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Supersyrnmetrio field theory models oonsti tute now a perspective 
branch of the modern elementary particle physics. They suggest new 
avenues to unifying all the fundamental interactions, including the 
gravitational one. They are a basic ingredient of the superstring 
theory. They solve the hierarchy problem of Grand Unification 
Theories. In their framework one suooeeds, for the first time, in 
constructing ftntte local fteld theor!eB, where the ultraviolet 
divergences from bosonic and fermionio loops are cancelled mutually. 
There is a lot of predictions that have to be checked in the future 
high energy experimental events. 

For the simplest N=1 supersymmetry adequate approaches were worked 
out approximately ten years ago. The situation with extended 
supersyrnmetries turned out muoh more involved. Even for the smallest 
number N=2 of spinor generators till 1984 nobody could suooeed in 
getting manifestly invariant off-shell description of the theory in 
terms of unoonstraine~ superfields. Suoh a description is needed both 
for an effective handling of the theory ( on the classical and quantum 
levels ) and for revealing its geometric structure. 

The description of this kind (for N=2) became possible in 1984 due 
to the invention of harmonia superspace[1].To date, the unconstrained 
formulations of all the N=2 supersyrnmetrio theories( of matter,gauge 
and gravity fields ) are completed, an essential progress is achieved 
in describing N=J theories.The newly introduced harmonia coordinates 
oorne out as a kind of twistors ( in an isospaoe rather than in 
Minkowski space-time ) , thus demonstrating a deep affinity to the 
twistor approach by R.Penrose and E.T.Newrnan. 

The present notes are a very brief account of our lectures given at 
this Warsaw meeting. Details oan be found in our papers [1-9]. 

!.The standard superspaoe for N-extended supersymmetry 

R4l4N = {~. e ... , 6J!i-} <1 > 
( 

contains spinor coordinates et,e«!l ( t=1, ••• N, ..,.,fl =1,2 ). This 
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superspace is suited for constructing unconstrained formulations only 
of N=1 theories.For N>1 one needs a more refined type of superspaces, 
the harmonic ones. The N=2 harmonic superspace is defined as a product 
of (1) and a 2-sphere 

H4+2IB - R4IB X §Ui2l (~) - U(1) c. 

where SU(2) is the automorphism group of N=2 Poincare' superalgebra. 
52= ~¥Hl is described by additional (harmonic) coordinates u~ 
constrained by u+tu~=1 and defined up to an U(1) phase 

+' +ta + t . . t t U{ = e- U{· I 1s conven1en o choose a coordinatization 

H4+214= { xm,e+~a+~u!, e-~ a-~ } (J) 

~ + + ( + -+' -(' + where we have projected e, onto U(: e-~ = e ~ U(,e-~=e ~u-,. 
A very important fact :N=2 supersymmetry can be realized in an 

analytic subspace of (J) having half the original spinor coordinates 

A4+2IB = { ~M=(~, e+~, a+~), u~ } (4) 

All physical, auxilliary and gauge degrees of freedom of N=2 
theories of interest are combined into analytic harmonic superfields 
defined on the superspace (4). E.g. ,N=2 matter supermultiplet ( an 

SU(2) doublet of scalar fields ~t and a Dirac spinor ~a, ;a on shell) 
is described by a U(1 ) charge one superfield 

+ + a+ -+ -a q (~,U)= ~ (X,u) + 8 ~a(X,U) t SaN (X,U) t (5) 

where the component fields~+, ~a , ;a , ... are represented by harmonic 
expansions on s2 

+ t + (tlk) + +- -
~ (x,u)= ~ (x)ut + ~ · (x)utuJuk + , (b) 

( ((j) +-
~a x,u) = ~a(x) +~a (x) utuJ .•• ,. etc. 

We see that q+contains, along with the physical fields,an infinite 
tower of extra fields emerging in harmonic expansions. These are 
necessary for closing N=2 supersymmetry off shell. In fact, they are 
auxiliary and are eliminated on shell by the equations of motion. 

