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I. Introduction

Anomalous magnetic moments of leptons are traditional
quantities for extremely detailed confrontation of QED predictions
with experimental results. Unlike the electron g-2 factor, which
to precision achieved is a pure leptonic effect, the consequence
of a relatively large muon mass is that the interaction of non -
lepton-photon origin contributes to the total muon anomaly a, at
the level of 6.10 *% . Due to the precise QED calculations up to
four loops” *2”, yielding

a“(OED) = (116 584 800 * 30)x10°'! (1)
as well as highly accurate measurements ™’

" (116 591 000 * 1200)x107** 2
(116 593 600 * 1200)x107'*
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this number is by far not negligible. In fact 1t 1s about six
times larger than the experimental uncertainty in a, value. The
non - QED part of the muon anomaly 1is dominated by the
lowest-order hadronic vacuum-polarization contribution a¥®¢ (Fig.
1>. In spite of the gradual diminishing of the error of this
component in recent years”®*’, it remains to be known with the
error four times larger than the pure QED part. As 1t has been
stressed in Ref.2, to make the theoretical value of the hadronic
part of au more precise is crucial for the possibility to detect
in measured anomaly the one-loop weak-interaction contribution
evaluated as”®”/

a“(weak) = (195 * 1)x107'*, (3

Since a new generation of g-2 experiments with considerably
improved precision is under consideration”®”, it is desirable to
come up with the accuracy of a’?¢ as close as possible to the
accuracy level of the QED contribution, thus enabling to perform
an 1mportant 1ndependent test of the GWS electroweak gauge theory
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In the present work we describe an attempt to diminish the
error of the lowest-order vacuum-pelarization centribution to 2
induced by hadrons.

“ “

Figure.

Lowest-order hadronic vacuum polarization contribution to 3

There are a few reasons one could hope to achieve this goal. First,
we have developed global analytic models for pion and kaon form
factors in recent years. The models formulated in terms of
physical parameters reproduce the data simultaneously in the
space-like and time-like regions. We use these parametrizations
for the evaluation of the two-pion and two-kaon contributions to
a¥2® including in this way the experimental information from the
space-like region. Another reason for a possible accuracy
improvement of the theoretical value of a’®" is that besides new
data on pion and kaon form factors Signi#icantly better data on
the three-pion e'e” annihilation became available recently due to
new measurements in Novosibirsk 7*®7. Llast but nol least we
believe that there are possibilities to perform the error analysis
in the individual channels contributing to aL‘C in a more
quantitative and systematic way than it has been done in the
previous works’2*”.

We describe our treatment of a'?® and the corresponding error
analysis in Sec.III, while the finaf results with their discussion
are given in Sec.IV. In the following section the results of the
last calculations”®# are briefly summarized.

II. Present knowledge of hadronic contributions to a,

The hadrenic part of a, has been known with gradually higher

precision 1n connection with the improvement of information on the
cross section ole*e”™— hadrons) from the experiments on e'e”
colliders in Novosibirsk, Frascati and Orsay. Relevance of e'e”
annihilation measurements to a'®® s based on the fact that
ole¥e™~s hadrons) enters into the integral representation which
serves as a basis for all calculations of a¥®® (see Eq. ()
below). The last two evaluations of azac have been done in the
year 1985 and read

2y’ = (7070 £ 60 ¢ 170)x107"" CKNO) (4a)
a7 = (7100 + 105 * 49)x10™" (CLY) (4b)

where the first error is statistical, the second is systematic and
the abbreviations refer to Kinoshita et al.”®” and Casas et
al.”*”. In what follows we characterize the main features of both
the analyses.

