


The problem of acheme dependence of the renormalization group
calculations in QCD hag been a subject of lively discussions since
1979 until recently (see, for example, Refs./1'7/). Various recipes
are proposed to eliminate the effect of choosing a concrete renor-
malization scheme in calculations of phyeical quantities. Such re-
cipes as well as varicus versions of the "optimization" procedure
¢cen be viewed, quite phenomenologic&lly, as actually different me-
thods for describing experimental data within QCD. However, ideolo=
gically, all these recipes are very similar, since the problem it-
self does not allow much freedom. The main goal of the present ar-
ticle ie to clarify the situation.

Let ug begin with general relations between different renorms-—
iization schemes. Consider & massless theory with a single coupling
constant 2? . A phygical quantity ﬁa in this case depends oh ths

two arguments: R - R 6{_’ (?) | o

2
where '6 = P%L . P and _/“‘ are the momentum and renormali-
zation perameter, respectively. According to the rencrmalizability
principle, a change in_)H can be entirely compensated by the corres-
ponding change in
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The function -g_(\’, g) ig the effective (or running) coupling cons-
tant. It obeys the equation
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where




snd %the normalization condition

g_ét,&z):g. (5)

An explicit form of the functions R , ¢  and ﬁ dependg on
the renormalizetion scheme employed. Let us compare the expressions
R snd ﬁl for the seme physical quantity in different schemes.
Trengition from one scheme to another is equivalent to introducing
counterterms into the Lagrangian, which in its turn corresponds to
an appropriate variation of the coupling constant, g—*?a ?(;) .
We may use the pame notation, J“l , for the renormalization parame-

ter in both the cases. The resulting relation reads
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Now we use the well-known equality
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to obtain g and F
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and, therefore,
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Differentiating (9) with respect to Znt results in
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This formula relates the f —functions of different schemes.
Now we introduce another representation for R which ie in a
sense more phyeical. Equation (4) can be written ma follows:
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where



| & .
(f/(g,} =f_(‘.-“’_)‘_ i (13)

. Fﬁc) .
Phe lower limit ir integral (13} is not shown explicitiy. This means
that the function ‘f/ is defined up %o an arbitrary constant. In
other words, HPYi?J ig @an indefinite integral of J€<?g/2) at the
point X.—-g .

If, as it is in QCD,
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we arrive at
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Equation {(3) snd the group nature of the rencrmalization trans-
formations O'= ?)_4&4;"/ imply that ?— as well as [, and A
are invariant under these transformations in the framework of a given

where

renormalization scheme. So, repregentation {18} for ﬁ?(ﬂé, in-
volvea the only ("physical") parameter /42=;/1zeﬁp(fg+?§) ingtead
of two "unphyesical" cnes, and .

Representation (18) for 2 ip explicitly renormalization—
-group invariant., And what about iie scheme invariance? A question
about the scheme dependence of L or /W themgelves ie, in my opi-
nion, meaningless because they can be treated as free parameters of
the perturbative expensions. But the queation about scheme depen-
dence of numerical coefficients of these expansions (i,e. expansiocnas
in %/2' and S, [, ) is lawful, From (6), (16), and (18) we get
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On the other side, (10} and {13) imply that
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(appearance of a congtant is due to arbitrariness of the lower
limit of integration). We arrive at the remarkable formula:
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Now we are in s position to say that representation (18) for R
ig not only renormalization-group inveriant but aleo, in fact, ache-
me-invariant. The effect of changing the renormalization scheme re-
duces, in terms of the funciion ¢‘(L , to mere rescaling of /\ or
to an additive shift [,—» /L + A 1in the argument of P .

Congider, for clarity, a typical example of the function #’(}

R(:[ 3} be of the form

R(i,}J-‘— 1+ 7,9+ ’2231-* ?;O‘iz-ﬁﬂéy (23)

By inversion of eq.{17) we obtain
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Substituting (24} into {7) gives

#(L)-1- negoplnuplrtl g soler

(25)
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In another rencrmaelization scheme we shall deal with another func-
tion, $(L), naving other numerical ccefficients of L—"ﬁ, “Z .
However, due to (22), s single shift [ - L—A will restore the
original values of all these coefficients aimultaneously. Moreover,
aince the constant /1 appears in (21) irrespective of a specific
physical object Q , the above-mentioned shift {,—> L —A4 rela-




tes the expressions for any physical quantity obtained in different
schemes, Performing. thie shift we eimulteneously transform all the
QCD perturbative calculations from one scheme to another.

