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O.Introduction

In the past the problem of finite ¢leciromagnetic mass
corrections for nucleons ( of order czgﬂhas been considered
in connection with deep-inelastic scattering mostly in the
case of scaling.

Providing that the structure functions describing deep-
inelastic electron nucleon scattering behave dilatation-

invariantly in the Bjorken region

W,(v%) ~ F (D V= 2pq - 00

QI:—O}—-'—OO (O.’])

W, (v,8) ~ 3 F, (%)

q?
€= - 7 Hived,
finiteness of electromagnetic mass corrections is expressed
in the form of sum rules involving the scaling functions F; ,

A}
In dependence of the underlying parton structure one or
2
two sum rules have been obtained[ 1
In the present note we formulate this problem in terms
of the moments of structure functions
4
(@) = n-4 (s 0% (0.2)
Pinl0) = JdE 8" W, (x,a) | wrozs,.. (O
0 Qt=-Q" <o
The consideration is thus extended Lo those cases where
the individual moments show a different asympiotic behavior
2
for Q—oo .50,especially,the well-kno.'n asyuptotically irce

™
field theories ( AFT ) are covered which predict a vehavior
2 Sam
Maw ~ [ Loq Q ]

(0.3)

4 T “l.
Mawn v é} { Q“S(R ] " sor Q' — oo

instead of the scaling law (0.1).



In 8ection 1. we express the amplitude of virtual
Compton scattering by the p;,&) in order to obtain
converzence conditions for the Cottingham integral in
terus of moments.Special attention is paid to the subtrac-
tion necessary for the definition of ﬁ,ﬁur) and to contri-
butions from the so-called fixed pole.Finally we apply the
convergence conditions found to a special field theoretic
mmmltﬂ.

In Section 2. we discuss various aspects of the light-cone
expansion ( LCE )Dﬂ which up to now represents the only link
between non-perturbative QFT (e.g.,Callan-Symanzik equations)
and observable guantities like the mouents.The well~known
LCE abstracted from operator product expansion vwill be
considered in subsection 2.4.An inspection of the usual
srocedures to derive relations to the moments u;,(QY
suggests that this LCE should be understood in a restricted
scuse ouly.
Subsection 2.2 is devoted to another possible definition
for an asymptotic series at the light cone without ref ering
to Lagrangian field theory.In general,however,such a series
does not contain sufficient information to allow a term—
by-termn correspondence to characteristic objects defined
in momentum space,
In subsection 2.3 we finally turn back to an investigation

of the moments m,(Q) in the framework of general QFT.

It will be proved that the moments are uniquely related

to the coefficients of the Taylor series for the matrix
element of the even extended commutator Ekx\=&(x;)€(x).
Although this well-defined serles is primary not an expan-
sion on the 1light cone there are reasons to suppose that
near the light cone it coincides with the LCE of 2.1 .

In Section 3., we summarize some conclusions.,

‘1. Conditions for Finite Nucleon Mass Difference in Terms

of Moments

From the beginning the problem of finite electromagnetic
nucleon mass corrections was connected via the Cottinghan

{s]

formula

§m = dm’ o "

(1.1

S’ = XE “ 9wy L0
i d'g PO .W—P' Cpad

with the large q ~behavior of the amylitude.T;v(pg) for
virtual Compton scattering in forward direction (averaged
over nucleon spins),

During the last years the scaling functions F;(%) of (0.1)
have been used to determine the amplilude -rrv(vﬂﬁ for

high q.On this basis sum rules ror the F}(E) have been



obtained which guarantee the finiteness of the Feynman in-
tegral (1.1).

In this section we want to study the same problem of finite
nucleon mass difference cbaractgrizing the virtual Compton
amplitude by the moments Hh“(Gf)of (0.2).Because of posi-
tivity W,(pa) > O these have to fulfill the inequalities

/“;,vu.z.(al) < Miw (Q") . (1.2)

In the following,however,we allow a different behavior of

the moments such that asymptotically

pam (B € (02
(1.3)

Maw (G £ ':;i
for Q—o0e
The restrictions (1.3) are in accordance with dimensional
analysis for the matrix element <P\1‘,.(x)§,ko)\‘>> based on
an 4u00=3 14

Let us now express the virtual Compton amplitude

nv(p.q) = -u\—‘_ g g dx e'V¢ pol T{4.00 4 01| pEY  (1.4)

Qv
=Camt BT () + Go Ba)(pe-Ba) Tt

p= (400,0)
in terms of the moments  j;,(Q) to insert into the

Cottingham integral (1.1).

