ОБЬЕАИНЕННЫЙ
 ИНСТИТУТ
 RAEPHЫX
 ИССАЕАОВАНИЙ

AYGHA

CONVERGENT ELECTROMAGNETIC
NUCLEON MASS DIFFERENCE, CORNW ALL-NORTON MOMENTS AND LIGHT CONE EXPANSIONS

G.Motz, E.Wieczorek

CONVERGENT ELECTROMAGNETIC NUCLEON MASS DIFFERENCE, CORNW ALL-NORTON MOMENTS ANI) LIGHT CONE EXPANSIONS

Submitted to Nuclear Physics

Мотц Г., Вицорек Э.
Сходимость электромагнитной разности масс нуклонов, моменты Корнвэла-Нортона и рязложения на световом конусе

Условия для сходимости электромагнитной разности масс нуклонов сформулированы при помоши моментов Корнвэла-Нортона.

Обсуждаются различные аспекты разложении на световом конусе. Доказано, что моменты однозначно связаны с обобщенными функииями коэффиниентами рядв Тэйлора для коммутатора.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований Дубна 1975

Motz G., Vieczorek E.
Convergent Electromagnetic Nucleon Mass Difference, Cornwall-ivorton Moments and Light Cone Expansions
Conditions for convergence of electromagnetic nucleon mass aifference are formulated in terms of Cornwall-ĩorton moments.

Various aspects of light-cone expansions are discussed. It is proved that the momenta are uniquely related to the coefficient distributions of the Taylor series for the commutator

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research Dubna 1975

O. Introduction

In the past the problem of finite electromasnetic mass corrections for nucleons (of order e ${ }^{2}$) has been considered in connection with deep-inelastic scattering mostly in the case or̃ scaling.

Providing that the structure functions describing deepinelastic electron nucleon scattering behave dilatationinvariantly in the Bjorken region

$$
\begin{array}{ll}
W_{1}(v, \xi) \sim F_{1}(\xi) & v=2 p q \rightarrow \infty \\
W_{2}(v, \xi) \sim \frac{1}{v} F_{2}(\xi) & q^{2}=-Q^{2} \rightarrow-\infty \\
\xi=-\frac{q^{2}}{v} \text { fixed, } \tag{0.1}
\end{array}
$$

finiteness of electromagnetic mass corrections is expressed in the form of sum rules involving the scaling functions F_{i}. In dependence of the underlying parton structure one or two sum rules have been obtained ${ }^{[2]}$.

In the present note we formulate this problem in terms of the moments of structure functions

$$
\mu_{i, n}\left(Q^{2}\right)=\int_{0}^{1} d \xi \xi^{n-1} W_{i}\left(\xi, Q^{2}\right), \quad \begin{aligned}
& n=0,2,4, \ldots \\
& q^{2}=-Q^{2}<\infty .
\end{aligned}
$$

The consideration is thus extended to those cases where the individual moments show a different asymptotic beliavion for $Q^{2} \rightarrow \infty$. So, especially, the well-knoin asymptoticall \because irce field theories (AFT) ${ }^{[3]}$

$$
\mu_{4, n} \sim\left[\log Q^{2}\right]^{\gamma_{1, n}}
$$

$$
\begin{equation*}
\mu_{2, n} \sim \frac{1}{Q^{2}}\left[\log Q^{2}\right]^{\gamma_{2, n}} \text { for } Q^{2} \rightarrow \infty \tag{0.3}
\end{equation*}
$$

Instead of the scaling law (0.1).

In Section 1. we express the amplitude of virtual Compton scattering by the $\mu_{i, n}\left(Q^{2}\right)$ in order to obtain convergence conditions for the Cottingham integral in terms of moments. Special attention is paid to the subtraction necessery for the definition or $\mu_{1,0}\left(Q^{2}\right)$ and to contributions frou the so-called tixed pole.finally we apply the convergence conditions found to a special field theoretic nodel ${ }^{[3]}$.

