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1. INTRODUCTION

At the present time it is very popular to represent diffe-
rent physical characteristics in the form of functional integ-
. 71,2/ B -
rals (see, for example, ). However, calculations of func
tional integrals with the exception of the Gaussian integrals
and a few integrals of a special form are of a serious diffi-
culty. The main computing methods of functional integrals are,
first, the quasi-classical approach or the method of statio-
nary phase when it is considered that the main contribution
to the integral comes from a function which minimized an in-
tegrand action (see, for example,/gf) and, second, the varia-
tional calculations (see’3’ ).

In this paper we Proposed a variational method improving .
the Feynman method’3/ and apply it for investigation of the
asymptotic behaviour of the Green functions in stochastic
fields. The idea of this method was formulated in’/% .

We think that in such a difficult problem as calculations
of functional integrals variational estimations help at least
to understand and make someone feel the character of behaviour
of a functional integral although they do not give the exact
value of this integral.

2. VARTATTIONAL METHOD

Here we formulate our variational method which will be used
in what follows. Let the functional integral be given

I(g) = qu¢e—SW[¢]. (2.1)
day = -ﬁl.;s8¢expi-é—£f dx, ax , (2, ) D%y, %) $(x ) b (2.2)

The notation is the following: D_i(xl,xz) is the distribution
or the differential operator. The Green function D(xl,xg)
is defined by the equation
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fayD™ (x,,y) D(y,%g) = 8(x;—%y)
v

and it satisfies some given boundary conditions.

The volume V C RY over which the integration is performed
in (2.2) can be both finite and infinite.

The functional differential in a lattice approximation is

defined as

8¢ = I d¢(x).

x eV

The normalization constant N¢ is determined from the condition

rda"{b =1-

W[¢]is a real functional, and g is a "coupling constant'.

It is assumed that the functional integral (2.1) is defi-
ned on the Gaussian measure (2.2), i.e., at least there exists
a perturbation series in the coupling constant g.

Let us formulate our variational method. The succession
of our actions is the following. First of all, let us diago-
nalize the quadratic form in (2.2). We introduce the function
A(xl,x2) satisfying the condition

[dya(x ,y)B(y,xp) = D(xy,x5). (2.3)
v
In the cases under consideration this function can easily be

found but it is enough for us to suppose its existence. Let us
introduce the functional variable

#x) = fayAlx,y)¥(y) =(A, ¢)(x). (2.4)
v

The functional integral (2.1.) can be written

1(g) = L f&@expf-}-—f dx 92(x) — gW((A, )1, ‘ (2.5)
Ng A

where the new constant N ; is defined by the condition I(0) = 1.
Let us choose in the volume v<:Rd some orthonormal system
of functions {gln}(x)} s, Where

{n;——'(nln-l-lnd)c njuollgziooo (j=1,.-.,d)



satisfies the conditions

[ g () g, &)
;

it

= ’.lli's Y
8hhn’l 8n1n1 ngng

(2.6)

g e &)= 59 x-x) < 8 -x).
in}!n} {n}

The choice of the system (2.6) is arbitrary enough. The unique
condition imposed on this system is that the functionsg D(x1 s
%3) and A(x,,%,) can be developed over the functions of this
system,

Let us represent the function $(x ) over which the integra-
tion is performed in (2.5) in the form

Plx) = 12}11{“}5{‘]}(3), . (2.7)
n

where the coefficients Uhﬂ are independent variables. Then,

[axe?(x) = % ulg o
v faj "7
(2.8)
(4,9)(x) =i2!A!n;(x)u{n}. Agnix) =‘_if dyAx,y) gy ).
n .