To construct actions in harmonic superspace we have to introduce 
derivatives in harmonic coordinates. Most important of them is the 
analyticity- preserving derivative n++ 

n++= u~a;au~- 2te+craa+a;axa (7) 
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With its help the free action of q+ can be written as 

S = fa~-4au 5+n++q+ (8) 

where d~-4au is the analytic superspace integration measure. This 
action gives rise to the equation of motion 

D++q+ = 0 (9) 

which can be shown to eliminate all the auxiliary fields and to yield 
t~e correct free equations for physical fields. Note that the 
integration over harmonic variables appearing in (8) is defined by the 
following simple rules 

It is 
complex 

(u~)* 

+(t +J -k -l) fau 1 = 1, fau u u .... u u = o (10) 

also worth mentioning that the conjugation 
conjugation with the operation • 

- - * + + * - -+ * --= u, . (u,) = - u, . (e ) = e , (e ) = e 

! combines usual 

( 11 ) 

which can be interpreted as an antipodal map of the sphere S 2 

(Weyl's reflection). The analytic superspace is real with respect to ! 

One may easily generalize (8) to the interaction case 

* S = fat- 4au ( q+ n++ q+ + L+4 ( q+, q+, u+, u- ) ) (12) 

Here L+4 ( q+, q+, u +, u- ) is an arbitrary four--fold charged function 
of N=2 matter superfields (their number may be arbitrary) and of 
explicit harmonics u! .We wish to stress that this is the most genera~ 
self-interaction of N=2 matter multiplets off shell[6) and it is just 
the concept of the analytic harmonic superspace that allowed to write 
down the general matter action. Any N=2 matter action in conventional 
N=2 superspace corresponds to a restricted class of self-interactions. 

As has been shown by L.Alvarez-Gaume and D.Z.Freedman[10), any 

self-interaction of N=2 matter involves, for physical bosons, a sigma 
model with hyper-KBhler target manifold (i.e. some special 4n 
dimensional Riemann. manifold with the holonomy group in Sp (n) ) . 
So, any function in (12) corresponds to one or another hyper-KIDI.ler 
manifold and can be used to explicitly compute the relevant metric in 
the Lagrangian of physical bosons( by eliminating auxiliary fields by 
their equations of motion). In other words, there is a one-to-one 
correspondence between the variety of all the hyper-KIDI.ler metrics on 
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the one hand and that of functions L+4 ( q, u ) on the other.For this 

reason, the function L+ 4 can be called Hyper-Kahler potentta![2,6] (by 

analogy with the N=1 case where the superfield matter Lagrangian 

appears as a K~ier potenttal[11 ]). Now the potentials for a variety 

of hyper-KIDJ.ler metrics are known[6,12] .These are simpler than the 

corresponding metrics.Recently we have 

of hyper-~ler potentials with the 

hyper-Kahler geometry (9]. 

establishep. a direct relation 
conventional formulation of 

2.That is all we wish to say here concerning N=2 matter self­

interactions in harmonic superspace. Now we pass to N=2 gauge 

theories. Let q+ belong to a representation of a gauge group with the 

generators T~ The analyticity-preserving local gauge transforrna:tion 

looks as 

To make the q action (12) gauge invariant one has to 

harmonic derivative D++ by adding an analytic 

connection y++ 

n++ ------. Tl++ = n++ + tv++ ( ~. u). 

(13) 

covariantize the 
superfield gauge 

(14) 

(15) 

Stress a remarkable analogy with the ordinary (N=O) Yang-Mills 

connection transformation law A(x)'= eih.(X?~x) tO )e-ih(XJ. 

The unconstrained analytic superfield v~+encodes all the ~formation 
on the structure of N=2 gauge theory[1 ].In this language, the standard 

N=2 Yang-Mills constraints in the superspace R
418 by Gr~~ Sohnius, 

Wess [13] come out as the statement that the harmonic analyticity is 

preserved in gauge theory. 
Note that the N=2 Y~Mills action written in terms of v++ turns 

out to be of Chern-Simons form [4]. 
An tmportant remark. Just as q+, the analytic superfield 

initially contains an infinite number of fields appearing. from its 

harmonic decomposition. While in q+ such fields are auxiliary and are 

eliminated by the field equations, in y++such fields are gauge degrees 

of freedom and are completely eliminated by fixing the gauge ( off 

shell ) . In this Wess-Zumino like gauge one recovers the familiar 

off-shell N=2 gauge multiplet: the gauge vector field ~(x), the 

• 



doublet of ~uginos ~!(x)~the isosinglet complex scalar field ~(x) and 
the ti-iplet of auxiliary scalar fields D(tJl(x),all in the adjoint 
representation of gauge·group. 