A numerical value of A can be found,e.g. from eq. (21).
Apsuming

?((?} 3({1‘ ?_-z + ?‘g +ﬁ/}/ (26)

we easlly obtain
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Another way to evaluate /A  ip a direct comparison of qb with ﬁb .
For instance, in (25) the schewe. dependence sppesrs for the firat
“time in the /72 ~term because '22 does depend on the choice of a
particular scheme ( f& ' Jii and 21 are scheme—invariant).

It is eapy %o deduce from (22} that

zz ““E;
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So, an explicit evaluation of A ~requires only & lower-order infor=-
nation.

Up to now we used, in fact, the only conceivable atrategy to
reduce, as much as possible, the renormslization-scheme dependence
of perturbative results. If it were manageable to get these resultas
in a cloged foxrm, i.e. nonperturbatively, .the remaining scheme depen-
dence (22} would be next to nothing,., Really, it does not matter in
which form, '#(jor?‘-"[_-ﬁd haas one to compere theoretical predic-
tions with experiment: & needed shift will be prescribed by the very
comparison. However, in practice, we are to truncate a series like
(25} fox-qb(i}. And en important question arises: which quantity is
to be expanded in a truncated semes,<#ﬂ,}or 95ﬂ+d} s O gome-
thing elpe? The point is that 4’/{_,} and 4'/*4 in a truncated
form are not at all related by & mere shift [ = L.;.A « It is the
unavoidable truncation of perturbative series that causes the well-
~known umbiguities in renormalization group calculations of phyeical
guantities and, therefore, entails non-~equivalent conditions for
comparigon with experiment of theoretical results obtained in diffe=-

(28)

rent schemes.
It peems only netural now that some authors have made conside-~
rable efforts to work out the methods for obtaining scheme-invariant



regults in every finite order of perturbation theoxy, as well.,
Thege attempts have led to the so-called scheme~invariant perturba—
tion theory. The following recipe seems to be ite simplest form/ 4
In a2 given renom&lization scheme one defines the function

t1) = (L 75)

From (22)and (28) it follows that
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i,e, the function CfD* is the gpeme in any scheme. Numerical coef-
ficients of [ Mg, ™  in the series expansion of P, ﬂ_} prove
to be scheme~invarient combinations of original (generally ‘scheme-
~dependent} coefficients rZ‘_- and _FJ. « In our case,
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Actuslly, this recipe is nothing but the choice of such & scheme
where the coefficient of 4/& L)' in (25) is equal to zero,

Consider now one more scheme-invariant representation proposed
n /7/. An idea is to introduce the variable &  inastead of L

ﬁ.L—z—:=7‘f—+fiﬁh0_ (32)

According to {29)

R 3} P ( fa'zij_;eé“ f;ﬁ”%é'd, 2

80, the expansion of R in @ should have scheme-invariant coef-
ficients. Moreover, the logarithm in the r.h.s. of definition (32)
causes this expansion tc be =n ordinary power series {without loga-
rithms):

ry 2. 'Z: 3
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To employ forymulas of that type in practice requires golution of eq.
(32) for & /"/A"}_. The A ~parameter involved is to be Lixed by
comparing (35) with experiment at a certain momentunm f% .

In conclusion we discuss & version of the scheme-invariant per-
turbation theory proposed in 4 for situation (23) and in 5 for
the case

.Qé,&j= gé+ 'Zf.j +-’21c?z+_,_/_ (2;3')

Consider only the former case. Introduce a new variable ‘f3 via

R §) =1+ 2 e
Representing 4§ in terms of '

f
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we cen further rewrite the Jogearithmic derivative of AZ in a simi~

f%;2@3}=%@), (38)
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It follows from definition (36) that the coefficients in (39) ere
gcheme-~invariant, i.e. ;51== . These coefficients can be calcu-
leted immediately from the regularized {nonrenormalized |) expression
for ﬁl /5/. Using

o) 22 o2, 5 o)

ong can write down the following integral relation which i1s equiva-
lent to (17):

L+c””‘{"2f¢5, . (a1)

lar form:




Ite r.h.s. is an explicitly scheme-invariant function of_gD (or of R ).
Eventually, we obtein

F(R) = L + coust “2)

where

P ~—
fR) =7 [ . F=F

One evaluates J:(ja) on the basis of a certain approximation for ?V.
Then eq. (42) is used to compare with experiment.

With this example we conclude our consideration of various
verajons of the scheme-invariant perturbation theory available in

the literature. All these versicns are absolutely equivalent in full
theory wheress for trunceted perturbative expansions this equivalence
ig lost. Phenomenologically, these are different veriants of the
renormalization—group calculational procedure in GCD. However, from
the theoretical point of view, all these versions differ only in the
way one truncates a perturbetion series of type (25).
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