The functional integral (2.5) can be written in the form of
the infinitely multiple integral

I(g) = [do expi-gW[ (A, @),

(2.9
2
“int HEph
fn} (21972

do =

where the normalization constant is written in the explicit
form. '
We want to stress that the representation (2.9) is equiva-
lent to (2.1).
Let us proceed to the variational estimation of the integ-
ral (2.9). We introduce the new variables in (2.9)
u{n}

‘\/1 +Q{n;

Uial = * Sin} (2.10)
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where the quantities Q{,} and s al will be variational para-
meters. They satisfy the conditions

| % g | €0, [ X2 8 ,]1 < o,
{n]{nl {n {n}

We would like to make the following remarks. Instead of
(2.10) it is possible to do the substitution

ufg )

u = 2 U ——ee
in} (1 ?n,ﬂl\/“fjr—q{-g-‘-

+Sgr : (2.11)

where U is an orthogonal real matrix: detU = 1, vuT-1. This
matrix defines some rotation in the space of variables ’“!ni"
_ However, according to (2.7) it means the transition to another
orthonormal basis (2.6). In other words, the basis enters into
the set of our variational parameters.
Let us substitute (2.10) into (2.9). One can get

q

g) = 1 ! -fda e:gpi-l- > ---EP—’--— {i; -

{ﬂi\/l-l—qin} 2.lﬂ-l'1+qln} :

(2.12)

s

-z —'"E‘-__l_—-:.“l }-i > S? p KW[(Aq,'¢)+(A,Sm,
!“}\/lﬂlin% " 2 {B! " '
where
Bajx)
(AQ,'¢)= 3 _——'“lnl: {A,s)(x) = X A{n}(x)sin].
ot yvieqy {n} |

The measure deg, is the same as in (2.9).
Let us use the inequality

fdoe ™ » expi- fdoW }

which is valid for any positive definite measures and any real
functionals W. We obtain

1(g) 2 expi-L1a) ~5-(s,8) - [do, WL(A,'®) +(A,8)]},



1 U}
L[qlmg-iflnn(uq{n;) S L% N

1‘+-qln !
2 (2.13)
(s,8) E{E}Bln!'
Representing our integral I(g) in the form
I(g) = exp(-E(g) } (2.14)

one can obtain from (2.13) for E(g) the upper estimation

E(g) < E,(®),

B, = min {LTq]+ S(s,5) + (2.15)
a8} 2

+ fag, WA, 9) + (8,511,

This formula is the desired unequality.

Thus, the variational barameters are, first, the orthonor-
mal system (2.6) and, second, the parameters {qy,; , 8{nj} !
over which we have to compute the minimum in (2.19).

It should be noted that this variational estimation (2.15)
gives the exact result for the quadratic functionals Wil

In conclusion, we want to remark that this variational me-
thod differs from the Feynman method”/3/ in that the additi-
onal parameters 8{3} are introduced and the parameters 95,
are connected with the pure Gaussian measure just as the spe-
cific properties of the differential operator D'l(xl,xg)-
enter into the interaction functional W. Therefore, the va-
riational equations obtained from {2.15) connect directly
the parameters 9,3 and 84,1} with the behaviour of the Green
function D(x4,%x,) so that a more precise estimation can be

achieved,
3. GREEN FUNCTIONS IN THE FORM
OF A FUNCTIONAL INTEGRAL

Let us consider the Green function satisfying the follow-
ing equation:

[
X

+V'u(x))2+W(x)+m2]G(x,y|V,W)=8(x—y), (3.1)

I,
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where W(x) > 0. This equation is defined in the Euclidean
space R%

: .2 Py
d_y? ——(—2— +."-+-2——).

2 .2 2 g
% %%

—x®e..+xd, o= (2o

X 1

The solution of equation (3.1) can be written in the form
accor(éing to the Feynman functional integral representation
(see’%):

0o 2 . |
~—am . 2
G,y V,W) =(_’fdae 'I‘Bexp!—abj' dﬁ(laxﬂ(ﬁ) + V“ (x(BM ~

1
~a [ABW{(x(BNIS(x—-¥) =

o —am® 1

- feas " foBerD- | BB + (3.2)

o]

1 i
+ 2iJa—fdﬁ‘¢u(ﬁ)V#(x - E\fa—é dB"e(pAN —

1 1 1
—a [dfW(x—2Va [dB (B N}S(x~y —2Va [aBE(B)).
o B o

Here Ty is a symbel of a "chronological" orderiﬁg in the pa-
rameter 3.

