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Supersymmetric field theory models oconstitute now a perspective
branch of the modern elementary particle physios. They suggest new
avenues to unifying all the fundamental interactions, inocluding the
gravitational one. They are a basic ingredient of the superstring
theory. They solve the hierarohy problem of Grand Unification
Theories. In their framework one succeeds, for the first time, in
construoting  finite local [fleld theories, where the ultraviolet
divergences from bosonic and fermionic loops are cancelled mutually.
There is a lot of predictions that have to be checked in the future
high energy experimental events.

For the simplest N=1 supersymmetry adequate approaches were worked
out approximately ten years ago. The Bsituation with extended
supersymmetries turned out much more involved. Even for the smallest
number N=2 of spinor generators till 1984 nobody oould succeed in
getting manifestly invariant off-shell description of the theory in
terms of unconstrained: superfields. Such a desoription is needed both
for an effeotive handling of the theory ( on the olassical and quantum
levels ) and for revealing its geometrio struoture.

The desoription of this kind (for N=2) became possible in 1984 due
to the invention of harmonic superspace(1].To date, the unconstrained
formulations of all the N=2 supersymmetric theories( of matter,gauge
and gravity fields ) are ocompleted, an essential progress is achieved
in desoribing N=3 theories.The newly introduced harmonic ocoordinates
oome out as a kind of twistors ( in an isospace rather than in
Minkowski space-time ), thus demonstrating a deep affinity to the
twistor approach by R.Penrose and E.T.Newman.

The present notes are a very brief account of our lectures given at
this Warsaw meeting. Details ocan be found in our papers [1-9].

I.The sténdard superspace for N-extended supersymmetry
RN = (a?, o M50y (1)

contains spinor coordinates e‘“ 8% ( t=1,...N, pepe =1,2 ), This
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superspace is suited for constructing unconstrained formulations only
of N=1 theories.For N>t one needs a more refined type of superspaces,
the harmonic ones. The N=2 harmonic superspace is defined as a product
of (1) and a 2-sphere

4+218 _ 4|8 , 8U(2)

H = R X U'(17 (2)
where SU(2) is the automorphism group of N=2 Poinocare superalgebra.
5%= %I—g%l is described by additional (harmonic) coordinates uf
constrained by u+"u:=1 and defined up to an U(1) phase
uf'= e o uf. It is convenient to choose a coordinatization

FEIL M, et R, o7 BTH ) (3)

where we have projected e‘t onto ui: otk = oth ui.étﬁ=§‘p‘utt.
4 very {important [fact:N=2 supersymmetry can be realized in an
analytic subspace of (3) having half the original spinor coordinates
AMEIE Mo, o, 5, ul ) (4)
All physical, auxilliary and gauge degrees of freedom of N=2
theories of interest are combined into analytic harmonic superfields
defined on the superspace (4). E.g.,N=2 matter supermultiplet ( an

SU(2) doublet of scalar fields (p" and a Dirac spinor ¢%, E‘i on shell)
is described by a U(1) charge one superfield

g (tw)= @F(x,u) + ea+¢a(x.u) + 62 Sx,u) + ... (5)

where the component fields cp+, L “d s «..are represented by harmonic
expansions on s%

+ P -
¢ (x,u)= cpt(x)u: + qa(”k)(x)u‘;u u, + . (6)

+
i J
O, (x0) = ¢_(x) + o't (x) ujug ,. eto.

T
We see that q+contains, along with the physical fields,an infinite
tower of extra fields emerging in harmonic expansions. These are
necessary for olosing N=2 supersymmetry off shell. In faoct, they are
auxiliary and are eliminated on shell by the equations of motion.