In Section 2. ve discuss various aspects of the light-cone expalsion (LCE) ${ }^{[4]}$ which up to nov represents the only link vetween non-perturbative QFT (e.g.,Callan-Symanzik equations) and observable quantities like the monents. The well-known
LCE abstracted ifou operator product expansion will be considered in subsection 2.1.An inspection of the usual orocedures to derive relations to the moments $\mu_{i, n}\left(Q^{2}\right)$ sugsests that this LOE should be understood in a restricted scnse only.
Gubsection 2.2 is devoted to another possible definition For an asymptotic series at the light cone without ref ering to Lagrangion field theory. In general, however, such a series does not contain sufficient information to allow a term-by-term correspondence to characteristic objects defined in monentum space.
In subsection 2.3 we finally turn back to an investigation of the moments $\mu_{n}\left(Q^{2}\right)$ in the framework of general OFT.

It will be proved that the moments are uniquely related to the coefficients of the Taylor series for the matrix element of the even extended commutator $\bar{C}(x)=\varepsilon\left(x_{0}\right) \widetilde{C}(x)$. Although this well-defined series is primary not an expansion on the light cone there are reasons to suppose that near the light cone it coincides with the LCE of 2.1 . In Section 3. we summarize some conclusions.

1. Conditions for Finite Nucleon Mass Difference in Terms of Moments

From the beginning the problem of finite electromagnetic nucleon mass corrections was connected via the cottingham formula ${ }^{[5]}$

$$
\begin{align*}
& \delta m=\delta m^{p}-\delta m^{n} \tag{1.1}\\
& \delta m^{p, n}=\frac{\alpha \pi}{i} \int d^{4} q \frac{q \mu v}{q^{2}+i \varepsilon} T_{\mu \nu}^{p, n}(p, q)
\end{align*}
$$

with the large q-behavior of the amrlitude $T_{\mu \nu}(p, q)$ for virtual Compton scattering in forward direction (averaged over nucleon spins).
During the last years the scaling functions $F_{i}(\xi)$ of (0.1) have been used to determine the amplitude $T_{\mu \nu}(p, q)$ for high q.On this basis sum rules for the $F_{i}(\xi)$ have been
invariant amplitudes by

$$
\begin{equation*}
W_{i}(p, q)=I_{m} T_{i}(p, q) \tag{1.5}
\end{equation*}
$$

For spacelike q (i.e. $Q^{2}=-q^{2}>0$) we apply dispersion relations to the $T_{i}\left(Q^{2}, v\right)$ at Q^{2} fixed . Based on the RegGe phenomenology T_{1} needs one subtraction $[7]$

$$
\begin{align*}
& T_{1}\left(Q^{2}, v\right)=T_{0}\left(Q^{2}, v=0\right)+\frac{2 v^{2}}{\pi} \int_{Q^{2}}^{\infty} \frac{d v^{\prime} W_{1}\left(Q^{2}, v^{\prime}\right)}{v^{\prime} \cdot\left(v^{\prime 2}-v^{2}\right)} \tag{1.6}\\
& T_{2}\left(Q^{2}, v\right)=\frac{2}{\pi} \int_{Q^{2}}^{\infty} \frac{d v^{\prime} W_{2}\left(Q^{2}, v^{\prime}\right) \cdot v^{\prime}}{v^{\prime 2}-v^{2}} \tag{1.7}
\end{align*}
$$

where we have used $\quad W_{i}\left(-\nu, Q^{2}\right)=-W_{i}\left(\nu, Q^{2}\right)$. In the region of analyticity $|\nu|<Q^{2}$ the T_{i} can be represented by a convergent Taylor series

$$
\begin{equation*}
T_{i}\left(v, Q^{2}\right)=\left.\sum_{n=0}^{\infty} \frac{v^{n}}{n!}\left(\frac{\partial}{\partial v}\right)^{n} T_{i}\left(v, Q^{2}\right)\right|_{\substack{v=0 \\ Q^{2} \text { fike }}} \tag{1.3}
\end{equation*}
$$