The normalization of the funct10na1 integral in (3.2) is
chosen in the following way:

1 1
[6Cexp{-[aBe° (8)18(x ~ 2Va [ABE(B)) =

(3.3)

2

4 —ikx-ak? 1 aa

= f(-——) - (ii.ﬂa“y9 ’

Let us perform the following transformations in (3.2). We
will calculate the functional integral in the representation
of basic vectors. The orthonormal basis in the interval 0 <B<l



will be taken in the form
1

g,(8) = { V2 cos2mnp. (

= n=1,2,..). (3.4)
V2 sin2 m§B.

We introduce the new variables of integration in (3.2)

0,8 = 0, +3,(8).

(3.5)

a,(8) =n§1(uwcos2rrnﬁ + v_ sin2xnfB).

oy

We have

1 o0
[4B058) =02 + = £ (ul, + o),
o =

1
2 pe1

n
1

J489,8) - o,
A (3.6)
[ 4808 = O, + A (B),

B o0
Bu(B) = JaB's,(B) = 3

n=1

1

—-—;r-r-'-(uwsinzﬂnﬁ + vy, 1 —cos2rn 8)).

m

After introducing the new variables (3.5), using formulas -
(3.6) and performing the integration over @, with the con-
dition (3.3), one can obtain for the functional integral (3.2)

—am2-E=n?
G(‘.Y!V.W)=I°———-—23 -R(x,y|V,W),
o (4mf¥

(3.7)
RO,y|V, W) = fdo,I(x,y|V)I (x,y|W),

1 — b
L{z,y|V) =expli fdB(x~y - 2\/aa(B))uV“(x,8 + Y1 -8 +2va A(B),
° (3.8)



_ . _
L(x,7|W) =expl-a JdBW(XA + ¥(1 - B) + 2/a A (BN,
a

o a (3.9)
dudv 1 5 ,.2 2
do, = 1 (———) expi-—=— % (u v )l
a n=1 2m ) pi 2n=1( m+ e

. The representation (3.7) is a basis of our further calcula-

tions.

4. SCALAR PARTICLES IN A STOCHASTIC FIELD

As the first example of the application of our variational
method we consider the problem of arising of a mass for sca-
lar particles which is in a stochastic field. Our results can
be formulated in the form of the following statement.

Statement. Let the equation

(o +‘_-gq52(x))0(x.yl¢?=5(x"3’) (4.1)

be given in the Euclidean space R*. The field ¢(x) is a ran-
dom Gaussian field with the correlation function

e ~- ~1k(xy ~ 25}
S $l) 3y = DOxmx) = (=) BOe T L, o

The function ﬁ(kg) decreases rapidly enough so that

D, = [() DUH &) <o, (n=0,1). 4.3)
n

Then, the following inequality is valid for the Green func-
tion averaging over the random field as

const My Viz-y)

Glx-y)=<G(x,7|¢)> 2 —=o . (4.4)
¢ Vix-y)®
Here
M, - min 1-1— + 20 + A +
E>0,0>0,A>0 2



- ~ ? -8
+gtfdse ’J(%)‘D(kzm—exp!i(kn)—gx--f—k t-e * )L (4.5)

where n is an Euclidean vector with n® = 1.
For the weak and strong coupling we have

V&b, (g «< 1),

M =1}

—_— 5.
* 1.09\4731)1, (g > 1), (4.6)

Now we proceed to prove this statement. According to the
representation (3.7) the Green function in a random field
¢(x) is written

. 2
Gxlg) = 2= 1326 # R(x|g),
@n)* g a

(4.7)
1

R(x | ) = [do, expl-ga [ 48¢%(x8 + 2VTA(BN],
0

where we put y = 0 for convenience.
The averaging of (4.7) over the Gaussian field ¢(x) can be
performed in the following way. The representation is wvalid

1
expl-ga [dB¢% (xB+ 2VaA(BN} =
0 .
i (4.8)
= [do,expl-2iyega [ ABKAIS(xB + 2Va A(BIY, '
1)

where .