The harmonic superspace quantization procedure for the N=2 
interact~ matter and gauge superfield.s ·has been worked out in (J]. 
There the distributions in harmonic variables were defined and the 
propagators and the Feynman rules for the above superfields were 
constructed. The miraculous cancellations of ultraviolet divergences 
in the extended supersYmm.etry theories become transparent in: the 
quantum harmonic superspace approach. In particular, it allowed to get 
the first consistent proof of the finiteness of N=4,d=2 nonlinear 
sigma models simply from the dimensionality considerations. At the 
same time, N=2, d=4 s~ models proved to be non-renormalizable. 

To end with ,thE! N=2 case let us discuss N=2 supergravities. A 

convenient _general way to construct different off-shell versions of 
Einstein supergravity is to start with the relevant conformal 
supergravity and then to compensate unwanted invariances (e.g .• 
dilatations or conformal super.symmetry by introducing extra 
compensator mul tiplets. The underlying group of conformal N=2 
supergravity is the group of coordinate transformations in N=2 
harmonic superspace which preserve analyticity i.e.leave the analytic 
superspace (4) invariant[?] 

0 t11= 'A.M(t,u) 

o u~= 'A.++(t,u ut 0 Ut= 0, 

o e~- = 'A.~-(t~u ,e-,9-), 0 e~-= 'A.tl-(t.u.e- .e-). ( 16) 

The unconstrained prepotentials of conformal supergravi.ty are the 
components of the analytic vielbein covariantizing the harmonic 
derivative n++: 

~++= u+a;Bu- + H+4u-a/Bu+ + H++Ma;atM+ (H ++~-alae~-+ h.o.). (17) t t t t 
Like in the case of N=2 Yang-Mills connection v++, the analytioi ty of 
these prepotentials amounts to the standard constraints in the real 
N=2 superepaoe. Their irreducible field content is revealed in the 
Wess-Zumino like gauge ( similarly to the Yang-Mills case) and it is 
just that of the off-shell N=2 conformal supergravity multiplet. 

To pass to Einstein supergravities one should introduce appropriate 
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compensator superfields. All the versions of N=2 Einstein 

supergravi ties known previously [ 1 4~1 correspond to choosing certain 

constrained harmonic superfields as compensators. It can be shown that 

all these versions do not allow general matter self-couplings because 

it is impossible to construct proper superfield densities from the 

constrained compensators. The harmonic superspace provides a way out. 

It suggests the unconstrained analytic superfield q+ as a most 

appropriate choice for the compensator (7]. In such a way we arrive at 

a new off-shell version of N=2 Einstein supergravity. It contains an 

infinite number of auxiliary fields ( in contrast to the versions 

known previously and admits most general matter couplings. The 

versions with constrained compensators are related, via a duality 

transformation, to some special classes of matter actions within this 

ultimate version. Just this new version allows one to visualize the 

theorem by J.Bagger and E.Witten[15] on the one-to-one correspondence 

between the matter coupling in N=2 supergravity and quaternionic 

manifold.s(these are some distinguished class of Riernarm manifolds 

of the dimensionality 4n having their holonomy group in Sp(n)xSp(1 )): 

in this case the physical bosons are always described by a nonlinear 

sigma model with a quaternionic manifold as the target one[B]. 

Thus all the N=2 theories have an adequate ·description in the 

framework of harmonic superspaoe. This approach not only allows to 

represent the previously lmown theories in a compact convenient form 

but also gives a possibility to fill some gaps (to construct most 

general off-shell matter couplings, to find the ultimate version of 

N=2 supergravity, to achieve a considerable simplification of analysis 

of divergences, etc.). 

3.It helps also in understanding higher N theories. However, in 

each concrete ·case one meets subtleties specific for it and some 

novelties become necessary. At present, we succeeded to the end for 

N=3 gauge theory[4]. There the harmonic superspace is a direct product 
S\1i3l 

of the standard real N=3 superspace and the coset space U11}iU(1) 
where SU(3) is the N=3 supersymmetry automorphism group. 