To oonstruot actions in harmonic superspace we have to introduce
derivatives in harmonic coordinates. Most important of them is the

analyticity- preserving derivative p**

p**s u’;a/au; - 210te?%8/0x% 1)



With its help the free action of q+ can be written as

$ = fat” 43u q tottgt (8)

where dg_ddu is the analytic superspace integration measure. This
action gives rise to the equation of moticn

D++q+ - (9}

which can be shown to eliminate all the auxiliary fields and to yield
the ocorrect free equations for physical fields. Note that +the
1ntegratzon over harmonic variables appearing in {8) is defined by the
fellowing simple rules

faa 1 =1, fau u*“u”....u'ku‘” = 0 BT}

It is alsc worth mentioning that the conjugation £ -combines usual
complex conjugation with the operation »
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which can be interpreted as an antipodal map of the sphere 52
(Weyl’s reflection). The analytic superspace is real with respeot to X.
One may easily generalize (8) to the interactiocn case
*

= Jat™fau (g* DMt ¢t + Mg, F ut u ) (12}
Here LM4( q+, (T', ut, u” ) is an arbitrary four-told charged funotion
of N=2 matter superfields (their number may be arbitrary} and of
explicit harmonics ui .We wish tc stress that this is the most generai
self-interaction of N=2 matter multiplets off shellls] and it is Just
the concept of the analytic harmonic superspace that allowed fto write
down the general matter action. iny N=2 matter aotion in conventional
N=2 superspace corresponds to a resiricted class of self—intéractions.
As has been shown by L.Alvarez—Gaumé and D.Z.Freedman[10], any
self—interaction of N=2 matter invoives, for physical bosons, a sigma
model with hyper-Kihler target manifold (i.e. some special 4n
dimensional Riemann. manifold with the holonomy group in Spin) ).
S0, any function in (12) corresponds to one or another hyper-Kihler
manifold and can be used to explicitly compute the relevant metric in
" the Lagrangian of physical bosons( by eliminating auxiliary fields by
their equations of motion). In other words, there is a one-to-one
correspondence between the variety of all the hyper-Eihler metrics on



the one hand and that of functions L'? ( g, u ) on the other.For this
reason, the function LY%can be called Hyper-Kdhler potentiall2,6] (by
analogy with the N=1 case where the superfield matter Iagrangian
appears as a Kihler potenti{al(111}. Now the potentials for a variety
of hyper-KBhler metrics are known(6,12].These are simpler than the
corresponding metrics.Recently we have established = direct relation
of hyper-Kihler potentials with the oonvgntioﬁal formuiation of
hyper-Kiéhler geometry [(9].

2.That is all we wish io say here concerning N=2 matter self-
interactions in harmonic superspace. Now we pass to N=2 gauge
theories. Let q+ belong to a representation of a gauge group with the
generators 7% The analyticity-preserving local gauge transtormation
locke as

4

A
gt o= e T gt M=t (g, u) (13)

To make the ¢ action (12) gauge invariant one has to govariantize the
harmonic derivative p*t by =adding an analytic superfield gauge

. ++
connection V

D++ S ED++= D+++ ¢v++(;!u)’ (14)

S et vHroaptt) et (15)
Stress & remarkable analogy with the ordinary (N=0) Yang-Mills
cormection transformation law Alx)'= e“'(xhrﬁx) - tam)e'{MXJ.
The unconsirained analytic superfield V *encodes all the information
on the structure of N=2 gauge theory[1].In this language, the standard
N=2 Yang-Mills consiraints in the superspace 7*'® vy Grimm, Sohnius,
Wess [13] come out as the statement that the harmonic analyticity is
preserved in gauge theory.

Note that the N=2 Yang-Nills action writtem in terms of v turns
out to be of Chern-Simons form [4].

4n tmportant remark. Just as gq*, the analytic superfield ¥
initially ocontains an infinite number of fields appearing. from its
harmonio decomposition. While in q+ such fields are auxiliary and are
eliminated by the field equations, in v**such fields are gauge degrees
of freedom and are completely eliminated by fixing the gauge ( off
shell ). In this Wess-Zumino like gauge one recovers the familiar
otf-shell N=2 gauge multiplet: the gauge vector field A (x), the

++
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doublet of gaugmos r.p ‘(x),the 15051nglet complex scalar field ¢(x) and
the triplet of aux:.llary scalar fields D“’”(x) all in the adgomt
represéntation of gauge group.

The harmonic superspace quantization procedure for the N=2
interacting matter and gauge superfields has been worked out in {3].
There the distributions in harmonic variables were defined and the
propagators and the Feynman rules for the above superfields were
sonstructed. The miraculous cancellations of ultraviolet divergences
in the extended supersymmetry theories become transparent in the
quantum harmonic superspace approach. In particular, it allowed to get
the first consistent proof of the finiteness of N=4,d=2 nonlinear
sigma models simply from the dimensionality considerations. At the
same time, N=2, d=4 sigma models proved to be non-renormalizable.