1 4
do_ = -1 Sbexpi- [ aBv% (B)} =
Nb

b
0 .
d 2 dt ds = 2 2
- Do n —= nexpi—bﬁ-i- 2 (t +s )
Ve a=1 em 2 n=1
-]
b(B) = by + X (t cos2rnf +s sin2mnB).
pn=1 =&
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Introducing the representation (4.8) in (4.7) and performing
the averaging over the Gaussinan random field ¢(x), one can

et
8 2

b 4
1 o M
G(x)=<<3(x1¢5)>§ﬁ = OF c{ —¢ R(x,a),
—E(z,2)
R(x,a)=e = (4.9)
B, '

1 _
= [do, fdo_ expi~2ga [f dB,dB,b(B,)D(x(By-By) +2vVa [ dBa(BYb(By)}.

0 By

Now let us apply our variational method to (4.9). We int-
roduce the variational parameters {p ! for the measure do,
and lq } for the measure do, - The parameters s, in (2.11)
are put to be equal to zero for both the measures. The addi-
tional investigation omitted here shows that these parameters
equal zero in the limit x® 5 . Using (2.13) one can get

-E(x, -E. (x,&
R(x,a) = e e a)z e 4 (.8 ,
E+(x,a) = min {4L{ql + L{p] + ‘ (4.10)
iqn.pni
1 it
2

+2gagrdﬁidﬁzsp(ﬁl-ﬁg),[(\/—gf> e ¥ D@&(B-By)+2uvah (B ~Bo)l.

Here, the following formulas are introduced:

1 = 0082rn(B, - B)
Bp(ﬁl‘82)= fde, bp(Bi)bP(ﬁz) ) +n§1 1L+ p,
) (4.11)
2—8(18 ﬁ } - cos2rrn(ﬁl-32),
n..l 1+pn

fog, R faBa (B) = [yt o * R (uyA (Br- By,
ﬁl \/217

11



2(1 ~ cos 27a(B, - B,)
1 (2m) (1 qn)

ABy-By) - X

n

= r
L[']=n§1[m(1“n) - 1+“rn], (ry =95, 0y).

.The behaviour of the Green function as 2. » is interest-
ing for us. Let us proceed to calculation of this asymptotic
behaviour in this limit. For this aim we put in the integ-
ral {4.9) :

2= |x]€ (x| =va2)

and

1xlo 2 fx]A 2

nz ( oy ) ) Dn=( pury ) ’ (4.12)

where ¢ and ) are variational parameters. Then, the follow-
ing estimation for the Green function is wvalid

1 < e x|
Gx) > ————— [ = expl-— - E_(|x{, £}, (4.13)
(4r)%|x| o £2 ¢

Here E_{|x|,£) is defined by formula (4.10). In the case of
the parameters {4.12) we obtain for formulas (4.11)

shix|o 1xle
ix|e - Zcth|x|o

1 1
= s — —|X ]|,
Ligl=1n + 2 1%

{2l o0

4 ch|x|A{1-2|8Y)
By(8) = <18 -{x A+ 1] e
-2iz|A181
— L088) - x| e ' +1], (4.14)
{ chixjo - cilxle(t = 218D
A -7 |z loshixio z{o e
4)xlo '
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Substituting (4.14) into (4.10) and introducing new variables

B ‘
,Bj awd— (j = 1,2) one can get after scme transformations as

Alx|
[X‘—»oo
atx) T""T‘ el . (4.15)
" ,

where M, is defined by formula (4.5).
The asymptotic behaviour of M, for the small and large g
can be obtained in the following way. Introducing the variab-

les
o=¢gf, AN, £-¢"¢,

where p is an independent parameter one can get

A
M+=gpfn§:}\§z£]‘— +2a+-é-
1-2p
+ g fj’che f(-—) Beu’ ) (1 - (4.16)

a
—expii{um ) 8 - £u (1-e M.
P 2A

gfo

As g+ 0 we have p= %. and

+—\/g§ﬂ::l {-E+?ﬂ+ ?+£Do} -\/gDO.