Correspondingly, there are two U ( 1 ) charges and one has to deal with 

the harmonics 

and 

Ua = (u1,1u-1,1u0.-2 )· 
i i . i • i • 
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J b .b . u 8 uJ = u
8 , Det u = 1. (19) 

After projecting -! ) spinor variables e,a• ea. onto harmonics (18 , they 

become e:-f,-l e1 ·-1 e0 .• 2 • e!··1 e-!· 1 e?·-2 . The analytic N=J a'a'a.'a' a'a superspace contains only part of them, just t_he secorid, third, fourth 
and ·sixth ones.The analytic Yang-lfills prepoti:mtiaiS v2 · 0 ,.-v 1 • 3 , v 1 · - 3 
come out as connections in. the-harmonic derivatives nF· 0 , D1

• 3
, D1 ·-3 

and they have an evident transformation law 6 yab= nab A where ~ is ·a 
oharge·less analytic ·superfield parameter. The action is of pure 
Chern-Simons type 

I=1/ 2 tr Jdt-4,0du { y1,3 F3,-3 + y1.~3 F3'3+. v2,o ~.o g 

(20) 

where Fare the field strerigths, e.g F3 •3= -i[ Ji2· 0 , D1 · 3 ].·· Recently 
there appeared a paper devoted to the quantization of this theory (16] 
along the lines of its N=2 prototype. Note that the Chern-Simons type 
action .(20) was proposed in 1985 and it describes a quite nOntrivial 
dynamics. Now the theories with Chern-Simone actions gained a rather 
great popularity in cormection with the string field theory and the 
topological field theory (17]. 

There remains a lot of important problems in supersymmetric 
theories that one can hope to solVe Using the harmonic superspace 
techniques. This approach was used recently to attack N=4 super 
Yang-Mills [ 18], ten -dimensional super Yang-Mflls and supergravi ty in 
the context of superparticle and superstring models(19], e\c. 

4.Somewhat unexpectedly, harmoriics have deep implications in 
ordinary bosonic (N=O) gauge theories. Their use turns out to be very 
fruitful for solving the self-duality equations in Yang-Mills theory 
and for getting an unconstrained formulation of hyper-Kahler 
geometry[9]. Actually, the fonnalism of harmonics in 'these theories is 
an another form of . the Penrose-Newman-Ward twister approach [20]. 
Nevertheless, it' allOws to clarify some subtleties of the twister 
approach and ,that seems to be most important, to understand the above 
bosonic theories and the supersymmetric gauge ones from the same 
standPoint. 

The common geometric basis of the bosonic problems just mentioned 
and of the supersymmetric gauge theories is the preservation of 
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certain uflat 1
' analyticities upon passing to the case with 

interaction, when the derivatives defining these analyticities are 

covariantized in a proper way. In the bosonic oase these analyticities 

are those with respect to bosonic variables while in the supersyrnmetry 

case Grassmann analyticities are underlying. The constraints normally 

imposed to define these theories (e.g., the self-duality equations in 

the N=O Yang-Mills case or well-lmown constraints on the superfield 

strengths in N=1 , 2, 3 super Yang-Mills theories) turn out to express 

the fact of preserving above analyticities. Such an interpretation of 

constraints opens up a universal way of solving the latter by passing 

to the basis (in the manifolds of involved fields and coordinates) 

where the analyticity becomes manifest. In this basis, the constraints 

are automatically satisfied as they become the integrability 

conditions for the relevant flat analyticities. The whole information 

on the structure of the theory proves to be encoded in unconstrained 

prepotentials which naturally come out in the process of passing to 

the analytic basis. 
In (9] we discussed, from such a point of vieW, a number of bosonic 

theories and indicated their supersyrnrnetric counterparts. For 

instance, N=1 super Yang-Mills theory has as its direct bosonic analog 

Yang complex gauge theory[22] .Similarly, Kiihler g.eomeiry (Riemannian 

geometry of a 2n dimensional manifold with the holonomy group in U(n)) 

can be formulated in a tight analogy with N=1 supergravity in the 

Og~evetsky-Sokatohev approach(21]. In these oases,, ordinary complex 

Cauchy-Riemann analyticity or Grassmann Cauchy-Riemann one{2J] {in the 

supersymmetry•case) play the fundamental role. A new type of bosonic 

analyticity, the harmonic one, becomes relevant when trying to 

understand on similar grounds self-dual Yang-Mills theory and 

hyper-K"ahler geometry. The first theory turns out to admit a 

formulation quite parallel to that of N=2 Yang-Mills in the harmonic 

superspaoe described aboVe. The unconstrained prepotential formulation 

of hyper-Kahler geometry has many features in common with the harmonic 

superspaoe formulation of N=2 supergravity. These similarities root, 

of course, in the common nature of analyticities underlying both types 

ot theories, viz. the bosonic and Grassmann harmonic analyticities. 