The structure functions W;(v.q) are connected with the

invariant amplitudes by

W, (pa) = Im T (pay - (15)

For spacelike q (i.e. @=-¢* >0 ) we apply dispersion rela-—

tions to the T.(G%) atQ fixed .Based on the Regge
L]

pbenomenologyT4 needs one subtraction

T.(a%) =T, (a4 v=0) + %S D W& (g

v'. (\,17._ V‘)

Q'L
©0
T. (8= Z S Ay Wa(G)-y'
by V't _ gt (1.7)
u?-

where we have used W, (-v, @) =-W.(v&) .
In the region of analyticity Ivl< Q" the T; can be repre-

v

sented by a convergent Taylor series

T G = > S T, oo

nxo
a‘{iu& .
On the other hand from (1.6) and (1.7) we obtain For Ivl< QF

oo 0o
T, 0@ =25 o [y, Waets)
n>o qllv\Q4

QL
(1.9)

[
E1

= A4 in ! 2wn- A
(&) OS“" 5 W, (x.6)

neo

A

T, (a) + % >~ (g;)u Sd‘s- ;““‘WA(:,Q‘)

x4
[

W’I*h E= Q_L

w!

—':(lel)

(1.10)



Because of the uniqueness of the expansion (1.8) we
establish

z T(Q?')v‘ " "
Pinl@® === ) Tivan |, (e

besides of =4, wu=0 .Therefore the amplitude T,
is completely determined in terms of the moments )Lh“(Ql)
with n = 0,2,4,+e. oIn the Taylor series for T, ,however,
instead of m,, (&) ,the subtraction term TolG@) appears.
‘e conclude that the zeroth moment of VJA(Q:Z)is indeed
not defined as long as we suppose the on-shell behavior
\JA(vIGF) ~ N (Gf fixed).Connections with the so-called
fixed pole problem“:| will be discussed below,
Having expressed the Compton amplitude —rpv(pa)
in terms of the moments m;,{@ and T,(Q") we evaluate

the Cottingham integral

+00 _T_?M
[ o . A [@X:Y
SW\ = n qu —m— (1.12)
~ 00

with
N yt.
A Tgn =9 T p=-3Tdn+(- =)Ly | (1.13)

)]
After performing a Wick rotation and changing the

integration variables we obtain

w 2far o
¥ aQ ' * Ly o4
o (I8 [T Ty o
o °

where ve have used j?(&w) =12L&}¢) and the sanalyticity
properties of —ﬂ(&y) contained in the DJL 1epresentation.

To determine the resulting mass corrections

0 _Q:OS - T (@i
o ALY (
B ’].’]C'
+ Zw’uog ‘-’-C%OS av' 1aro iwi 'Tz ‘M(QL‘}\I‘) 5)

® e

ol a* v
- =\ 2= . LN . P
DR T L R Rl I
0 o

vwe have to know the invariant amplitudes WTKSE\“) in the
region O &v' = 2*15‘ +For stuuying the convercence of
Ewmf - Sm" it is sufficient to consider only the contri-
bution to the integral from Q> u «Thls restriction,iouever,
guarantees convergence of the Taylor series (1.©),(1.10)

for the jz(Qﬁ}w) : Q*> % neans

IV‘|<\v'l~\LQ:£ < Q¢

How we are able to insert the eXpansions for Lhe-T.Vf;w) into
i ’

\[Q" B
— 5 A and therelore
2 .

P v .
gW\ = 6 \MP + S\M” .
©Co fiuite



. 280 From our assumptions (1.2) and (1.3) we conclude that the

. om
Sm:‘___ _ G‘}"LS 4@’ T LQ})&dv‘ R PRI (4.4¢) convergence of Om_ depends only on the asymptotic
4 '
" ¢ 0 * properties of the moments m,,(G&) , M,,(®) and the sub-
traction term T,(@) for large Q*
o0 2{at
il ~2u-4

- A2we |G D> (W) “(QL)S&\I‘~ ‘G‘- e .