To end with the N=2 ocase let us disocuss N=2 supergravities. 4
convenient general way to construct different off-shell versions of
Einstein supergravity 1is to start with the relevant oconformal
supergravity and then to compensate unwanted invariances (e.g.,
dilatations or conformal supersymmetry ) by introducing extra
compsnsator multiplets.The underlying group of oconformal - N=2
supergravity is the group of oaoordinate transformations in N=2
harmonic superspace'whioh preserve analyticity i.e.leave the analytio
superspace (4} invariant[7]

4 §M= A-M(C!u) *

s wi= A" (gu) u . & u,= 0,

3 6% =AY (gu ,07,87), s 8= AF(g,u,07,87). (16)
The unconstrained prepotemtials of conformal supergravity are the _
components of the analytic vielbein oovariantizing the harmonio
derivative D'

D= ujasou] + H+4u:6/6u': + B8 1 TYHTa/86R T+ nael). . (A7)

Like in the case of N=2 Yang-Mills oconnection V++.the analyticity of
these prepotentials amounts to the standard constraints in the real
N=2 superspace. Their irreducible field content is revealed in the
Wess-Zumino like gauge ( similarly to the Yang-Mills case) and it is
Just that of the off-shell N=2 conformal supergravity muitiplet.

To pass to Einstein supergravities one should introduce appropriate



compensator  superfields. A11 the versions of N=2 Einstein
supergravities known previously [14ﬁ correspond to choosing certain
constrained harmonic superfields as compensaters. It can be shown that
all these versions dc not allow general matter self-couplings because
it is impossible to construct proper superfield densities from the
constrained compensators. The harmonic superspace provides a way out.
It Buggests the unconstrained analytic superfield q+ as a most
appropriate choice for the compensator (7]1. In such a way we arrive at
a new off-shell version of N~2 Einstein supergravity. It contains an
infinite number of auxiliary fields ( in contrast to the versions
¥nown previously ) and admits most general matter couplings. The
versions with constrained compensators are related, via a duality
transformation, tc some special classes of matter actions within ihis
ultimate version. Just this new version allows one to wvisualize the
theorem by J.Bagger and E.Witten[15] on the one-ic-one correspondence
between the matter ocoupling in N=2 supergravity and quatermionic
manifolds(these are some distinguished olass of Riemann manifolds
of the dimensicnality 4n having their holonomy group in Sp(n)xSp(1)]:
in this case the physical bosons are always desoribed by a nonlinear
sigma model with a quaternionic manifcld as the target onel8].

Thus all the N=2 theories have an adequate "description in the
framewcrk of harmonic superspace. This approach not only allows to
represent the previously known theories in a compact convenient form
but alsc gives a possibility to fill some gaps (o construet most
general off-shell matter couplings, to find the ultimate version of
N=2 supergravity., to achieve a considerable simplification of analysis
of divergences, etec.).

3.1t helps alsc in underétanding higher N theories. However, in
each conorete ‘case one meeis subitleties specific for it and some
novelties become necessary. At present, we sucoeeded to the end for
N=3 gauge theory(4]. There the harmonic superspace is a direct product
of the standard real N=3 superspace and the coset space ﬁ%¥§%%17)
where SU{3) is the N=3 supersymmetry  auiomorphism  group.
Gorrespondingly, there are two U(1) charges and one has to deal with
the harmonics

u? = (ul'lu;1'fu$'*2 IF PR t=1,2,3 (18)

and
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After projecting spinor wvariables s

Det u=-1. (19)
e g
1ot 95 onto harmonics (18) | they
become e'_'l' 1.61 ”1, 62‘2; 61 . 5";“1, ég'*g. ‘The analytic N=3
superspace cxontams only part or them, Jjust the secorid,thix‘d, fourth
and sixth ones.The analytic Yang-Mills prepotentials v2+9,v! '3, yhe2
oome out as connections in the harmonic derivatives [P0, pt-3, pl-%
and they have an evident transformation iaw & v*= D% A where A ds a
chargeless analytic superfieid parameter. The action is of pure

Chern-Simons type ‘
I='/2 tr far™*Cau { v §3078 4 y1.58 5303, 2.0 g2.0
-iv2 0 vh3 g3y _ : (20)

where F are the field strerigths, e.g o2 -1{ DE'O, D1'3}.. Re‘oen"ﬁly
there appeared a paper devoted to the quantization of this theory [16]
along the lines of its N=p2 prototype. Note that ihe Chern-Simons type
action (20} was proposed in 1985 and it desorives a quite néontrivial
dynamics. Now the theories with Chern-Simons actions gained a rather
great popularity in commection with the string I:Leld theory and the
topological field theory {17].