The first group of authors”®“has calculated the contributions
frem individual channels of the reacticn e’e = hadrons separately
The four-parameter modified Gounaris-Sakurai parametrization of
a plon form factor has been used for the dominant two-pion part.
While the statistical error has been evaluated by the covariance
matrix of the fit (XS/D.F.-= 1.85), the systematic error has been
assessed from the deviation of the mean values of a in the two
methods (the second one being the trapezoidal integra{&on over the
experimental points). The result 150.107*' is the main contributor
to the total error in (4a). The low-energy three-pion and two-kaon
parts of azac were treated by the Breit-Wigner formula for the w
and ¢ resonances. The statistical error was estimated from the
statistical errors of the measured total and electronic widths.
The systematic error has been taken equal Lo the systematic error
of both the widths. The same error estimates were done also for
the contributions of the J-¥ and Y resonances, treated in the
narrow width approximation. The contributions of other channels
have been obtained by the trapezoidal-rule integration over the
experimental data for R = o(e*e™» hadrons).ole’e —»u'u™) whose
errors were taken as an error estimate for this part of a¥2® .

The second group of authors’*” has reduced the essential part
of the errors coming from the region s>2 GeV® by employing the



O(az) QCD expression for the gquantity R. The error in this
treatment comes from the uncertainty in the value of the QCD scale
parameter A and from the neglected higher-order terms in R. The
Joy and Y resonances were evaluated in the narrow-width
approximation and reglons of ¢c and bb thresholds by the
experimental data on k.

The integration over experimental points has been used also
in the region 0.8 GeV®< s < 2 GeV® for the 2n, 3n, 4n, Sn, 6m,
Kt "and KgKg channels. The largest statistical error (~17 %) was
found for the three-pion contribution and attributed to
experimental uncertainties in the ¢ region. The total systematic
error from this region was given implicitly in the overall
systematic error of the a’* value (4b).

A great deal of Ref. 4 1s devoted to the thorough numerical
study of the dominant low-energy two-pion contribution to a . It
is performed in terms of a 15-parameter pion form H;ctor
representation written as a product of the Omnés function and the
inelastic part with correct analytic properties, normalization and
the asymptotic behaviour. The inelastic part is parametrized in
terms of higher vector meson contributions, a three-parameter
background function and a function providing the asymptotic
behaviour of F (). The equality between the form factor phase and
the phase di(s) of 1 =J =1 partial nn scattering wave for s £
0.8 GeV® is used in the integrand of the Omnés function. Two
methods for the evaluation of the two-pion part a2 based on
different parametrizations of di(s) were applied to assess the
systematic error of a2™  The value 27.107'* (compared to 150.107"°
of KNO) is an essential source of diminishing the total error of
a in Ref. 4. The mean value of a®™ and its statistical error were
ogtained by the variational analysis of the experimental data on
the form factor inelastic part.

Closing this section we note that though KNO have found
smaller statistical errors than CLY in all channels, the latter
authors were able to diminish the total error of axao for
essentially two reasons: the use of QCD in the high-energy region
and due to taking the deviation of mean values of a®" in two
methods as a measure of the systematic uncertainty of the dominant
two-pion part of a,

I11. Calculation of the lowest-order hadronic vacuum polarization
contribution to ap

All calculations of a“?® are based on the integral
‘ Ny p "9
representation
[¢4]

1
vac

- h N
ap o J o' (s) hP(S) ds» ()]
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where « is the fine-structure constant, o''s: stands for the cross

section o(e*e ™ hadrons) and K (s) is the function coming from the
“triangle Feynman diagram for a  corresponding to the exchange of a

particle’with the propagator -i(g®- s> ":

1
K (sy = @ [x2C1-x) dx

+ (1 Js/
%) (e

o

A decomposition of the integrand to partial fractions leads to the
explicit form

a1 :
ks = & & {59y - - (1+9] 1nt- Y(%ST)

- [ F -9yt $(1-$)]-1n(1- Em) + B - yishan

where

S-VIZ7v, y- s/mz,

As can be seen from Eq.6, K (s) behaves as (a/m)m?/3s for s » m®,
suppressing in this way the centributions from higher-energy
region.