“S we iz, R . (" Sm=8Smfo S (1.18)

(-4 p-n
T
0 ) -4 s NJdG" [f‘z,o (o) + %; M () = 27 T, (Q‘)] < ©

+ Hxa XdQL 2 (@) lh(e‘)& ' Yoo v e ,

§ WIZOoA,... ' ‘

0
Discussion

(-} 2@

g i ( 1_)-zv.-z @) - . 1.Comparison with the case of scaling.
- Qt Q g .'1 L VL UL

T jd o, Frea dv' ] - A There are one or twWo sum rules involving scaling functions
u °

in dependence of the underlying parton structure.Application

2,

Lz,40]
of the DJL representation is the most useful method in

that case.It allows one to circumvent the problem of sub-

. s .
After performing the ¥-integration we obtain tractions and yields the scaling functions F,(8) as

o0 distributions if defined in the limit v — e« at E {ixed.
A4
Smm= - 3“3:&& aq* T, (a*) v ( ) Accordingly,the integrations are mathematically well-defined,
4 in particular,at £=0 t= JWorking with the variables Q*
o ;
e ™ i and § is quite different.One cannot expect the limit W (%Y
- GTL.LSN’-Z(Q‘) Paan (@) w1 A" T 222 .
. wed izo A+l for Q== 0. exist,For applications condition (1.18) and
the scaling sum rules both are similar involving expressions
o0 WA
o -n A3 T,(8*) or () reyp not experimentally attainable by dee
1y W - ° Sp. b J ¥ -
27 ngz > (ay ’u““(a) L COY) Elo T 2o ' )
weo . inelastic scattering.

2.Subtracted zeroth moment )':,.,,(Q‘) and 1ixed pole.

There is a connection between the subtraction term T, (Q%)



L4 the subtraction term [Y.(8) eappears as the sun of the

and the Tixed pole coantribution to W
W 4 ( so-called fixed pole (defined as the asymptotically con-

Let us assume for (v,@') the following Regge behavi 44]
a g gg avior stant contribution to the real part of Ty ) and the

W, (v &) ~ 3= ¢ (@) (1.19) "subtracted" zeroth moment of 'WA(G‘;.») .Therefore theory
o veer 1= 00 Q%fixed.

Arter adding and subtracting (1.19) from the structure

could provide the missing information either in terms of

. b5 W@ . i T_LQ‘-) si.e.yfrom light—-cone expansions (sec Section z },o1

function W(&y) in (1.6) we perform the first interration . o . . . . .
by means of the fixed pole contribution,i.c.,iroiz ¥Foiuman

and obtoin

diagrams of the vertex tyye.

3e.Application to asymptotically free field theories.

+

)
2 — 23 '
-E (Q.v) = T,(Q") + ——X dv { W, (8% v) = p Cola¥) v«

x m } 4t the end of this section we want to apply tue conuilion
* [IXE Y] .
(1.1&) to so-called A¥T,in particular the three-tri.lct
. at c model studied by Gross and Wilczek La] stiich predicis
~ 2t b g S Culayy' T
x S Q.‘,(\,,; 9 - Z v“C‘(Q‘-) ol canonical behavior up to logariihmie corrcctious
~ ) IYrry) sia T
2
(" A
Ham ~ Ca_n —“—‘
[- [_Q“Qt] A
. o« .
+ -“Z“\: C.(a.th- Celaty + %C.(“") [ b Q4= kv] (1.20) (4.22)
Mrm @) ~ Cam S —
. Q = o0 Q[ LLqr)5m

If we now take the real part of this equation for v —e oo
The condition (1.18) for finite nuclcon rass diiTercicc

To (@) = Um Re T‘(@'v) + ZQKQ")\:* cos T2

- 2z 10y, read
Vo YT sin o + T CO(Q‘)- [ } 110v. reads
Y
(-] - .
+ 2 4y . ) e ) .
> S o {W.\Lal,v ) ‘°§Sq(ﬁ‘)q’< - Cl@) 0w @.)} S ‘QL{CLO O lna] wtc, @ laa] - 2rT°LQ‘)} < o0
°
(4.23)
- %’r Co(Ql) th G (4.24) vith X4.1- Xt,o = Al—:-’ where only the pon-singlet parts