On the other hand from (1.6) and (1.7) we obtain for $|v|<Q^{2}$

$$
\begin{aligned}
& T_{2}\left(v, Q^{2}\right)=\frac{2}{\pi} \sum_{n=0}^{\infty} v^{2 n} \int_{Q^{2}}^{\infty} d v^{1} \frac{W_{2}\left(Q^{2}, v^{\prime}\right)}{v^{\prime 2 n+1}} \\
&=\frac{2}{\pi} \sum_{n=0}^{\infty}\left(\frac{v}{Q^{2}}\right)^{2 n} \int_{0}^{1} d \xi \cdot \xi^{2 n-1} W_{2}\left(\xi, Q^{2}\right), \\
& T_{1}\left(v, Q^{2}\right)=T_{0}\left(Q^{2}\right)+\frac{2}{T} \sum_{n=1}^{\infty}\left(\frac{v}{Q^{2}}\right)^{2 n} \int_{0}^{1} d \xi \cdot \xi^{2 n-1} W_{1}\left(\xi, Q^{2}\right) \\
& \text { with } \xi=\frac{Q^{2}}{v^{1}},
\end{aligned}
$$

Because of the uniqueness of the expansion (1.8) we
establish

$$
\mu_{i, n}\left(Q^{2}\right)=\left.\frac{\pi \cdot\left(Q^{2}\right)^{n}}{2 n!}\left(\frac{\partial}{\partial v}\right)^{n} T_{i}\left(v, Q^{2}\right)\right|_{v=0} \quad \text { (1.11) }
$$

besides of $i=1, n=0$. Therefore the amplitude T_{2} is completely determined in terms of the moments $\mu_{2, n}\left(Q^{2}\right)$ with $n=0,2,4, \ldots$. In the Taylor series for T_{1}, however, Linstead of $\mu_{1,0}\left(Q^{2}\right)$, the subtraction term $T_{0}\left(Q^{2}\right)$ appears. We conclude that the zeroth moment of $W_{1}\left(Q_{1}^{2}, \xi\right)$ is indeed not defined as long as we suppose the on-shell behavior $W_{A}\left(\nu, Q^{2}\right) \sim \nu \quad\left(Q^{2}\right.$ fixed). Connections with the so-called fixed pole problem ${ }^{[8]}$ will be discussed below.

Having expressed the Compton amplitude $T_{\mu \nu}(p, q)$ in terms of the moments $\mu_{i, n}\left(Q^{2}\right)$ and $T_{0}\left(Q^{2}\right)$ we evaluate the Cottingham integral

$$
\begin{equation*}
\delta m^{p, n}=\frac{\alpha \pi}{i} \int_{-\infty}^{+\infty} \alpha^{4} q \frac{\Delta T^{p, n}(p, q)}{q^{2}+i \varepsilon} \tag{1.12}
\end{equation*}
$$

with
$\Delta T\left(q^{2}, v\right) \equiv g^{\mu v} T_{\mu v}(p, q)=-3 T_{1}\left(q^{2}, v\right)+\left(1-\frac{v^{2}}{q^{2}}\right) T_{2}\left(q^{2}, v\right)$.
After performing a Wick rotation ${ }^{[9]}$ and changing the integration variables we obtain
$\delta m^{p, n}=2 \pi^{2} \alpha \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} \int_{0}^{2 \sqrt{Q^{2}}} d v^{\prime} \sqrt{Q^{2}-\frac{v^{\prime 2}}{4}} \Delta T^{p_{1} n}\left(i v^{\prime}, Q^{2}\right)$
where we have used $T_{i}\left(q_{1}^{2}, v\right)=T_{i}\left(q_{1}^{2}-v\right)$ and the analyticity properties of $T_{i}\left(a^{2}, v\right)$ contained in the DJL representation. To determine the resulting mass corrections