Formula (5) can be derived by replacing the free photon
propagator in the 0(a) amplitude for a6 by the exact photon
propagator, defined in terms of the Fhadronic) polarization
operator II(s). Writing a dispersion integral for the latter and
isolating the invariant function at the tensor structure o, kY,
which at k®= 0 defines the anomalous magnetic moment (k isvthe
four-momentum of the external photcn), one obtains a’*® as a
superposition of the amplitudes K (s) with the weight function
Iml(s)/ns. The usefulness of this representation for a:‘c follows



from the well-known relation

Im(s) = STES) = 1 pes) )
AnPa 12n

providing the possibility to employ rich experimental information
from the reaction e’e”— hadrons for the calculation of a¥®® via
the relation (5). As a consequence, the accuracy of the result
depends primarily on the precision of the measured cross section
for individual annihilation channels. However, as we shall iry to
demonstrate, one can non-negligibly reduce the errors of a¥?® by
choosing more realistic and adequate models for the cross sections
of'(s).

In our calculation of a¥*® we have devided the integral in
(8) into the low-energy (s<s = 2 GeV®) and high-energy (s>s )
parts. Following CLY we have used QCD in the latter, including,
however, the 0(“;) term to the perturbative expansion of the ratio
R = coCete = hadrons)-olete™ = 'u™) and confronting this
calculation with the result obtained by 1integration over
experimental data on R (subsection B). As to the chosen position
of the point s _, it is dictated from one side by the validity of
perturbative QCD and from the other side by the fact that we are
able to estimate 21 and 2K contributions by means of the reliable
form factor models in the whole region Am; $s <s, in which the
corresponding integrals are saturated almost completely.

A. The low-energy region

We treat each channel in this region separately. In order to
achieve realistic and quantitative error estimates, we adhere to
the following scheme: the statistic errors will be computed as a
rule from the covariance matrices of the correspending fits while
for systematic errors we will take the errors calculated from
experimental systematic errors by the CERN program TRAPER which
uses the trapezoidal-rule integration over experimental points. To
be on safe grounds we add also the second sort of systematic
errors , namely those induced by the models used for the cross
section o'(s). They will be called hereafter the model errors.
Their actual value in each channel will be determined from the
deviation of TRAPER integration in (8) and the integration using
model parametrizations for the corresponding cross sections.

Accordlng to the remark after EQ.(7) it will be the
contribution of the process e*e™= n'n” which will dominate in
a¥?®. Its cross section is given by

2 3 . m2 2
a‘z"(s) = —nggﬁt- ' Fn(s) + :el¢ ) s I

2 _ -
m,~ S 1mwrw

where 3 = (1-4m;/s)"2 is the velocity of an outgoing pion in CMS
and the second term in (9) describes the part of the n*a~ final
state due to the w meson. Parameters ¥ and ¢ are the p-w
interference amplitude and phase, respectively 777
It turns out that it is of crucial importance to find
suitable and adequate parametrization of the complex function
Fn(s). For example, the modified Gounaris-Sakurai formula used by
KNG which takes into account the inelastic p-w channel by the
effective factor with three parameters fixed by hand does not give
a fully satisfactory description of the data. It manifests itself
in a rather large deviation of the final result for the two-pion
part a®™ from the value obtained by direct integration over the
data points of ¢*". Problems with a simultaneous description of
E:? spacelike and timelike pion-form-factor data (and data on 6')
indicate a possible inconsistency also in the model of CiY
;aused probably by the choice of the parametrization of the
inelastic part of Fn(s). The nonadequate description of the data
above 1 GeV® is likely the reason why the authors compute the
contribution from the region 0.8 <'s < 2 GeV? directly by means of
the data instead of the model.
For our calculation of a®" we choose the analytic pion form

factor model 7®7 formulated in the conformally mapped cut-free
variable W:

7
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o T Hs-4n?) |, q - qts)), (1O
where 5, 1s the position of the square-root branch point which
together with the elastic branch point at s=4m;, corresponding
cuts and complex-conjugated pairs of resonance poles define the
pion form factor analytic structure in the complex s-plane {for a
more complete treatment of the model see Refs.89). The formula for



F, reflecting this analytic structure in the W-plane is

4
(- DEW - W) L AW
(W = W) D (W D,,(W D, (W)

F (W) = (D

The factor (W -1)2 ensures the asymptotic behaviour -l/s , W :0.21
and W = 0.23 simulate the left-hand cut from the second Riemann
sheet 7™ and

_ ! -t _ -1
D (W) = (W-W (W v;xw LADIST w;; )

