$89-169$

объединенный ииститут ядерных исслөдований

B.Z.Kopeliovich, B.G.Zakharov*

SPIN-FLIP COMPONENT OF THE POMERON

Submitted to "Physics Letters B"

[^0]1. The present understanding of the pomeron spin-stmicture is very poor. The pomeron seems to possess the nonzero spin-flip part, because the polarization measurements ${ }^{1-4}$ in the energy interval $40 \div 200 \mathrm{GeV}$ indicate some flattening of the polarization decrease at high energy.

The Borm approximation in QCD^{5-8}, although being slightly beyond the well Justified perturbative QCD domain, is known to reproduce correctly an order of magnitude of the non-flip part of the elastic scattering amplitude at moderate energies. It is natural to wonder what is the spin-filp part within the same approach.

If the nucleon wave function (WF) is taken in the nonrelativistic approximation with symmetric spatial and SU(6)-symmetric spin-isospin parts, the pomeron spin-flip vanishes ${ }^{\text {s }}$. whether relativistic corrections can produce nonzero spin-flip, is still an open issue.

In this note we draw one's attention to the lact that spin-flip term appears, if the nucleon WF contains dynamically enhanced compact diquark ${ }^{0-14}$. Numerical estimations are also presented. Besides, the model-independent. method for the measurement of the pomeron spin-ilip is proposed.
2. The amplitude of elastic hadron-nucleon scattering is written in the two-gluon exchange approximation as ${ }^{\circ}$

$$
\begin{equation*}
T_{2 g}(\vec{Q})=18 s \alpha_{s}^{2} \int_{i=1}^{2} \frac{d^{2} \vec{q}_{i}}{\left(q_{i}^{2}+m_{g}^{2}\right)} \delta^{(2)}\left(\vec{Q}-\vec{q}_{1}-\vec{q}_{2}\right) R_{n}\left(\vec{q}_{1}, \vec{q}_{2}\right) R_{N}\left(\vec{q}_{1}, \vec{q}_{2}\right), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{h, N}=\left\langle\Phi_{h, N}\right\} \exp \left[1\left(\vec{q}_{1}+\vec{q}_{2}\right) \vec{P}_{1}\right]-\exp \left[1 \vec{q}_{1} \vec{\rho}_{1}-1 \vec{\Phi}_{2} \vec{\rho}_{2}\right]\left|\Phi_{h, N}\right\rangle ; \tag{2}
\end{equation*}
$$

α_{s} is the QCD coupling; $W_{n, N}$'s are the hadron or nucleon WF's in the c.m. Irame; \vec{p}_{i} is the quark impact parameter; m_{g} is effective gluon mass introduced for the phenomenological treatment of the confinement.

The vertex function $\mathrm{R}_{\mathrm{N}}\left(\vec{q}_{1}, \vec{q}_{2}\right)$ can be represented in the form
$R_{N}\left(\vec{q}_{1}, \vec{q}_{2}\right)=\chi_{N}^{+}\left[a_{N}\left(\vec{q}_{1}, \vec{q}_{2}\right)+1 \sigma_{y} \frac{\sqrt{\vec{Q}^{2}}}{2 m_{N}} b_{N}\left(\vec{q}_{1}, \vec{q}_{2}\right)\right] \chi_{N}$.
Here χ_{N} is two-component nucleon operator; σ_{y} is Pauli matrix.
It is worth noting that the presence of the nonzero spin-filp part in the function $R_{N}\left(\vec{q}_{1}, \vec{q}_{2}\right)$ doesn't contradict the helicity
conservation in the quark-giuon vertex, because the nucleon helicity should not coincide with the sum of quark helicities ${ }^{5}$. Indeed, the quark helicity is defined with respect to its momentum direction which doesn't coincide with the nucleon one.

To compute the amplitudes a_{N} and b_{N} from eq. (2) one has to use mucleon WF's defined in c.m. frame, as was done in paper ${ }^{15}$ on analysis of the spin structure of the reggeon-amplitudes. It is much more convenient to compute $\mathcal{R}_{N}\left(\vec{a}_{1}, \vec{G}_{2}\right)$ in the Breit frame, where the nonrelativistic nucieon WF can be used. One should take into account that in this frame qq-scattering amplitude in one-gluon exchange approximation doesn't conserve the quark helicity. If $R_{N}\left(\vec{q}_{1}, \vec{q}_{2}\right)$ is calculated in the leading approximation at $s \rightarrow \infty$, it can be represented in the Breit-frame in the form (3) by means of the following substitution in formula (2)

$$
\begin{equation*}
\exp \left(1 \vec{q}_{i} \vec{\rho}_{j}\right) \rightarrow \exp \left(i \vec{q}_{i} \bar{\rho}_{j}\right)\left(1-1 \frac{\sigma_{y}^{j} q_{i x}}{2 m_{q}}\right), \tag{4}
\end{equation*}
$$

where σ_{y}^{j} is the Pauli-matrix, acting upon the quark $j ; m_{q}$ is the quark mass which is supposed to be equal to $m_{N} / 3$ in the nonrelativistic approach.