To see how the harmonic analyticity works in the bosonic case let 

us apply to self-dual Yang-Mills in R4= { xad } 
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~~& = 8~& + tA~&(x) (21) 

r ~~&· ~,0 1 = <( s~, F&o +sao F~' ) (22) 

F~T = 0 (23) 

Here, the indices J:!,T and &,prefer, respectively, to two SU(2)"s out 
of which the Lorentz group 0(4) of R4 is composed: 0(4)=SU(2 )xSU(2) 
(the anti-self duality condition Would correspond to nullifying the 
field strength Fa.p instead of FJ:IT ). Clearly, the self-duality 
equation (23) can be equivalently rewritten as a constraint on the 
commutator of covariant derivatives 

(24) 

Now, let us 'interpret (24) within the hannonic extension of R4 ,. 

that is R4:#:Mfft = { xo:&., u:,u; } where SU(2) is one of two. SU(2)'s 
entering 0(4) (namely, the one acting on undotted indices). The 
hannonics u! possess all the properties of u~ discussed earlier, the 
only difference is that they are associated now with the part of 
Lorentz group rather than with the internal symmetry automorphism 
SU(2) as in the previous case. Just as in the supersymmetry case, the 
main advantage of introducing hann6nics is the possibility to single 
out in the extended. space an analytic subspace, that time 

{ x+&, u: . u; } (25) 

x +& = xo:&.,;. +. This subspace is closed under the whole Poincare" 
4 " 

where 
group ot R , so one may define the Poincar8-covariant fields on it, 

q +& + ! (x , u~ ) • which are solutions ot the harmonic Cauchy-Riemann 
condition 

X~-
" 

(26) 

Let us come back to the self-duality constraint (24). Projecting 
the covariant ·derivatives onto ~onics u+ one rewrites (24) as 

(27) 
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that is easily recogniZed as the 

existence of covariantly analytic 

representations of Yang-Mills group 

~: !q ~ 0 
" 

integrability condition for the 

fields belonging to nontrivial 

The constraints in the form (27) imply a "pure gauge" solution for 

the u+ projection of the Yang-Mills connection 

(28) 

where V( 

However, 
so 

) is some harmonic field, arbitrary for the moment. 

to take into account that, by definition, A~=u+aAaa• 

and v is in fact constrained. This condition can be rewritten as 

~ 0 (29) 

Thus, the field v++(x+&,U: 9U~ ) = { e-{V n++ e{V is analytic while 

otherwise arbitrary. v++provtdes Ute most general solutton of the 

self-dual!ty eqw:;tt!on: any analytic field with the U(1) charge +2 

gives rise to a self-dual Yang-Mills connection and vice versa. To 

restore the connection one should solve the nonlinear equation 

(30) 

The problem is to select those v++ which correspond to the solutions 

with a finite action, that is to instantons. An explicit form of the 

SU(2) one-instanton v++ has been given, in [7] 

y++ J - -t -2 X+ +J 
t - p ( X ' p=oonst 

v++ for general n-instanton solution of Atiyah, Drinfeld, Hitchin, 

Manin has been obtained in [24}. 

The harmonic space description of instantons is, of course, an 

another form of familiar Ward's construction [20}. The analytic space 

(25} is nothing else than the twister space as it is described, e.g.~ 

the book by Atiyah [25]. The equation (30} can be identified with the 

Sparling equation Which is an important ingredient of the Newman • s 

version of the twister approach (see, e.g~(20]). However, the harmonic 
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space view seems useful in_ some respects. Apart from the fact that it 
establishes profound analogies with the supersymmetric gauge theories, 
it translates technical details of the twister approach into th.e 
down-to-earth language of customary differential geometry. An 
important point is that it offers the opportunity to take advantage of 
the well-known techniques of harmonic expansions on the sphere 52 when 
treating fields on the analytic (t"!o'istor) space. All this makes it 
tempting to apply ~he formalism of harmonics to more involved 
problems, such as the self-duality equations in higher-dimensional 
spaces, the monopole business, etc. An elegant treatment of the 
t'Hooft-Polyakov monopoles in" this language has been given in [24]. 