D, (W CW-W, D CWHW Y OO WD, v = o7
with Wv (v=p,p:p’'’) being the positions of resonance poles .Five
real coefficients A can be expressed in terms of resonance masses
m, ,widths Fv and coupl;ng—constant ﬁfp}os g,= fvnﬂ “, (fvnn . fv
correspond to the transitions v - nn, v =7, respectively) by
requiring correct normalization F”(O) = 1 and threshold behaviour
61~ q® for q — 0 together with taking into account a connection
of VMD pion form factor representation with formula (11) in the
limit Fv—+ 0 separately for p,pand prresonances 787

Formula (11) has been compared with 288 data on F‘TI (see
references therein and “'2'**”) from the spacelike and timelike
regions. The fitted parameters A (i=1,..9) were Re W_ , Re wp",
Im W_, Im W_ ,coupling constant ratios g,. g_. gp". position
of the effective inelastic threshold s, and the modulus of the p-w
interference amplitude &. The interference phase ¢ can be
expressed by my I’ and mw/” The parameters Re W_ and Im W_, of
the resonance p'(lé%O) have been fixed at the values corresponding
to m_~ 1310 MeV, T _~ 400 MeV which are typical for a few fits
with small modifications of formula (11). Presence of the
resonance p’ is important for the quality of the fit, however
fixing its parameters  is necessary due to the fact that data
points are rather scattered in this region and making mﬁ and Fﬁ
free would introduce rather strong correlations to the covariance
matrix.
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The results of the best fit (transformed to the s-plane) are:

m, = 760 t 4 MeV fb = 143 + 3 MeV 9p= 1.19 £ 0.03

LONT 1743 + 110MeV Fp“ = 280 * 9BMeV 9y =-0.06 * 0.02 (12>

s,=1.42 £ 0.06 GeV® & - 0.0146 * 0.0006 9y = -0.40 £ 0.06 .

A good simultaneous description of the spacelike and timelike data
has been achieved with X®/D.F.- 1.45. MNumerical evaluation of the
integral (%) with K“, o®™ and Fn given in (72, (8) and (11) yields

ai": (4985 + 28). 107", (13

where the statistical error 28.10"! (Lo be compared with the
values 22.107" of KNO and 43.107'of CLY) has been obtained by
the formula 3

a

- 0 - :
fop® FJ ClJ DD , D= —Tﬂ# . (142

1] 1

1
C; is the nine by nine external covariance matrix of the fit as
given by the Hesse subroutine of the MINUIT program (with the
parameter UP adjusted to 9 parameters). The values of diagonal

matrix elements have been checked by MINOS subroutine. Evaluating
the same integral by the trapezoidal rule we fing

a:" = (4906 + 24)x107'!, (15
where the systematic uncertainty 24x10™' is the error as given by
TRAPER  integration over the experimental cross sections
supplemented by systematic errors of measurements. Its magnitude
is close to the value 27x107'' found by CLY who however use in
fact a model error as the systematic uncertainty of a2". Our
model error is 40x107*' to be compared with the value 150xf§"‘ of
KNO obtained by the same method but being used again as the
systematic error. Adding our three errors quadratically gives the
total error of the dominant two-pion part of a¥2° to be 54x1G7*.
In principle the same procedure can be applied to the
two-kaon contributions. A suitable generalized VMD model for the
charged and neutral kaon form factors with correct analytic
properties has been derived in Ref. 14. The final formulae for the



isoscalar (s) and isovector (v) parts read

_ % g %
el .o (VN Vs)(VN Vs)(VN VS)CVN Vs)

Fscvy . L2V SKK _ (16a)
£ ( 1—v;] 2 £ (v -VCV -V =T 75
s=w, ¢ ¢’ s s s s
e . (112 ¢ fuxg CHyW D =W W I CW WD
Few = 3 (16b>
1-we £ (W W WO W W W)
V:p,p,‘ ey v v v v

The variable W is the same as in (10), the variable V is defined
in a similar way by means of the three-momentum r:%(s—gm;)‘/? An
effective inelastic threshold in the r-plane is assumed
analogously to q, in the g-plane. The points VN and WN correspond
to the normalization point s=0. The factors in front of the sums
in (16a,b) give the asymptotic behaviour ~s* to the form factors.
The ratios of the VMD coupling constants are restricted by the
conditions .