For g, «» we have - i._ and

M = "‘mtn — 2 1_1) 1 __L4'
+ 850’I4£+ * 3 +8£.,1(% +a+a)l._<_
%
< 1.09(gD, )" .

i3



5. SCALAR PARTICLES IN A STOCHASTIC

VECTOR GAUGE FIELD
The next example is relevant to the paper/&,where the au-
thor claims that stochastic gauge fields (electromagnetic
fields, for example) can lead to the confinement of particles
which are in these fields. The confinement is considered to
be reached if the Green function decreases at large distances
more rapidly than any linear exponent, i.e.,

lim |G(x)|expiNvz2} = 0,

1x—m

for any N> 0. This condition means that these Green functions
cannot describe asymptotically free states of particles.

Here, we show that it is not true. Our coneclusion is based
on the following statement.

Statement. Let the equation

L} 2 2
((i— + V (x,¥)) +m 1G(x,y|F) = 8(x—y), (5.1)
oz # ‘ ’

*
be given in the Euclidean space R4. The vector field V# is
defined

b
Vo (x,¥) = [dssF,, (s + y(1-8))(x~y),. (5.2)
0

Here FhV(X) is a random Gaussian field with the correlation
function

<va(x)P,w {(y) >F = (8“9 Sva - 8#08vp)D(x—y),

(5.3)

D(x) = [(Z)Dye ™,
2

where the function 5(k2) decreases rapidly enough.
Then, the following inequality is valid for the Green func-
tion averaging over the random field Fy, in the limit (x—y)2- o

—m(x—yF
const

G(x-y) =<G(x,y|F)> > ————-p0 . éS-ﬁ)
F oy r
14



In other words, a vector gauge random field does not give
even a positive contribution to the mass of the particle.
We proceed to prove this statement. For the solution of
equation (5.1) the representation (3.7) gives
.am2_(_"_y.22_

G(X.ylF)=? daze “ Rz, yiV)
o (4ra)

1.
Rx,y[V) = f&:rgexpii_[dﬁ(x—-y+2\f-&.a(ﬁ))nvg(x;3 +¥(1—B)+2\/?A(ﬁ))§,
0

(5.5)

where V, is defined by formula (5.2). Averaging (5.5) over the
random field Fip and putting y = 0, one obtains

R@) = <R(x,0|V) > = fdo, expl- WX}, (5.6)
1 1 .
wix] - .%.Jgraﬁlaﬁz gr ds,ds,8,5 D8, X (B) -8, X (A) Y,

Y= X (B)XUB)E, X, (BIR (B = T (5.7)

= aln, A, (8,0~ B,3,(8,) - Va4, (82,8, o1

X [xp(Aa(ﬁg) - Bgaa(ﬂz)) - 2\/;'A‘p(ﬁ g)ao—(ﬁg)] s
where

afw.rzr] = 8updue = o Bup
Xu(B) = x4 B + 2Va 8,(8),
» ) 6 o
X#(ﬁ) = WXV‘(B) =Xy + 2\/aa#(ﬁ).
The variational e;_stimation (2.13) gives for (5.6)

—E(z,2) ~E (x,a)
> e

R(xla) =
(5.8)
E,(x,a)= mn [4L[q) + Wlq]),
: lq,} .
Wigl= fao, WIX 1, (5.9)

15.



where

xq{ﬁ) =x8- NEAq(B).

£ w U C0s27nS + vnsini?.nnﬁ
AB) = [4B’a (B, 3 (B) = X ML
0 n=1 Vv1s q,
The variational parameters q, are chosen in the form
qn=(m° 2 (x] = V), (5.10)
#n

where ¢ is a variational parameter. Then, L{q] is defined by
formula (4.14). The convolutions of the fields A (,8) and a (B)
which arise when calculating the functional 1ntegral (5. 9) are

8 =
_w 1 - cosRmaf coszrmﬁg; con2mn (B, - By) . (5.11)
4 =1 (70)® + (o ]x])
——F‘”——Imam x](1-28,)~ choix |(1-28,) + cho x| (1-2(B B~
So]xlsha]x
~{x]8 -2011132 -20|x| |8;~Bl
e -E’-——[l -8 -0 + 8

|xloses  Boix]

<A(Byag By)> = ;;—2 <Ag(BPAQBR)> ———

Ull—on

. _Bif_[e-eolxlﬁg s e, - Bye 2B

w2
<ag(B))ag (By)> = ~ 9 <Ay (B ApAB ) > prE—

1689 x| + =

— --3 [S{B ﬁg ) - x l 2
The function (5.9) can be written

1 1
Wio, |x]) = > gaﬁlasg,[rasiaszslsgr(--)*D(kg) x
0 0

16



iz (kn) ¢ - ) .
xe'[xl( Broi-Fao I(x{,0; BBy, 8.,8,), - 612

—“2Valds. A _(B,) =8, A_(B;)])
I<fage - 9T RRTELy

where Y, is defined by (5.7) where the vector X(B) is changed
by X (8 .