There remains a lot of impertant problems in supersmmnetrlo
theories that one oan hope %o solve using the harmonic superspace
techniques. This approach was used recently to attack N=4 super
Yang-Mills[18], ten-dimensional supér Yang-Miils and supergravity in
the context of superparticle and superstring models(19], etp. _

4.38cmewhat unexzpectedly, harmorics have deep implioations in
ordinary bosonic (N=0) gauge theories. Their use turns out to be very
fruitful for solving the self-dualily equations in Yang-Mills theory
and for getting an unoonstralned formulation of hyper—Kahler_
geometry[9]. Actuaily, the formalism of harmonics in these theories is
an ancther form of  the Penrose-Newman-Ward twistor approach [20].
Nevertheless, it allows to clarify some subtleties of the twistor
approach and ,that seems to be most important, to understand the above
bosonic theories and the supersymmetric gauge ones from the same
standpoint.

The common gecmetric basis of the bosonio problems just mentioned
and of the supersymmetric gauge theories is the preservation of



certain “flat" analyticities wupon opassing to the case with
interaction, when the derivatives defining these amalyticities are
covariantized in a proper way. In the bosonic case these analyticities
are those with respect to bosonic variables while in the supersymmetry
case Grassmann analyticities are underlying. The constraints normally
imposed to define these thecries (e.g., the self-duality equations in
the N=0 Yang-Mills case or well-known consiraints on the superfield
strengths in N=1,2,3 super Yang-Nills theories} turn out to express
‘the fact of preserving above analyticities. Such an interpretation of
constraints cpens up a wniversal way of solving the latter by passing
to thé basis {in the manifolds of involved fields and coordinates)
where the analyticity becomes manifest. In this basis, the constraints
are automatically satisfied as they become the integrability
sonditions for the relevant flat analyticities. The whole information
on the sitructure of the theory proves to be encoded in unconstrained
prepotentials which naturaliy come out in the process of passing to
the analytic basis.

In {9] we discussed, from such a point of view, a number of bosonic
theories and indicated their supersymmetric counterparts. For
instance, N=1 super Yang-Mills theory has as its direct boscnic analog
Yang complex gauge theory(22).Similarly, Kihler geomefry (Riemarmian
geometry of a 2n dimensional manifold with the holonomy group in Ulny)
oan be formulated in a tight analogy with N=1 supergravity in the
Ogievetsky-Sokatchev approach{21]. In these cases, ordinary complex
Caﬁchy—Riemann analytioity or Grassmann Cauchy-Riemann one(23] (in the
supersymmetry'case) play the fundamental role. A4 new type of bosonic
analytioity, the harmonic one, becomes relevant when trying to
understand on similar grounds self-dual Yang-Mills theory and
hyper-Kdhler geometry. The first theory turms out to admit a
formulation guite parallel ic that of N=2 Yang-Nilis in the harmonioc
superspace described above. The unconstrained prepotential formulation
of hyper—Kihler geometry has many features in common with the harmonic
superspace formulation of N=2 supergravity. These similarities rToot,
of course, in the common nature of analytioities underlying both types
of theories, viz. the bosonic and Grassmann harmonic analyticities.