zi: z&i:l_ “Un

fo f, 2

s=0, 9, ¢’ v=p,p;p"’
which are the consequence of the normalization of F: . F; . As can
be seen from (16a,b), each resonance is represented by four poles
lying in the complex V, W planes (i.e. F# 0, I ;2 0) with

Vs= V;‘ , W= w;' or Vs= -V

v

W oW, (18

s

depending on the relalive position of the resonance and the
effective threshold. Finally, the form factors of the charged and
neutral kaons are given by linear combinations of F: and FE

S v N v
FKi’ H FK + FK R FKO: F: - FK . (19

The number of free parameters of the model can be reduced to 14 by
Eq. (17) and by fixing m_ , Fp s My Fw at their table values as
PC(770) and w(783) lie in the unphysical region and one could
hardly expect to be able to determine them with a sufficient
accuracy from the fit.
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The optimal values of the fitted parameters (iwo
inelastic thresholds, four ratios of coupling constants and
positions of four resonances in complex V and W-planes) from the
analysis of all 138 available data (see Ref. 14) of the charged
and neutral kaon form factor are

my = 1019.4 + 0.7 MeV f¢ = 4.3 £ 0.8 MeV f¢xi/f¢: 0.33 +0.01

Mg, = 1660 * 21 MeV T',, =158 * 37 MeV f =7f =0.20 £ 0.01

@’ WRK "W~
s¥ =1.68%*0.03CeV® s =1.72 ¢ 0.04 GeV? (20
inl inl
My = 1315 + 183MeV Tb. = 245 t 167MeV pri/fp = 0.57 +0.01
mp., = 2114 * 140MeV Tp,,= 150 * 104MeV fp’mz/fp' =-0.04%0.01.

The data are reproduced well (x*/D.F.- 1.44) for s0 as well as
for s<«0. Since kaons are pseudoscalars, the cross section of the
reactions e‘e’— K'K7, K:KE is completely analogous to (@
(without the second term, of course) and the rest of the analysis
goes as for the pion contribution. The results are

+

az"‘l (235 + 16(stat) * Gsyst) + 3(model)] x107**
1)

a;"' - [ 183 *+ 12(stat) * 9(syst) * 3(model) ]xlO‘“_

The statistical errors are smaller in our approach due to the
influence of the space-like data in the fits. Since the data on
FKo do not cover the whole ¢ meson region , Lhe systematic and
model errors of the KZKJ contribution have been estimated
conservatively by the corresponding errors of the K*K™ one. The
model errors are very small reflecting the reliable description of
the data by the parametrization (16a,b).

Further important contribution to a¥*¢ is the three-pion one.
It 1is this portion which is determined in our work with
substantially improved precision and contributes significantly to
the reduction of the total error of a¥*¢. The improvement comes
from two sources: hew precise measurements 7'7of the e’e — a'n n°

11



cross section in the w region performed recently in Novosibirsk
and, to some extent, from the use of Breit-Wigner formulae to fit
the data on ¢®™ Though KNO have also used Breit-Wigner
parametrizations for the w and ¢ resonances, they have performed
error estimates by means of the statistical errors of the measured
total and leptonic widths of «w and ¢ and not by fitting the
experimental cross sections. On the other hand, CLY integrate over
experimental data with large resultant statistical error of ~ 17%.

For our calculation of the three-pion contribution we employ
the Breit-Wigner parametrization of the form