$$
\begin{align*}
\delta m^{P_{1} n}= & -6 r^{2} \alpha \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} \int_{0}^{2 \sqrt{Q^{2}}} d v^{\prime} \sqrt{Q^{2}-\frac{v^{\prime 2}}{4}} \cdot T_{1}^{P_{1} n}\left(Q^{2}, i^{\prime}\right) \\
& +2 \pi^{2} \alpha \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} \int_{0}^{2 \sqrt{Q^{2}}} d v^{\prime} \sqrt{Q^{2}-\frac{v^{\prime 2}}{4}} \cdot T_{2}^{P / n}\left(Q^{2}, v^{\prime}\right) \tag{1.15}\\
& -\frac{\pi^{2} \alpha}{2} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{4}} \int_{0}^{2 \sqrt{Q^{2}}} d v^{\prime} \sqrt{Q^{2}-\frac{v^{\prime 2}}{4}} \cdot v^{\prime 2} \cdot T_{2}^{P, n}\left(Q^{2}, v^{\prime}\right)
\end{align*}
$$

we have to know the invariant amplitudes $T_{i}\left(S_{x}^{2}, w^{\prime}\right)$ in the region $0 \leq v^{\prime} \leq 2 \sqrt{Q^{2}}$. For stuaying the convercence of $\delta m^{p}-\delta m^{n}$ it is sufficient to consider only the contribution to the integral from $Q^{2}>4$. Tuis restriction, iovever, guarantees convergence of the Taylor series (1.0), (1.10) for the $T_{i}\left(Q_{i}^{2}, v^{\prime}\right): Q^{2}>4$ means $\frac{\sqrt{Q^{2}}}{2}>1$ and therelore $\left|v^{\prime}\right|<\left|v^{\prime}\right| \cdot \frac{\sqrt{Q^{2}}}{2} \leqslant Q^{2}$.
Now he are able to insert the expansions for the $T_{i}\left(Q^{2}, v^{\prime}\right)$ into

$$
\delta m^{p / n}=\delta_{m}^{p i n}+\delta m_{\infty}^{p i n} \text { finite }
$$

$$
\begin{aligned}
\delta m_{\infty}^{p, n}= & -6 r^{2} \alpha \int_{4}^{\infty} \frac{d Q^{2}}{Q^{2}} T_{0}\left(Q^{2}\right) \int_{0}^{2 \sqrt{Q^{2}}} d v^{1} \cdot \sqrt{Q^{2}-\frac{v^{\prime 2}}{4}} \\
& -12 \pi \alpha \int_{4}^{\infty} d Q^{2} \sum_{n=1,1_{2}, \cdots}^{\infty}\left(Q^{2}\right)^{-2 n-1} \mu_{1,2 n}\left(Q^{2}\right) \int_{0}^{2 \sqrt{Q^{2}}} d v^{1} \cdot \sqrt{Q^{2}-\frac{v^{12}}{4}} \cdot v^{\prime 2 n}(-1)^{n} \\
& +4 \pi \alpha \int_{4}^{\infty} d Q^{2} \sum_{n=0,1, \cdots}^{\infty}\left(Q^{2}\right)^{-2 n-1} \mu_{2,2 n}\left(Q^{2}\right) \int_{0}^{2 \sqrt{Q^{2}}} d v^{1} \cdot \sqrt{Q^{2}-\frac{v^{12}}{4}} \cdot v^{\prime 2 n}(-1)^{n} \\
& -\pi \int_{4}^{\infty} d Q^{2} \sum_{n=0,1, \cdots}^{\infty}\left(Q^{2}\right)^{-2 n-2} \mu_{2,2 n}\left(Q^{2}\right) \int_{0}^{2 \sqrt{Q^{2}}} d v^{\prime} \cdot \sqrt{Q^{2}-\frac{v^{\prime 2}}{4}} \cdot v^{\prime 2 n+2}(-1)^{n} .
\end{aligned}
$$

After performing the v^{\prime}-integration we obtain

$$
\begin{aligned}
\delta m_{\infty}= & -3 \pi^{3} \alpha \int_{4}^{\infty} d Q^{2} T_{0}\left(Q^{2}\right) \\
& -6 \pi^{2} \alpha \int_{4}^{\infty} d Q^{2} \sum_{n=1}^{\infty}\left(Q^{2}\right)^{-n} \mu_{1,2 n}\left(Q^{2}\right) \cdot 4^{n}(-1)^{n} \prod_{i=0}^{n-1} \frac{2 i+1}{2 i+4} \\
& +2 \pi^{2} \alpha \int_{4}^{\infty} d Q^{2} \sum_{n=0}^{\infty}\left(Q^{2}\right)^{-n} \mu_{2,2 n}\left(Q^{2}\right) \cdot 4^{n}(-1)^{n} \prod_{i=0}^{n-1} \frac{2 i+1}{2 i+4} \cdot \frac{3}{2 n+4}
\end{aligned}
$$

