depends orgc;ally on,phg fact that va-

riables conjugate fo surface variables enter into +1L(%)
and ‘*1bﬂ) in a linear form.

Teitelboim [2) hes shown that the universal struc-
ture of (1)-(3) can Just be derived from two assumptions,

mamelys () the constraints form a olosed PB algebra, !
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and (b) a change in the canonica{ variables during

the evolution from an initial surface to a final surface -
is independent of the particular sequence of intermediate
surfaces used in the actual evolution of this change. This
property is called the "path independence of dynamicai
evolution"[3]_

To verify that such reparametrization—invariant
theories as string or membrane theories, in which the
constraints are not linear functions of momenta, satisfy
assumption (b), - we must show that the constraint algeb-
ra of these theories has a form like (1)-(3).

This question.for the Nambu-Goto string was analysed in
[H], In the present paper we construct a generator
which changes the shape of a membrane in the direction
perpendicular to it and show that the algebra of membrane
constraints can be transformed to form (1)=(3).

Consider a p-dimensional surface N, whose action is
prbportional to the volume swept by its motion in thé)

D-dimensional space-~time, with coordlnates xi [5 G]
8=-A (dedgndg P ddg . @

where (’go,'gl;..-,gp)‘é(‘t‘,s",‘._.,G'P) are coordinates in the
p+1-dimensional subspace and %U is the metric on
this subspace connected with the metric of the D-dimensi-

onal Minkowski space YLrV by the following relation
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To pass to the Hamiltonian form, the canonical momenta
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- are constructed and p+1 primary constraints
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are obtained,where the G=dek %‘P (p=4,2,...,P) is a

cofactor of gu , and is the wmetric of the

dup
p-dimensional space-like surface N with coordinates
L 4
et ...,8"
In the theory with action (4) there are no other
constraints, the canonical Hamiltonian is equal to zero
and constraints (7)-(8) are the first-class constraints.

The latter follows from the expressions [7] H
1RO RE)= GETee) + RNTE ) )
(20 5ER=[20) + €7 Kploie) , (10)
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It is t;:: clear that PR (9) will completely
correspond to PW (1) if we introduce the notation
P-4y and Hy is considered as a contravariant
vector on surface N. The covariant components \44 are

expressed in a standard way:

H&= %‘U:, \_\?_; %J.SS {F‘? s

\ (12)
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Note that vector .fields connected with the function H&gene-
rate in the phase space coordinate changes tangent with res-
pect o the p-dimensional surface N. We can take, as a
constraint that will generate the surface motion in the

direction perperdicular towards it, the following function

H.\.(*‘)’\"“i J.('t Gle)F,(8) - @14

Calculating PB for H_L(B"\ and HA(S') at T=T' we
get .

Moo, Hule)§ = H (8661 | as)
e, HaEN} = H8)3} (58) +H 45')%’(,(5 &, (16)
THOME= g [ HeTses) +R68), car

where

Rles)=-Q [J(-L)P G(e) HOHT) +Veo) ) HLLs')H*(e')] 868,

Expressions obtaihed for PB (15)-(17) conpletely
correspond to expressions (1)-(3), with the exception of
the term R(G‘.G') . But R(6/%’) is a function
quadratic in constraints and therefore the Poisson brac-
ket {R,P:} -, where ®  is an arbitrary function of
the coordinates and momenta will reduce to zero. In other
words, R(%’,B") is assumed to be zero in a strongr

sense.



As 1t is seen from expressions (1)-(3) and (15),(17)
the PB for membrane constraints can be written in the same

form, as Dirac constraints algebra.
The quantity }11(5,t) » constructed bty formula (14),

canvtherefore be interpreted as & constraint, the vector
field of which generates the dynamical evolution of
system (4) deforming the surface in the direction normal

to 1it.
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