2
- ) mwfw _ m!F!
0’3 (S) = VUI () */ VO" a‘ y; ’ (22)
mZ—s—;s’ 2l"‘w(s) m;—s-is‘ z1"¢(s)

where o(w) and o(¢) are the cross section values in the w and ¢
peaks and T (s)- Flsa’zm:3, i-w,¢. To take into account the w-¢
interference with negative relative sign is important for the
correct description of the data in the region between the two
resonances and above ¢”'7” We have used essentially the same data
above 0.66 GeV® as KNO and CLY with the addition of the 17 data
points from Ref.18. On the other hand, for s < 0.66 GeV® new high-
quality data from the experiment with cryogenic magnetic detector
in Novosibirsk have become available recently”2/In the experiment
a new method of resonance depolarization for the beam energy
calibration has been applied for the first time. This procedure
led to significant suppression of the systematic errors. Since the
statistical errors of the measurement have alsoc been reduced in
comparison with earlier experiments and the results”*?” are fully
compatible with the world averages”'®/ we take only these data for
s < 0.66GeV®. The optimal values of the fitted parameters obtained
by comparing formula (22) with 76 data points from the interval
Qm;S s £ 2 GeV® are

m

o = 781.8 1 0.3 MeV [,=9520.8MV olw -1519 +120nb
23

1019.6 * 0.3 MeV F¢ = 431207 MV o(¢) =623%32nb.

n
4

M

Evaluation of the three-pion portion of the integral (5) by means
of CERN program RIWIAD using the Breit-Wigner cross section (22)

12

with resonance parameters (23) yields

a3l - [569 + 17(stat) * Q(syst) * 18Cmodeld ]x1o-“ EERE!S

The statistical error obtained from the covariance matrix 1is
17x107** . The model error is rather large because we have included
in it the «contribution coming from our ignorance of the
experimental behaviour of o™ below 0.5 GeV®. The value 16x107"'
was estimated from the difference of a*" values obtained by
extrapclating the model curve (22) to the three-pion threshold and
by the TRAPER integration over the experimental cross section
starting at the point 0.7502 GeV

The last contributions to a¥?® from the region below 2 GeV®
come from processes e*e™— 4n,5r,6rn. We perform TRAPER integration
and error analysis for these components of a¥®®. One could in
principle try to fit the data by the Breit-Wigner functions in
en*en” and n°n°nn” channels , but the intermediate resonance
states are not completely clear for these processes 718,187 apg,
moreover, for our purposes we need only a part of the
corresponding cross sections below the peak. We use the same data
as in Refs. 2 and 4 supplemented however by important new
measurements”* ®” for both the four-pion channels. The results are
displayed together with all other low-energy contributions in
Table I.

B. High-energy region

As noticed by CLY, one can considerably reduce the errors of
the integral (5) coming from the region s > 2 GeV® by considering
the QCD expression for the quantity R instead of experimental data
from individual channels. Really, KNO, who have used data, quote a
rather large systematic error for example for the contribution of
more than two hadrons (43x107''). On the other hand, there is no
systematic errcr if one uses QCD. In our opinion, however, it is
necessary in this case to check that the results obtained with the
help of QCD expression for quantity R and by integrating over
experimental data on R really coincide. In this section we
describe our work along this direction.



TABLE I. Contributions from the region s<2 GeV?® to 10“a“.

Channel  Central value Stat. error Syst. error Model error
ntn” 4983 28 24 40
K~ 235 16 9 3
K;Ki 183 12 9 2
n°n'n” 569 17 g 18
°n°ntn” 140 6 -
nfn e 55 2 3 -

Sn, 6n 7 2 c -

Total 6174 39 29 44

TABLE II. Contributions from the region s>2 GeV?® to 10"ap.

Interval(GeV?®)

and method Central value Stat. error Syst. error Model error

2 <s £961 586 17 - 2
QCD

8,61 < s <2021 g8 3 5 -

¢c thres., data

20.21 £s <810 90 1 - 0
QCD

81.0 £ s £106.0 18 0 1 -

bb thres., data

s > 196, QCD 20 0 - 0

¥, Y resonances 71 4 4 -

Total 884 18 7 2
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The experimental information on R(s) 1s rather rich. In the
analysis we use data from 21 different experiments published
during the last ten years as collected by Marshall “2°7 The author
has performed a simultaneous fit of these data sets to reliably
determine the strong coupling constant o One of his conclusions
is that three data sets’®!:22:23/ should be renormalized modestly
in order to be consistent with the remaining sets. We follow this
prescription in the evaluation of the high-energy contribution to
alac by means of data on R. The result of TRAPER integration 1s

aE - (817 ¢ 13cstatd Jxi0 (25)
and the effect of the downward renormalization is to decrease the
a  value by 55x107'! Of course the above result concerns only the
continuum. The contributions from the J-¥ and Y resonance families
should be added. In the narrow-width approximation they are
expressed as
3r
ates. —8€ K (n® ), €5))