To see how the harmonic analyticity works in the bosonic case let

us apply to self-dusl Yang-Mills in Rf= { =4}



D, =8,., + 14 .(x) : : (21)

Bé Ba &
t Saﬁ&’ 5}'15] =t sﬁ'r Fap * as FﬂT ) (22)
Fﬂ,{ =0 (23)

Here, the indices 8,7 and &,p refer, respectively, to two SU(2)*s out
of which the Lorentz group 0(4) of R? is composed: (4)=SU(2)xSU(2)
(the anti-self duality condition would correspond to nmillifying the
field strength F.. instead of FB }. CQlearly, the self-duality
equation (23) can be equivalently rewritten as a constraint on the
commutator of covariant derivatives

] =0 (24)

; 5)( ’ S)T)o

pa
Now, let us ‘interpret (24) within the harmonic extension of A%, -

that is R“x%gI :32“% = { ¥4, u:,u; } where SU(2} is one of two SU(2)'s
entering 0(4} (namely, the one acting on undotted indices). The
harmonies ué possess all the properties of ui discussed earlier, the
only difference is that they are associated now with the part of
Lorentz group rather than with the internal symmetry automorphism
SU(2) as in the previous case. Just as in the supersymmetry case, the
main advantage of introducing harmonics is the possibility to single
out in the extended space an analytic subspace, that time

a4 - .
Cx%ul, ug ) (25)
where x'% = xo"“u;. This subspace is closed under the whole Poincare

group of R*, so one may define the Poincare-covariant fields om it,

fq(x+&', ui ), which are solutions of the harmonio Cauchy-Riemarm

condition
oy ricax =0, @% =g ) (26)
Let us come back o the self-duality constraint (24). Projecting

the covariant -derivatives onto harmonics u' one rewrites {24) as

(9.9, 1=0 - $=u"o, @7)

=3 Clk



that is easily recognized as the integrability condition for the
existence of covariantly analytic fields belonging to nontrivial
representations of Yang-Mills group

topq L
D& J5 =0
The constraints in the form (27) imply a "pure gauge" solution for
the u' projection of the Yang-Mills connection

) = et? gt o7t ‘ (28)

where U{ x o u® ) is some harmonic field, arbitrary for the moment

However, one has to take into account that, by definiticn, A.—u @a ad?
850

otta} = 07 etV 5y etV ) =0, ptt = wasau

and ¥ is in fact constrained. This condition can be rewritten as

8y ( et etV =g (29)

Thus, the field V' (x™®,ul,uz ) = ¢ etV ptt otV ig apalytic while

otherwise arbitrary. v++pr'ovides the most gemeral solution of the
aelf-duality equalion: any analytio field with the U{1) charge +2
gives rise to a self-dual Yang-Mills ecommection and vice versa. To
restore the connection one should solve the nonlinear egquation

'D++ e**ﬂ) - - ¢ V e—ﬂ) ('30)

The problem is to select those v'* which correspend to the sclutions
with a finite action, that is to instantons. An explicit torm of the
SU(2) one-instanton V't has been given, in [7]

4 4 —2 ot gt
o=

v g x, X p=const

v for general n-instanton solution of Atiyakh, Drinfeld, Eitchin,
Manin has been obtained in [24].

The harmonic space desceription of instantons is, of ocourse, an
another form of familiar Ward’s oonstruction [20]. The analytic spaoce
(25) is nothing else than the twistor space as it is described, e.g.in
the book by Atiyanh [25]. The equation (30) oan be identified with the
Sparling equation which is an important ingredient of the Newman’'s
version of the twistor approach (see, e.g,l201). However, the harmonic

1¢



space view seems useful in some respects. Apart from the fact that it
establishes profound analogles with the supersymmetric gauge theories,
it translates techrnical details of the twistor approach intoc the
dovm-to-earth language of customary dlrrerentlal geometiry. An
important point is that it offers the opportunlty to take advantage of
the well-known techniques of harmonic expansicns on the sphere 5% when
treating fields on the analytic ({(twistor} space. All this makes it
tempting to apply the formalism of harmonics to more involved
problems, such as the self- -duality equatlons in higher-dimensional
spaces, the monopole business, etc. An elegant treatment of the
1*Hooft-Polyakov monopoles in' this language has been given in (24].

5.4n important application of N=0 harmonic analyticity iz the
unconstrained formulation of hyper-Kinler geometryl9l. As has been
zlready mentioned, this geometry is defined as = subelass of real
Rieniannian geometry in 4n dimensions, with the holonemy group
contained in Sp(n). The holonomy group is generated by Riemann tensor
g this definition can be reformuizted as a restriction on this tensor
or, equivalently, on the form -of the commutator of covariant
derivatives.