5.An important application of N=O harmonic analyticity is the 
unconstrained formulation of hyper-Klihler geometry(91. As has been 
already mentioned, this geometry is defined as a subclass of real 
Riemannian geometry in 4n dimensions, with the holonomy group 
contained in Sp(n). The holonomy group is generated by Riemann tensor 
so this definition can be reformulated as a restriction on this tensor 
or, equivalently, on the form ·of the commutator of covariant 
derivatives. 

Let ~a be such a covariant derivative, the index a being the 
tangent space one (a= 1, ... 4n). One always may substitute a by a pair 
of Sp(n):X:Sp(1) indices as a ""*(p.O (p. = 1. •. 2n, t = 1 ,2).Then the 
defining constraint of hyper-KID:tler geometry can be written in the 
form very resembling the self-duality condition (24) [91 

[ :ll~ (< , :Dvj) l = 0 (31 ) 
This resemblance prompts how to solve (31). One has to introduce 

harmonics u~ on Sp(1)~ SU(2), to extend R4 n = { xP.t ~ to the harmonic 
space {xP.+, x~-, u~ }, to project ~~tonto harmonics and to represent 
(31) as the integrability conditions for the relevant harmonic 
analyticity 

[ :1)+ :1)+ J = 0 
~ ' v (32) 

Without giving details, we quote the results. The constraint (32) 
can be solved by passing to the basis where the underlying analyticity 
becomes manifest and the derivative :n+ is reduced to the simple 

~ -« differentiation with respect to the coordinate x r. All the vielbeins 
and connections present originally in :D are eventually expressed via a 

11 



single unconstrained object, the analytic potential L+4 (x~;u~,uJ>· Any 

L+4 produces some hyper-K§hler metric and, vice versa, any 

hyper-Krutler manifold corresponds to some properlY cho~en L+4
• So, 

h.yper-lra.h:i.er manifolds can be claSsified according to their potentials 

L+4 • Note that up to new there were no regular methods of computing 

h.yper-Kahler metrics. Given a potential· L+4 , one may compute the 

relevant metric by the algorithmic procedure worked out in our paper 

[ 91. To know hyper-Kahler metrics is 

four-dimensional case where they 

ins tan tons. 

very important, 

describe the 
e.g., in the 

gravitational 

These results also allowed us to directly prove the aforementioned 

one-to-one correspondence between the matter couplings in N=2 

supersyrnmetry and hyper-Kiihler ma.nifolds[10]. Reoall that the N=1 

matter superfield Lagrangian 

potent ial[11], with the N=1 
can be identified with a K~ler 

matter chiral superfields being the 

coordinates of the relevant Kahler manifold~ Quite similarly, the N=2 

matter Lagrangian in the action (12) written via· the unconstrained 

analytic superfields q+ is nothing else than some hyper-KAhler 

potential and q+'s are the coordinates of the corresponding analytic 

subspace (together with harmonics appearing explicitly in (12) ). Thus 

we have proven, by the geometric reasoning, that the action (12) 

actually leads to the most general N=2 matter couplings. 

The quaternionic geometry also can be considered Within this 

framework and solved via an analytic potential, this time the 

quaternionio one. It also has the U(1) charge +4 but the fornru.las 

relating it to the metric differ from those in the hyper-K!hler case. 

Besides, there comes out a new geometric object, the complex 

coordinate of that Sp(1) · which enters the holonomy grooup of 

quaternionic manifolds. The matter Lagrangian in N=2 supergravity can 

be identified with the quaternionic potential. This provides a 

manifestly geometric proof of the theorem by Bagger and Witten [8]. It 

is interesting that there is a natural geometric place for the 

analytic superfield compensator mentioned earlier: the latter is the 

holonomy Sp(1) coordinate appearing in the process of solving the 

quaternionio geometry constraints. 

Finally, it seems to us remarkable that the need in the same 

objeots,ha:rmonics, oomes !rom the areas so different at the first 
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Table 
The Analyticity Preservation Principle reveals deep relationships 

between theories that are seemingly very different. 

ANALVTICITY PRESERVATION 
~I~I~E 

13 



sight! Various analogies and relations between the constrained bosonic 

gauge theories and their supersymmetric cormterparts following from 

the universal Analyticity Preservation Principle are summarized in the 

Table subjoined.It would be highly desirable to inquire to which more 

problems the concept of harmonic analyticity may be of relevance. In 

particular, it is an intriguing question what are the N=O implications 

of SU(3) analyticity which underlies N=3 super Yang-Mills theory. 
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