M nmres M res

where Fee is the e'e” width of a given resonance, whose
statistical and systematic errors induce the corresponding errors
of a'®®. The individual contributions from the J/¥ and Y
resonances are listed in Table II

In the QCD calculation of the continuum contribution we have
excluded the threshold regions 9.61 - 20.20 GeV® (cc) and 81.0 -
196.0 GeV® (bb) where the data have to be used. The QCD
expression for R(s) calculated recently to the order 0(a?) is i

(s)y2
+ (1.986-0.115np) [asn ] + (70.985-1.200n,

27}
)43
2.

(
R(s) - 3§ Q¢ [1+0l >
£

-0.005n2) [GS,(TS)]3 1-1[(2 Qf]ax 1.579[“*,(T

where Of is the electric charge of the quark of flavour ng. It is
interesting that the coefficient of the O(a:) correction is
unexpectedly large, affecting significantly the value of the
extracted QCD scale parameter AZ"**/ The effect of the

15




next-next-to-leading term on the value of aR may therefcre also be
non-negligible. Indeed, we have found for example for the
contribution from the region 2 < s < 9.61GeV?

0Cal): aﬁ = (562 £ 8)x107'',  0Cad): aﬁ = (586 * 17)x107''. (28)

As can be seen the inclusion of the O(a:) correction into R
increases twice the error induced by the uncertainty of the
parameter A (for the latter we took A = 150 * 50 MeVv 73%7).
Summing up all contributions from Table 1I, we find

aﬁ :[ 884 t 18(stat) * B(syst) * 2(mod)]x10"‘. (29)

The systematic error comes from the ¢c and bb threshold regions.
The model error is negligible, since after the slight
renormalization of three R data sets and the inclusion of the
third order term 1in (28) both the methods used yield the same
value of aﬁ.

1V, Summary and conclusions

Our final result obtained by summing up all entries in
Tables I and II is

azac = [ 7058 * 43(statl) f 30(syst) * 44(model) ]xlO_l!, (302

where the errors have been added quadratically. Comparing (30)
with the previous results (4a,b) we see that while our mean value
is very close to them confirming thus the overall consistency of
all three results, the real improvement over the last analysis 74~
rests in diminishing the total error almost twice down to the
value 68x10."'' The increase in the accuracy of a¥?® stems from
the low-energy region. First, the statistical errors of the
two-pion and two-kaon contributions have been reduced by a factor
of 1.5 and 2, respectively, due to the use of rather accurate
global analylic models of the pion and kaon electromagnetic form
factors. Second, new precise experimental data on the cross
section ole’e”— n°1'n”) analyzed by means of the interfering w
and ¢ Breit-Wigner amplitudes led to significant reduction of the
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errors of this channel. New data on the four-pion e'e”
annihilation “*®/ contributed to partial suppression of the total
statistical error, too.

We have done independent integrations directly over
experimental data in the channels where models have been used.
Besides obtaining in this way the estimates of the corresponding
systematic errors it was possible to use the deviations of the two
rethods as a measure of possible model dependence of our results.
That the model errors are sufficiently small gives a certain
credit to the final results on a”2c.

Taking intc account the QEﬂJand weak contributions as quoted
in introduction together with the new value of higher hadronic
contributions 72/

a“(h.h.) = (41 * Tx10™! (30

new value of the total anomalous magnetic moment of the muon will
be

a, = (116 592 012 * 75)x107'* (32)

The error is about 38 % of the one-loop effect of the weak
interactions. This creates a real chance to detect this
contribution (and also the possible one of the same order of
magnitude predicted by some supersiring-inspired models 72873 in
the experimental a6 value after the improved g-2 measurements will
be accomplished.

The authors would 1like to thank Drs.S.B.Gerasimov,
A B Govorkov and J. Lanik for valuable comments and Prof
V.A. Meshcheryakov for support. We are grateful alsoc to
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