From our assumptions (1.2) and (1.3) we conclude that the convergence of $\delta m_{\infty}^{\rho_{1} n}$ depends only on the asymptotic
properties of the moments $\mu_{4,2}\left(\alpha^{2}\right), \mu_{2,0}\left(Q^{2}\right)$ and the subtraction term $T_{0}\left(Q^{2}\right)$ for large Q^{2} :

$$
\begin{align*}
\delta m & =\delta m^{p}-\delta m^{n} \tag{1.18}\\
& \sim \int^{\infty} d Q^{2}\left[\mu_{2,0}\left(Q^{2}\right)+\frac{4}{Q^{2}} \mu_{1,2}\left(Q^{2}\right)-2 \pi T_{0}\left(Q^{2}\right)\right]^{p-n}<\infty
\end{align*}
$$

Discussion

1. Comparison with the case of scaling.

There are one or two sum rules involving scaling functions in dependence of the underlying parton structure.Application of the DJL representation ${ }^{[2,10]}$ is the most useful method in that case. It allows one to circumvent the problem of subtractions and yields the scaling functions $F_{i}\left(\xi_{i}\right)$ as distributions if defined in the limit $\nu \rightarrow \infty$ at ξ fixed. Accordingly, the integrations are mathematically well-defined, in particular, at $\xi=0^{[2]}$. Worixing with the variables Q^{2} and ξ is quite different. One cannot expect the limit $W\left(\varepsilon_{1}, Q^{2}\right)$ for $Q^{2} \rightarrow \infty$ to exist. For applications condition (1.18) and the scaling sum rules both are similar involving expressions $T_{0}\left(Q^{2}\right)$ or $\delta(5)$ res. not experimentally attainable by deepinelastic scattering.
2. Subtracted zeroth moment $\tilde{\mu}_{4,0}\left(\Theta^{2}\right)$ and 亡゙ixed pole.

There is a connection between the subtraction term $T_{0}\left(Q^{2}\right)$
and the rixeci pole contribution to $W_{1}^{[11]}$.
Let us assume fior $W_{1}\left(\nu, Q^{2}\right)$ the folloring Regge behavior ${ }^{[14]}$

$$
W_{1}\left(\nu, Q^{2}\right) \sim \sum_{0 \leqslant \alpha=1} C_{\alpha}\left(Q^{2}\right) \nu^{\alpha}{ }_{v \rightarrow \infty}, Q^{2} f_{i x e d}^{(1.19)}
$$

Aitor ading and subtracting (1.19) from the structure function $W_{1}\left(\sigma_{1}^{2}, v\right)$ in (1.6) we perform the first integration and obtain
$T_{1}\left(Q^{2}, v\right)=T_{0}\left(Q^{2}\right)+\frac{2 v^{2}}{\pi} \int_{Q^{2}}^{\infty} \frac{d v^{\prime}}{v^{\prime}\left(v^{2}-v^{2}\right)}\left\{W_{1}\left(Q^{2}, v\right)-\sum_{0 \leqslant \alpha \leqslant 1} C_{\alpha}\left(Q^{2}\right) v^{\prime \alpha}\right\}$

$$
-\frac{2 v^{2}}{\pi} \int_{0}^{a^{2}} \frac{d v^{1} \sum_{0<\alpha \beta=1} C_{\alpha}\left(Q^{2}\right) v^{\prime \alpha}}{v^{\prime}\left(v^{\prime 2}-v^{2}\right)}-\sum_{0<\alpha \leq 1} v^{\alpha} C_{\alpha}\left(Q^{2}\right) \frac{\cos \frac{\pi \alpha}{2}}{\sin \frac{\pi_{\alpha}}{2}}
$$

$$
\begin{equation*}
+i \sum_{0<\alpha=1} v_{1}^{\alpha} C_{\alpha}\left(\alpha^{2}\right)+i C_{0}\left(Q^{2}\right)+\frac{2}{\pi} C_{0}\left(Q^{2}\right)\left[\ln Q^{2}-\ln v\right] \tag{1.20}
\end{equation*}
$$