3
12



contribute to the p-n mass difference,If there exist no

Sauge-invariant scalar operator of twist two (compare eq.(2.1))

in the Gross-Viilczek model and consequently T,(@% =

condition (1.23) reads

SdQ; ACL.o +“'AC~.;
Q‘-lk&‘] "

. . s L}
vhich can be valid for A, +» kac,,=0 only,

2. Relations between Moments and Light-Cone Singularities

In the last time non-perturbative field theoretic methods
have been developed (renormalization group or Callan-
Symanzik equations aprlied to asymptotically free field
theories ) in order to obtain predictions for deep inelas-—
tic scattering.

But asymptotically free field theory (AFT) does not im-
uediately evaluate measurable quantities like structure
Tfunctions.On the contrary AFT concerns the concrete sine
gularity structure of the coefficients Ca$ﬂﬁ in the opera-

tor product expansion of.electromagnetic currents 0]

. : 4
T qeo) ~ qn D 5 2 G x| @

Z Cz‘n("") Lo R O( ’ (°) (2.1

t-ie MY Mg

at tue Light cone =0,

To obtain really predictions from the AFT ror deep inelastic
scattering one has to make use of well-defined correlations
between the expansion of Ty g, 0} on the light

cone (2.1) and chaeracteristic attributes of the virtual
Compton scattering amplitude.Usually one asserts that the
Fourier transform of C.x) is related to asymptotic beha~
vior of the moments of the structure functions Vh[qq
Because of the methodical importance of this point it is
worthwhile to recapitulate the underlying assumptions

and to ask for what can be proved in the general frame-

work of QFT,

2 +1 Light~Cone Expansion and Koments

Let us start from the one-nucleon matrix element
(spin averaged) of the ICE (2.1).
(WY
M pa
ment leads in a standard way to a polynomial of order n

The operator O is of spin n and its matrix ele-
in the variable px ,Thus each of the invarient amplitudes
$('ﬁp-) (vhose insginary parts are just the structure

functions W;(x)) i.as the ICh
T(,\I?,() ~ Z C“(xt) P“( ‘\'?') (2.2)

Poalxtpu) = x " /e pl 0‘:)___ wAp> = coust (pu* 4

[n,49)
The usual ;rocedure consists in termwise Fourier transe

L3
formation (for siup licity ve assume pover Lehevior C.an= 0w ")1



faxe' v { < cu (=i | (2.3)

-2

"

. v -k
chu(‘Pr;‘-‘) ()

(]

N = u-2 \ - M
I id.\ C) e T L () R 7]

S (8 |

and comparison with the Taylor series for T\v (1.8)

Qt=-qt >0
- v w f ?
T(G."-Iv) % %_(;‘\) )*“(Ql) or \\é;‘ .

(Fere the zeroth moment eventually has to be replaced by
a subtraction term T,(&%) ),

ihe basic idea is that the coefficients of (%;“ in the
two series ior110 (the classical and the asymptotic one)

can be identifieds*’The result is then

(@)~ (@7 for G~ oo . (2.4)

where the ineguzlities

" 9 (2.5)
vl v "

have to be fulfilled as a consecuence of positivity of

the W-\(V‘Qt) .

