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The problem of scheme dependence of the renormalization group 

calculations in QCD has been a subject of lively discussions since 

1979 until recently (see, for example, Refs./1-71). Various recipes 

are proposed to eliminate the effect of choosing a concrete renor

malization scheme in calculations of physical quantities. Such re

cipes as well as various V"ersions of the "optimizat-ion" procedure 

can be viewed, quite phenomenologically, as actually different me

thods for describing experimental data Within QCD. However, ideolo

gically, all these recipes are very similar, since the problem it-· 

self does not allow much freedom. The main goal of the present ar

ticle is to clarify the situation. 

Let us begin with general relatione between different renorma

lization schemes. Consider a massless theory with a single coupling 

constant 8 . A physical quantity R in this case depends on the 

two argumen te: 

R = R. {t, 8) (1) 

2. 

where i = p(j,z.., p and _/1 are the momentum and renormali-

zetion parameter, respectively. According to the renormalizability 

principle, a change in~ can be entir~ly compensated by the corres

ponding change in a 
R(f,£, 8) = R (-fr, 1) (2) 

where 

I -/./''' ) 
(J = 3 l7 ' J . (3) 

The function 3 (x, a) is the effective (or running) coupling cons

tant. It obeys the equation 

x';x f{x,J-)=j(i{<,(JJ) <4l 
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and the normalization co~dition 

(5) 

An explicit form of the functions R , 8 and J depends on 
the renormalization scheme employed. Let us compare the expressions 

R and R ~or the same physical quantity in different schemes. 
Transition from one scheme to another is equivalent to introducing 

counterterms into the Lagrangian, which in i te turn corresponds to 

an appropriate variation of the coupline, constant, s-3 ~ r&). 
We may use the same notation, ~ , for the renormalization parame
ter in both the cases. The resulting relation reads 

(6) 

Now we use the well-known equality 

(7) 

~ -
to obtain J and f 

(8) 

and, therefore, 

(9) 

Differentiating (9) with respect to t,.t results in 

J{rf?J) = f~) dr(j) 
dJ 

This formula relates the iS -functions of different schemes. 

(10) 

Now we introduce anoiher representation for /Q which is in a 
sense more physical. Equation (4) can be written as follows: 

.ed: = L8(<,,J) d)( 

3 Jfx) 
( 11 ) 

or 

( 12) 

where 
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The lower limit in integral (13) is not 

that the function r is defined up to 

other words, 

point X=J 
'f/(3) is an indefinite 

If, as it is in QCD, 

( 13) 

shown explicitly. This means 

an arbitrary constant. In 

integral of :fij(x) at the 

= - J•lft- +fo d + Jzl~ (fl(J 
3

)) ' 
(14) 

one usually defines 

Denotinb 

we arrive at 

where 

L = Y(3~~;J), 
R{t,g) = ct>(L), 

( 16) 

(17) 

(18) 

( 19) 

Equation (J) and the group nature of the renormalization trans

formations (/<, 'I}~ (/. : :J '} imply that "f as well as L and 1\ 
are invariant under these transformations in the framework of a given 

renormalization scheme. So, representation (18) for R{i:.J_J) in

volves the only ("physical") parameter /\2=p'e..xr{-'-~-'f9}) instead 

Of tWO 11 unpbySiC8l II 0D88 t _/1 8Dd a • 
Representation (18) for t( is explicitly renormalization-

' -group invariant. And what about its scheme invariance? A question 

about the scheme dependence of L or /\themselves is, in my opi

nion, meaningless because they can be treated as free parameters of 

the perturbative expansions. But the question about scheme depen-

dence of 

in 1/;_, 
numerical coefficients of these expansions (i.e. expansions 

and ~L) is lawful, Prom (6), (16), and (18) we get 
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On the other side, (10) and ( 13) imply that 

~ ~ 

Y-{a) = f;; = J Pt~~) ?6) 
= ]id': +t1- C?(rf?J)+Ll 

} C:CJ 
(appearance of a constant L3 is due to arbitrariness of the 

limit of inte~ration). We arrive at the remarkable formula: 

(21 ) 

lower 

(22) 

Now we are in a position to say that representation (18) for R 
is not only renormalization-group invariant but also, in fact, sche

me-invariant. The effect of changing the renormalization scheme re

duces, in terms of the function cf>(~) , to mere rescaling of /\ or 

to an additive shift L _,. L -1- A in the argwnent of ¢ . 
Consider, for clarity, a typical example of the function r:f.(Z}. 

Let {((:1,(J}te of the form 

R(:1,;r)= i + 'l~g + '2 2(J,_+z,;l-~-&(jj (23) 

By inversion of eq.(17) we obtain 

8~a-J-/.t. F-lj~tL +I:Llf:.fl..J.L-t.'E.J.L+j.-{)+](24) 
Substituting (24) into (?) gives 

<f>(L j- :1 + l."L + (B~L)'fz•- ~~ }1 gf· L] + i.t.ffz,-
<25) 

-2 '<.jJ•J.L + rz:t(f:-€-).L -f1

2

&f.L + f•-}1

2

)] +cP(i~). 
In another renormalization scheme we shall deal with another func

tion, $(L}, having other num.er~cal coefficients of L-~ L:. 
However, due to (22), a single shift L--. L- ~ will restore the 

original values of all these coefficients simultaneously. Moreover, 

since the constant ~ appears in (21) irrespective of a specific 

physical object I( , the above-mentioned shift L -+ L-A rela-



tea the expressions for any physical quantity obtained in different 
schemes. Performing this shift we simultaneously transform all the 
QCD perturbative calcUlations from one scheme to another. 