T%e integral for J can easily be calculated. However, we
do not write down here this cumbersome expression but pick
out from it the leading terms in the limit |x| s = . It should
be noted that

a=Ixi¢, (5.13)

where £ = 0(1) as |x|+~ because the asymptotic behaviour of
the Green function in (5.5) is defined by a saddle point of
the integrand.

The convolutions (5.11) considered as distributions of the
variables B, and By have the following smallness order

8 1
=
<Ag(ByAg (Bg)> Balxitl + O(alx{ 1,

1
o|x|

0,

<A (BIA (B.)>= Y o
Qi 1 qv 1 o 40'|X§‘

1
<Am(ﬁl)aqv(i62)> = 0(‘7—!-}?), (5.14)

1
),
(@|x|)®

1
0((018 1)2)'

The limiting relation takes place

<Ag(By) Bty (Bg)> = 0C

<aq‘(ﬁl)aqv (By )>

i]x|(kn )(By 8- Bsso)
(S spye T TER s
21‘!‘ |11-9m
(5.15)
ol - S pE?) . o1,
|x|8(ﬁ1 1 ﬁ282) I(2”)3 (%) + |x!2

if the function F(u) decreases rapidly enough.

17



Since the limiting expressions for the convolutions (5.14)

do not depend on g, and B, the integral over @8, and 8, can
be calculated

1
[Ta8, 48, 8(B 5~ Bysy) = -&9(5 1=8g) + ',;1‘; B(sg=5y). (5.16)
o : 1

Taking into account (5.13-16) and introducing the new variab-

les g, =5 and sg= 5(1+t)/2 the expressions for (5.12) can
be written after some calculations

Wigl = |x|F(1+ O(T‘x—‘n,

2
g 3+t
1 1oa a2ps® "
Flp) = 30 fass® o f LoD e x (5.17)
2 79 0 @n)
1 -
x[1 +—1',"U.232t2],
3 X
where q:.é:_. It is easily seen that
o
04n), 1+ 0
F(n) = { (5.18)
0(%3—), N v, ‘

Finally, for the Green function (5.4) we obtain as Ix|-
M,z
G(x) > const +

e :
E3

, 1 £
M+= [lfl"lg!mz‘f+ _/;E + 20 + F(-—zT)lo

Intreducing 7#n = % one gets

M, = gin (0?6 s v Ao PO -

*

- minivm®+ i & Pl =m.
7 n

Thus, we obtain (5.4).
18



6. SCALAR PARTICLES IN A SPACE
WITH A FLUCTUATIVE METRICS

" In this section we calculate a correction to the mass of
a scalar particle which is in an Euclidean space with a weak
stochastic correction to the metric of a flat Euclidean space
R% Suppose that this metric can be written

B (X) = 8, + (%), | (6.1)

The Lagrangian of scalar particles in the space with this met-
ric has the form :

BE ) oees.
X

ax

-1 orat
L-—2 fd x\/E(gw(x) y ox,

The equation of motion is

3 9 dlnyg  dg(x)
S it + &y Ve -m2¢(x)=0.(6_2)
ox, dx,

(x) ” x)
g, (%) ——d(x) +
w 9x,0x,, M "

The weak stochastic field €, (X) should be considered as a
gravity-like field, i.e., a field with the spin two. In this
case, fpv(x) satisfies the conditions

d ‘
c#v(x) = ‘v,u(x)’ tre:eW(X)éO, Efuu(x) =0. ’ (6.3)
Then, the second term in (6.2) equals zero. The third term in
(6.2) is ®e®) because