+) It makes no difference if instead of power series ex—

pansions with respect Lo orthogonal polynomials are applied

{1l

There are three assuuptions,one has made to obtain (2.4)
a) Term by term Fourier transformation of (2.2) is
allowed and sums up to the Fourier transformed natiix
element ?("‘.P") at least in the region q'=-G"<0 4 \v<al.
b) Identification of the Fourier transformed ICL with
the Taylor series for T(q) in the region vl < Q* .,
¢) Validity of the inequalities (2.5) Lo have the ;0ssibili-
ty to deterumine the leading term among tlie iniinite
many coefficients of(é)“in the Fourier transiorm (&.35).
It is obviously not enough cuantitatively to deternine
the LC singularities C.(x) in (2.1) or (2.2),one siould
rather know the mathematical meaning of the LCx,i,e.,how
to work with 1it,too,
Of course,only a derivation of the ICL (2.1) or (2.2)
from QFT can finally deteruine its mathematical properties
and,correspondingly,the conditions of its validity (compare
the proof for short distance expousion [45] )../ilhiout such
a proof*£ne should understand the ICE in a restricted
sense which Jjustifies the .rocedure to get the corrcsiondence
(2.4)
The ICE (2.2) is an asymptotic expaasion defined on
the space of test functions @n such that the Fourier
transforma- ?(v are iniinitely Jiiferentiable func-
tions v.ith support contained in K.
Here K is an arbitrary compact mernifold in the rcgion

{&40,-HW<V<\¢|} of monentum svace,

*)The investigations by Zimmer!mnn[Zﬂ restricted to finite order
of perturbation theory do not cover the more interesting case
of removed dimension degeneration,

17



Thus the support of the ICE in momentum space is contalned
in the region of convergende of the Taylor series (1.8).
Then having two power series valid in the region of con-
vergence uniqueness of coefficients emerges at once,The
support puzzleh%the individual terms in (2,2) have time-
like support only ) disappears simply because by defini-
tion the ICE is meaningful outside the physical spectrum
only.But the question about compatibility of QFT and so

specified IC¥ remains open,

2.2 An Asymptotic Series on the Light Cone

In this part we represent another possible asymptotic
series on the light cone developed in connection with the
scaling case,

Let us outline the general procedure to detepmine the

i€ singularities to arbitrary order for the matrix ele-
ment of the current commutator in case of the invarients
E;(x) which ere the Fourier transforms of W.lp,qd and
Walpq) o

It hes been sbownL“],that the E}h) are causal and fulfill
all necessary conditions for a IVL representation.For this
purpose we consider now the distribution E(xﬁ?)etth)ttu)

defined by

{ € e} = i(—'“"” ) -y 2) k (2.6
' POED

Because of antisymmetry of Cu) the test function fwye SCRY)

has to be antisymmetric,too,so that on the right hand

side of (2.6) there is a test function with respect to x*,

Notice,that the support of E(nﬁ?) is restricted to x*j¢ .

For the so defined E(xﬁ?) the DJL representation reads

[
Y A ? o~
C(X“X) = -"—I‘—" x{e(ﬁ)gdx\; '}e()‘m) 1"(;,)‘)} (2-7)
0
o~ 1 Yy
with ¥ (I = Sd}i' ey . (2.8)
. o
(43

Further it has been shown H
If there exists a real numberk, ,such that the sequence

of the distributions ?%. (_:(%lx‘-)'i) ~ for Q' —= oo

- approaches some nonzero distribution gy (if
integrated with a test function {u¢S(R)),then the
LT
limit has the structure EL&?):Gﬂi)ESLL—— and is
T (kota)

called the most singular part of Ccwx®) at the light

cone x*=Q
After subtracting this leading part Uy from C ey
one has to repeat this procedure described with an appro-

priate k,»%, and so on,Of course,there are genergliza-



of an asymptotic series by the well-defined Fourier trans—
formation of an integral representation for the matrix
element E(x) itself.For reasons of simplicity we restrict

the consideration to a DGS representation

~ L ~
Coo= g far Tama com (2.12)
]
- A
with T = fap Py (2.13)
-4

and A(x M)z 4o S —iqx _ee)
! Q@ dqe ‘-’ﬂ"s“\“ W o= =T an

{ew) ?:.(‘-1?)}

Because of the finite support in m , % (xe,M) is an
entire function with respect to x, if integrated with a
test function Y(N)e SR ,Therefore W (xeM) can be

expanded in a Taylor series

> & . (2.14)
'Q'Lx.,\'b) = Z x."‘ ‘_v:_ h“(x;)
ne @ wl
+A
with haO8 = j ap Pt ) (2.15)

To derive a similar series for the commutator itself it
is useful to consider the symmetrically extended distri-~
bution Clars £xe) C ) «Remembering that the functional

{roo a6, xum ]
to v Ll

is a test function with respect
(where Xt ¢ S(R)) we obtain from (2.12) and
(2.14) a Taylor series for Etx) H

0 . 2.16
Con = =— > xd —'“T gu(x'-) ¢ )
w.

w (2.17)
Lty = {an Lear 8 0] W0
Q

A0 N N

T q;iecxt) gd)\ 3,6 b, >S
Q

which has to be understood as a functional with respect

to x*,

The distributions }{.(x» and W, ) are connected by the

special Bessel transformation studied in [43) .