Let SDG be such a covariant derivative, the indezx a being the
tangent space one {a = 1y..-4n). One always may substitute a by a pair
of Sp(n)=Sp(1) indices a8 a =(wi) (u = 1...2n, ¢ = 1,2).Then the
defining econstraint of hyper-K#hler geometry can be written in the
form very resembling the self-duality condition {24) [9]

(D, » D,y =0 (31)

This resemblanoe prompts how to solve (31}. One hag to :Lntroduce
harmonies u11 on Sp(‘l)“ 8U(2), to extend A" = [ xM?! } to the harmonic
space {x"’" . x*7, u£ }, to project ED ontc harmonics and to represent
(31) as the integrability cond:_tlons Tor the relevant harmonic
analyticity

[5); .9 1=0 ,‘.D:=u+£i}w (32)

Without giving details, we quote the resultz. The constiraint (32)
can be solved by passing to the basis where the underlying analyticity
becomes manifest and the derivative © is reduced to the simple
differentiation with respect to the coordinate z M. All the vielbeins
and cornections present originally in © are eventually expressed via a

11



single unconstrained object, the analytic potential L+4(x”,ui,u ). Any
't produces some hyper-Eihler metric and, vice versa, any
hyper-Kihler manifold corresponds to some properly chosen 4, 5o,
hyper—Kihler manifolds can be classified according to 'their potentials
I . Note that up to now there were no regular methods of computing
hyper-Killer meiriecs. Given a potential'L+4, one may compute the
relevant metric by the algoritbmie procedurs worked out in our paper
[9]1. To know hyper-Kihler metrice is very important, e.g., in the
four-dimensional case where  they deseribe the gravitational
instantons.

These results also allowed us to directly prove the aforementioned
one-to—one correspondence between the matter couplings in W=2
supersymmetry and hyper-Kihler manifolds[10]. Recall that the N=1
matter superfield ILagrangian ocan be identified with a Kihler
potent ial(11], with the N=1 matter chiral superfields Yeing the
coordinates of the relevant Kihler manifold., Quite similarly, the N=2
matter Lagrangian in the action (12} written via‘ the unconstrained
analytic superfields ql+ is nothing else than some hyper—Kihler
potential and q+’s are the coordinates of the corresponding analytio
subspace (together with harmonics appearing expiicitly im (12) }. Thus
we have proven, by the geometric reasoning, that the action (12}
actually leads to the most general N=2 matier oouplings.

The quaternionic geomeiry also oan be considered within this
framework and solved via an analytic potential, this time the
quaternionic ome. It also has the .U(1) charge +4 but the formulas
relating it to the metriec differ from those in the hyper-KZhler case.
Besides, there oocmes out a new geometrio objeot, the ocomplex
coordinate of that Sp(1)- which enters the holonomy group of
quaternionic manifolds. The matter lagrangian in N=2 supergravity ocan
be identified with the gquaternionic potential. This provides a
manifestly geometric proof of the theorem by Bagger and Wltten [8]. It
is interesting that there is a natural geometric place Ifor the
analytio superfield compensator mentioned earlier: the latter is the
holonomy Sp(1) coordinate appearing in the process of solving the
gquaternionic geometry oconatraints. '

Pinally, it seems %o us remarkabie that the need in the same
objeots,harmonics, comes from the areas BO ditterent at the first

12



Table
The Analyticity Preservation Prineiple reveals deep relationships
between theories that are seemingly very different.

ANALYTICITY PRESERVATION
PRINCIPLE

~ brassmann A basonic |+

IN:I analyt, f— =8 conplex‘

FkIMngf

] L
N1 matter

N
»

N2 analyt.f— ey
harmonic /| hermonic [\

N2 S «-;_,N:B sel lﬂmternm |
R:z G *Ejl
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- L[k Farnonic H
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sight! Various analogies and relations between the constrained bosonic
gauge theories and their supersymmetric counterparts following from
the universal Analyticity Preservation Principle are summarized in the
Pable subjoined.It would be highly desirable to inquire to which more
problems the concept of harmonic analyticity may be of relevance. In
partioular, it is an intriguing question what are the N=0 implications
of SU(3) analyticity which underlies N=3 super Yang-Mills theory.
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