VEE) = 1 + {.uez(x) + 0(ed)

and after averaging over. ¢, the second term in.vzfleads to
a constant. Therefore, ?fi—invi;= O(es) and this term does
X

not give any contribution to corrections of the second order.
As a result, the equation in a weak stochastic field is
3% 2
[- X} + m° l(x) =0,
gw( ) Frl (%) -

axp X,

The equation for the Green function of a scalar particle can
be written

-

L2
a
O @) g+ GGy ) = B0k -y, (6.4)
i
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Let us consider the stochastic field fpy(x)- This field
satisfies the conditions (6.3) and is a random Gaussian field
with the correlation function

<€.uy(x)(m(y) >¢ = DW,PU (X—y) =

_ o Gu .4 2 —u(x-y)
= r(-zn_—) ﬁ(u )AW,.PO.(U)B
> (6.5)
APW,Po(u) = dﬂPdVU + d[-lﬂ'dvp - Ed#v dpa *
u,.u
-5, - v
dy = By o

The function B(ug) is supposed to decrease rapidly enough.
We choose it in the form
—g AR
~ G u
D(u®) = —e . : (6.6)
u

Here 1I/A defines the correlation length. It is natural to
suppose that it is of the order of the Planck length

VA~ L, = y& = 18210 2 om,
f 3
Let us consider equation (6.4). The solution of this equa-

tion can be represented in the form of a functional integral
(we put y = 0):

oo -
O(xje) = f das " aTﬁN{cH&Qx
0
. | (6.7)
: - ry 82— 156x)
- ¢ nNe (B -2 D (B) - x),
x exp | ofdﬁ , (B) g, (B LB \/aidﬁ u T
where
1
Nlel= = [5% exp{-,[dﬁ‘l’# 1)) gw(x(ﬁ))‘l‘v(ﬁ) i,
Vdetg(x) °
N[Ol =1.
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After standard transformations one can get

o

-am? o 1
G(x|e) = [dae [foR8P8(x ~2va [ dBB(B)) x
: 0 0

1 ,
xexpl- [BLY, (B)e,, K (BN B,(8)+ @, (B)g . XN, (B,
0

B
X(B) = 2V 6r 4p"0, (8.

(6.8)

We consider the case of a weak stochastic field. Restricting
oneself to the second order in the field €,/ (X) ome can get

-1 3
g;w(x)'=8,uv __E»W (x) +ch(x)e,pv(x) + 0(c%),
and

1
fB‘Pexp{-_rdﬁ‘I'P(ﬁ) g E(B) ¥, 81} =
0

1
= expi%scm Jdﬁe#v(X(ﬁ))c o (X(BY + 0¥,

In this approximation the Green function has the form

= da —an - 2~
G(XF5)=I—*—-2-—9_ da J(X,ﬂlt‘), (6.9)

0 (4ma)
‘ .
I(x,ale) = fdaé explTB(O) |:_‘fdﬁflu_v(X(B))fw X(B) -

1 R : .
- 1480, (Ble,, (K(BDe , KBND,(B) +
(6.10)

1
+ [480,(B)e,, &(BND, (B,

1

X(B) = xB + 2/aA(B), ¥(B) = X(B).

Ve
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The averaging of (6.10) over the weak stochastic field €
gives

Jx,a) = <J(x,ale)> =

1
o 1 { K
=exp{—80)D,, (0 ”fd"a‘{d‘sq’p(ﬁ)q’v(ﬁ)nnp,w(m +

1
1 . :
+[do, = {_'r 48,d8,8, (8%, (B) Dy, po (X(B)) - X(By )10 ,(B) 8, (Bl

As |x}+» the integral (6.9) is defined by the saddle point
a=|x}/2m, Then

B
J(x’-lﬂ) = eixl '
2m
2. 2
5 du 4z 2 2 u (un)
dm = —m [(—) D(u {1+ —=- (1- )]
4 " 2 15 %2)2+(m)2 u
m
d
an . =(m—-8m}|x|
G(x) ~ B (6.11)

If E(ka) is (6.6) then for m << A one can obtain

2 2
Y DL L L (6.12)

dm =m
(an)? 12 aA® n®
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