It should be mentioned that (2.16) has not been derived

as an expansion on the light cone.Nevertheless,this power

series can be connected with the moments p.{@" expressed

in terms of the amplitude at o'=-Q'< 0

™ Q n
ity = T % (;;;) Tw \o&{:.ea

2wl , Mo L
V=0
From the DGS representation+) of the amplitude
o0 A
L
TLCO“Q’,SA\"S&,.. ALY (2 .18)
o o (Ro- )= B N\ 410

For the amplitudes T; corresponding to the structure func-
+) tgons W, tﬁere seems to be no need for subtractions in the
DGS-representation.

23



o0 +4 -
T = :'rgal"g&;* L (VRN
o -4 -L\L*T"" "'X.L';f-

we obbtain
© -
pated = 4 @ fan _Fat (@19
o) Larenpe
it T P
vit e "
1 h, (N = Sd}“'f* h(,‘.xz,)}) . (2.20)

-1

In suchh 2 way ve have established a relation between the

roments and the uniquely defined coelficients in the Taylor

ceries {ule) nediated by the spectral function V(FA‘) in

h (¥  and R;Aﬁ,rcspcctivcly,

(]
L.U‘) = jd A Leer A M) WO (2.2m)
A “
00 -
palay= LG Sam o L) (2.22)
o Xl'Q.L# N,_}vn4 .

Jt should be noted that the second of the above
relations has been obtained by Cornwall and Norton[‘ﬂ

+ -
already.These euthors,however,considcring neither Tavylor
serlies nor expansions on the light cone,tried to conaect

the moments with the B JL corumtators (i.e., equal~time

24

commutators involving higher derivatives of the current
components [(g;)wéﬂ'7,QKW)],.,° )Y.In any case existence
of the infinite set of BJL commutators is a rather strong
assumption whereas the connections contained in eqs.(2.21),
(2.22) have general validity.

In particular, eqs.(2.21),(2.22) yield relations
between the asymptotic behavior of u.(a¥). at Q* — o
and {.00) at x*—=o0 .
For this purpose it is useful to apply the method of the
quagi~limit,i.e.,to consider in the sense of functionals
§ulhn) » ha(¢w) and WL\ for ¢ o ,respectively.
In reference I3} it has been shown that the transformation
(2.21) constitutes ah_ unique correspondence between the
singularities at x*=0 and the asymptotic behavior at A-— e«
(€egey Lulm) ~ x** gquivalent to Wah) ~ ()R ).The
large @ and large N* behavior in (2.22),on the other hand,
are uniquely related,t00.(€.g., M, (W) ~ A% equivalent
to utay~aw) 20,
On this basis a direct connection between the asymptotic
behavior of {0 and pal@) will be established if h,(N)
and K,LV) show the same asymptotic behavior.Thlis is the
cagse if positivity is fulfilled (see Appendix II ).
Therefore we have derived relations between the asymptotic
behavior of the moments pm,(®) and the IC singularities of

.00 which are similar to (2.% ) but refer to the

Taylor series €2.16).
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The question could arise about the existence of a
physical meaningful amplitude with moments showing diffe-
rent asymptotic Q" ~behavior.In Appendix I we give an eXample
for an amplitude Tullilling causality and spectrum con—
ditions such that the moments differ asymptotically by
powers of b101 .

3« Conclusions

There are,in principle,three types of series which
could be understood as expansions on the light cone.

The first is the canonical LGE (2+1),(2.2) abstracted from
Lagrangian Field Theory.Its mathematical meaning is rather
unclear and correspondingly additional assumptions must be
imposed to get useful information from this ICE,

Second,an asymptotic series (2.10) in the strict sense of
generalized functions can be defined.The physical signifi-
cance of its individual terns,except for the leading one,
remains obscure,however.