Spin amplitudes $\tilde{\mathrm{a}}_{\mathrm{N}}$ and $\tilde{\mathrm{b}}_{\mathrm{N}}$, written in the Breit frame (see eq. (3)) turn into the functions a_{N} and b_{N} after the Jorenz transformation to the c.m. frame. The latter pair is connected with the former by the relations (up to terms of the order of $\left.\bar{Q}^{2} / 16 \mathrm{~m}_{\mathrm{N}}^{2}\right)$:

$$
\begin{align*}
& a=\tilde{a} \\
& b_{N}=\tilde{b}_{N}+\tilde{a}_{N} \tag{5}
\end{align*}
$$

The compact diquark can be introduced into the nucleon WF as follows ${ }^{11-14}$:

$$
\begin{align*}
& |N\rangle=A\left|\Psi_{c}\right\rangle\left(\left|\Psi_{1,29}\right\rangle+\left|\Psi_{2,3 i}\right\rangle+\left|\Psi_{3,12}\right\rangle\right) \tag{6}\\
& \left|\Psi_{i, j \mathrm{j}}\right\rangle=\left|\Psi_{i, j, k}^{S T}\right\rangle\left|\Psi_{i, j \mathrm{j}}^{R}\right\rangle .
\end{align*}
$$

Here A is nomalization factor; $\left.\| \Psi_{c}\right\rangle$ is the colour part of the nucleon WF; $\left|W_{i, j k}^{S T}\right\rangle$ is the spin-isospin WF of 3-quark system, containning diquark with $S=T=0$ built of the quarks q_{3} and q_{*}. The corresponding space part $\left|\Phi_{i, j \mathrm{j}}^{R}\right\rangle$ is taken below as a product of the diquark WF and the WF describing the quark-diquark relative motion. Both are taken in the oscillatory form.

The expressions for the functions \tilde{a}_{N} and \tilde{D}_{N} obtained with the

WF (6) are too cumbersome to be presented here, they can be found in Ref. ${ }^{16}$. The non-filp and spin-flip amplitudes are computed using formula (1) where the product $R_{N} R_{h}$ is changed by $\tilde{a}_{N} \tilde{a}_{n}$ or by $\left(\tilde{a}_{N}+\tilde{D}_{N}\right) \tilde{a}_{h}$ respectively.

Fig. 1. Anomalous magnetic moment of the pomeron computed in the two-gluon exchange approximation vs diquark radius, r_{p}.

Numerical results for the Q^{2}-dependence of the pomeron anomalous magnetic moment $M_{P}\left(Q^{2}\right)=\left(2 \mathrm{~m}_{\mathrm{N}} /|Q| \mathrm{T}_{\mathrm{si}}^{\mathrm{P}}\left(Q^{2}\right) / \mathrm{T}_{\mathrm{ri}}^{P}\left(Q^{2}\right)\right.$, is presented in fig. 1 vs diquark mean radius r_{D}. The charge radius of the proton was fixed by the value $r_{p}=0.8 \mathrm{fm}$. Giuon mass m_{g} was chosen 0.17 GeV in order to adjust the diffraction slope of the elastic pp-scattering. As the expression for M_{P} is infra-red stable, the result also slightly depends on m_{s}. Note, that in the case of spatially symmetric WF of nucleon, the diquark mean radius is about 0.7 fm . In this case spin-flip disappears due to cancellation of \tilde{D}_{N} and \tilde{a}_{N} in eq.4.

The salient feature of the curves in fig. 1 is a change of the sign at small values of Q^{2}. This comes from an interplay of the

Lorenz transformations which are connected with a small parameter - the quark mass squared. This narmow minimum can be filled by some other contributions even up to the positive value of polarization. Rough estimation of the anomalous colour-magnetic moment of constituent quarks adds ${ }^{17}$ to M_{p} a value of about 0.15 .

Fig.2. t-dependence of pp-elastic polarization in the Coulomb-Nuclear interference region vs pomeron anomalous magnetic moment, $M_{\mathbb{P}}$.