A numerical value of Ll can be fOund, e.g. from eq. (21 ). 
Assuming 

(26) 

we easily obtain 

L1 = (27) c; .. 10 
Another way to evaluate L1 is a direct comparison of ';[; with cf' 
For instance, in (25) the scheme dependence appears for the first 
time in the .1JL 2. -term because 'Zz does depend on the choice of a 
particular scheme ( }o , J::t. and 'Z.:z: are scheme-invariant). 
It is easy to deduce from (22) that 

L1 = (28) 

So, an explicit evaluation of ~ requires only a lower-order infor
mation. 

Up to now we used, in fact, the only conceivable strategy to 
reduce, as much as possible, the renormalization-scheme dependence 
of perturbative results. If it were manageable to get these results 
in a closed form, i.e. nonperturbatively, .. the remaining scheme depen
dence (22) would be next tv.othing. Really, it does not matter in 
which form, cp(iJ or of>(f.-+.d , has one to compare theoretical predic
tions with experiment: a needed shift will be prescribed by the very 
comparison. However, in practice, we are to truncate a series like 
(25) for~(L}. And an important question arisesa which quantity is 
to be expanded in a truncated series, c:/>(L.} orc:p(i+L!), or some
thing else? The point is that +(L} and ~(i.+LI} in a truncated 
form are not at all related by a mere shift ~ _...... L + tJ • It is the 
unavoidable truncation of perturbative aeries that causes the well
-known umbiguities in renormalization group calculations of physical 
quantities and, therefore, entails non-equivalent conditions for 
comparison with experiment of theoretical results obtained in diffe
rent schemes. 

It seems only natural now that some authors have made conside
rable efforts to work out the methods for obtaining scheme-invariant 
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results in every finite order of perturbation theory, as well. 

These attempts have led to the so-called scheme-invariant perturba

tion theory. The following recipe seems to be its· simplest form/3 '7 I. 

In a given renormalization scheme one defines the function 

1;. (Lj- <P(L + /2'2" ) (29) 

From (22)and (28) it follows that 

(30) 

i.e. the function ~~ is the same in any scheme. Numerical coef

ficients of L-"'~ ""'L in the series expansion of c/:>* (L} prove 

to be scheme-invariant combinations of original (generally scheme

-dependent) coefficients 'Z. i and }i . In our case, 

</:;, (f_.j =:1 + '21 '<~f1 £...f.L 
f• L (!. L).._ 

Actually, this recipe is nothing but the choice of such a scheme 

where the coefficient of .:t~.L)a. in (25) ie equal to zero. 

Consider now one more scheme-invariant representation proposed 

in /7/. An idea is to introduce the variable a instead of L : 

J.L :f =--a 
(32) 

According to (29) 

R {t, a) = <P_,. (1. - ___.::;; ;=---~ ) = +~ rf.a + f. ~ a), 03) 

so, the expansion of R in a_ should have scheme-invariant coef-

ficients. Moreover, the logarithm in the r.h.e. of definition (32) 

causes this expansion to be an ordinary power series (without loga

rithms) 1 
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To employ f~nulao of that type in practice requires solution of eq. 

(32) for O(fl'~a.J. The J\ -paramoter involved ie to be fixed by 

comparing 05) with experiment at a certain momentum Po • 
In conclusion we discuss a version of the scheme-invariant per

turbation theory proposed in /4/ for situation (23) and in /5/ for 

the case 

(23.) 

Consider only the former case. Int!oduce a new variable ,J' via 

R/t_, 3-) = .1 + rz;l _p. (36) 

Representing 8 in terms of j 

8 = Y - ~ f ~ + (z !j - ~~)/ + c(f 1, (37) 

we can further rewrite the logarithmic derivative of }( in a simi

lar form: 

(38) 

It follows from definition (36) that the coefficients in (39) ere 
~ 

scheme-invariant, i.e. ~ = 'f . These coefficients can be calcu-

lated immediately from the regularized (nonrenormalizedJ) expression 

for R /5/, Using 

w{y} = dNf.) = 2 .i.e.. (40) 
r dL. :tdL 

one can write down the following integral relation which is equiva-

lent to (17)z 

L + c.c11s-i J.Pd 
= rz;l 'f!xJ . (41) 
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Its r.h.s. is an explicitly scheme-invariant function of J' (or of!<_). 

Eventually, we obtain 

L + eo .. sl , (42) 

where 

1 =f (43) 

One evaluates f (R.) on the basis of a certain approximation :for r. 
Then eq. (42) is used to compare R with experiment. 

With thia example we conclude our consideration of various 

versions of the scheme-invariant perturbation theory available in 

the literature. All these versions are absolutely equivalent in full 

theory whereas for truncated perturbative expansions this equivalence 

is lost. Phenomenologically, these are different variants of the 

renormalization-group calculational procedure in QCD. However, from 

the theoretical point of view, all these versions di:ffer only in the 

way one truncates a perturbation series of type (25). 
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