There is finally an approach via the Taylor series of the
matrix element E(x) .

On the basis of general QFT we have established a
connection between the moments 1w(@) and the coefficient
distributions {,Lv) of the well-defined Taylor series
for the matrix element C () ,

Need for subtractions may spoil the definition of some
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of the lowest moments.In this case the same connection is
mediated by the Taylor coefficients of the amplitude.

The LC behavior of Q,uﬂ is uniquely related to asymp—
totic behavior of the moments,at least if positivity con-
ditions for the structure functions are fulfilled.In this
case the IC singularities in eq.(2.16) appear in decreasing
order,Nevertheless,this series must not necessarily coin-
cide with the asymptotic series on the light cone in the
strict sense (eq.(2.10)).From present investigations it
seems reasonable to identify the series (2,16) near xt=0
with the ICE (eq.(2.2)) used in Lagrangian Field Theory
(if (2.2) accordingly is rewritten for the matrix element Cwm),
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Appendlx I Lxample for an amplitude with different
asymptotic behavior for its moments

Attempts to construct structure functions W(E8) correspon-

ding to given asymptotics of }h&d) have been undertaken

nore than once 3luﬂle consider it desirable,however,to give

an cxample in the DGS representation in order to verify

compatibility of causal and spectral conditions with parti-

cular asymptotic behavior of pu®) (differing by powers of

Log G* ).

The cxample is described by spectral function

(\‘-»ﬂk:M

W) =
. Pepr+ 4)

k(,.)=k.—c|).\", K(I< 0, k. *0

to be inserted into the DGS integral (2,18)

+A ] =4 w
- [P(xen N
T(q) = _:—_‘_-5 d}" Sd)‘l — + ] (X .)+
S S A+ pv ~q- -0
+4 "
4 )
= ;Sdg F@u){F“-f-.o}
- .

Applying formula (1.9 ) we obtain for the moments

n

N=0
+A
A W(p)
= ;:-' dp. }‘h F(~k(y~)+n+4)(Q") #

-A .
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Asymptotic behavior is determined bty the contributions from

F’~°
) P o
- .C
)L'(Q"') - r‘(n+‘4-\t,) Qlk. gd)* '}&“'- o !1
n. °
1Ko
~—
Lega] ™ :

Remark that the amplitude has time-like and space-like sup-
port which is guaranteed by the rfinite extension of the
support of W().\) around m=0 .

The stronger individual moments differ Irom one another

( p— 0 ),the narrower becomes the support of W{pW) We ex—
pect that stronger differences in asymptotic behavior (by

povers of 8') would spoil support properties at q‘<o .

Appendix II

YWe have to show that F.(V) and h,(N) have the same asymp~-
totic behavior if positivity of the structure functions

W(ES) is fulfilled,

Positivity of the W(EGY is equivalent to the relations (1.2)

Finer (O) € g (%)

and thererfore equivalent to

—

" Oy < '\;‘“(m for N — oo . (A2.1)

YN i
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Let us assume that h,(M) has an q-limit of order oy

L. o) O]

,d.. —_— = couwst + 0

§—=
with 90 e SR,

Then for the difference of M and h,(™) it nolds
(comp, (2.20),(2.15))

{Lham- hmm], ‘f(k‘)} =

4 -]

:j‘d}‘ r‘ Sd\‘[lf(.uqu'e Jll) - u’()‘,,?)\l)] ‘f(.”‘)
. o (42.2)

‘+A
fa pm fane w(pgrmem[ecm- v (2 )

[4

v

+4 0
4 < . X
B3 LT LSRN DTS SCY

“1 °

- T
where we have performed the variable transformation A% M-/~

o

and used the mean value theorem.

Now at the right-hand side of (42.2) we derived the T
because Y'(0+o %1)

N)

wey

is a test function again.Therefore

L[Ench‘)—hncq»)],umg PR
?"" = 9-(..1-4 hun.(x") —= 0

because h, (M)  has a g-limit of order o
(compare (A2,1)).

nwer with dh’\. £ Ay

(1971).
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