The consideration of the plon-cloud influence on the pomeron-nucleon residue also provides an additional contribution ${ }^{\text {in }}$ of about 0.1. Thus the order of magnitude of M_{p} is known, whereas its sign at $Q^{2}=0$ is doubtful.

In the pioneering papers by Low, who used the $Q C D$ Born approximation and MIT bag model for the nucieon WF, a considerable pomeron spin-flip $\left|M_{P}\right| \approx 1$ was argued. However, the transformation given by eq. (4) was missed there, resulting in a grossly overestimated spin-ilip. Cancellation of \tilde{b}_{N} and \tilde{a}_{N} mentioned
above, proves the statement that large helicity-flip in the Brest-frame doesn't mean a strong pomeron spin-ilip.
3. There are some problems with the pomeron spin-ilip measurement. It weakly interferes with non-filp part at high energles because of a small relative phase-shift. Its contribution to the elastic scattering polarization at intermediate energies is masked by reggeons having high large spin-ilip. The isovector part of the latter can be excluded taking a sum of polarizations measured in $\pi^{+} p$ and $\pi^{-} p$ elastic scatterings. The rest is connected with i-reggeon-pomeron interference. One can estimate ${ }^{17}$ with plausible assumptions the upper limit on the pomeron spin-plip using experimental data ${ }^{19}$ at 6 and $10 \mathrm{GeV} / \mathrm{c}$ (higher energy data are still too crude): $M_{\mathbb{P}} \cong 0.05 \div 0.1$. This result is consistent with our theoretical estimations.

It is desirable to have a model-independent method for measurement of the pomeron spin-plip at high energies. Collaboration E-704 at Fermilab investigates ${ }^{20}$ the Coulomb-Nuclear interference effect in the polarlzed pp-scattering. It has been predicted long ago ${ }^{24}$ that polarization should achieve a maximum of about 4.5% at small value of $t \downarrow \approx 310^{-3}(\mathrm{GeV} / \mathrm{c})^{2}$, if pomeron amplitude is purely nonflip. Note, however, that finite spin-filp part of the pomeron, changes this conclusion. Fig. 2 shows the Q^{2}-dependence of polarization in pp elastic scattering in the Coulomb-Nuclear interference region vs value of M_{P}. Experiment E-704 is now in progress and it is planned to achleve an accuracy sufficient for pomeron spin-ilip resolution.

References

1. Derevcshikov A.A. et al. Yad. Fiz. (Sov.Phys), 1977, 25, p. 369
2. Croran M. et al. Phys. Rev. 1980, D22, p. 2624
3. Kline R.V. et al. Phys. Rev. 1980, D22, p. 553
4. Fidecaro G. et al. Phys. Lett. 1981, 105B, p. 309
5. Low F. Phys. Rev. 1975, D12, p. 163
6. Gunion J.F., Soper D.B. Phys. Rev. 1977, D15, p. 2617
7. Levin E.M., Ryskin M.G. Yad. Fiz. 1981, 34, p. 1114 [Sov. J. Nucl. Phys. 1981, 34, p. 6191
8. Ryskin M.G. Yad. Fiz. 1987, 46, p. 611
9. Abbot L.F. et al. Phys. Lett. 1979, 88B, p. 157
10. Fredriksson S. et al. Z. Phys. 1982, C14, p. 35
11. Fredriksson S., Larsson T.I. Phys. Rev. 1983, D28, p. 255
12. Ekelin S., Fredriksson S. Phys. Lett. \{985, 162B, p. 373
13. Breakstone A. et al. Z. Phys. 1985, C28, p. 335
14. Betman R.G., Laperashvili L.V. Yad. Fiz. 1985,41, p. 463
15. Aznauryan S.G., Grigoryan A.A., Ter-Isaakyan N.L. Phys. Lett., 1983, 126B, p. 271
16. Zakharov B.G. Yad. Fiz. (Sov.Phys) in press
17. Kopeliovich B.Z. Proc. of the Int. Sumposium on Polarization Phenomena in High Energy Phys., Dubna, 1981, p. 97
18. Boreskov K.G. et al. Yad. Fiz. 1978, 27, p. 813
19. Borghini M. et al. Phys. Lett. 1970, 31B, 405; ibid 1971, 36B, p. 493
20. Yokosawa A. Fermilab Report, Juli/August 1988, p. 17
21. Kopeliovich B.Z., Lapidus L.I. Yad. Fiz. 1974, 19, p. 218
```
Received by Publishing Department on March 14, 1989.
```


[^0]: *Institute of Earth Physics, the USSR Academy of Sciences