If we no:. take the real part of this equation for $\nu \rightarrow \infty$
$T_{0}\left(a^{2}\right)=\lim _{v \rightarrow \infty}\left\{\operatorname{Re} T_{1}\left(a_{i}^{2} v\right)+\sum_{0<\alpha=1} C_{\alpha}\left(a^{2}\right) v^{\alpha} \frac{\cos \frac{\pi \alpha}{2}}{\sin \frac{r a}{2}}+\frac{2}{x} C_{0}\left(\alpha^{2}\right) \cdot \ln v\right\}$
$+\frac{2}{\pi} \int_{0}^{\infty} \frac{d v^{\prime}}{v^{\prime}}\left\{W_{1}\left(Q_{1}^{2} v^{\prime}\right)-\sum_{0 \alpha=1} C_{\alpha}\left(Q^{2}\right) v^{\prime \alpha}-C_{0}\left(\alpha^{2}\right) \cdot \theta\left(v^{\prime}-Q^{2}\right)\right\}$
$-\frac{2}{\pi} C_{0}\left(Q^{2}\right) \ln Q^{2}$
(1.21)
the subtraction term $T_{0}\left(Q^{2}\right)$ apears as the sun of the so-called fixed pole (defined as the asymiptotically constant contribution to the real part of T_{1}) and the "subtracted" zeroth moment of " $W_{A}\left(\alpha_{1}^{2}\right)$. Iherefore theory could provide the missing information either in termas of T. (Q^{2}), i.e., from lisht-cone expansions (sec Section \mathbb{Z}), or by means or the fixed pole contribution,i.e., troir Fowiman diagrams of the vertex type.
3.Application to asymptotically free field theories. At the end of this section we want to apyly the conition (1.10) to so-called APT, in particular the three-tri 1 Lt model stuãied by Gross and hilczek ${ }^{[3]}$, witheh iredicts canonical behavior up to logarithmic corroctions

$$
\begin{align*}
& \mu_{1, n}\left(Q^{2}\right) \underset{Q^{2} \rightarrow \infty}{\sim} c_{1, n} \frac{1}{\left[\ln Q^{2}\right]^{\gamma_{1, n}}} \tag{1.22}\\
& \mu_{2, n}\left(Q^{2}\right) \underset{Q^{2} \rightarrow \infty}{\sim} c_{2, n} \frac{1}{Q^{2}\left[\ln Q^{2}\right]^{\gamma_{2, n}}}
\end{align*}
$$

The condition (1.18) for finite nuclcon bass difironcace
no: reads

$$
\begin{aligned}
& \int_{d Q^{2}}^{\infty}\left\{c_{2,0} Q^{-2}\left[\ln Q^{2}\right]^{-\gamma_{1,0}}+4 c_{1,2} Q^{-2}\left[\ln Q^{2}\right\}^{-\gamma_{1,2}}-2 \pi T_{0}\left(Q^{2}\right)\right\}^{p-n}<\infty \\
& \text { (1.23) } \\
& \text { with } \gamma_{1,2}=\gamma_{2,0}=\frac{16}{11}, \quad \text { there only the non-singlet parts }
\end{aligned}
$$

contribute to the $p-n$ mass difference. If there exist no Gauge-invariant scalar operator of twist two (compare eq. (2.1))
in the Gross-milczek model and consequently $T_{0}\left(Q^{2}\right) \equiv 0$ condition (1.23) reads

$$
\int^{\infty} d Q^{2} \frac{\Delta C_{20}^{N S}+4 \Delta C_{4,2}^{N S}}{Q^{2}\left[\operatorname{he} Q^{2}\right]^{\frac{N_{4}^{14}}{14}}}
$$

Wich can be valid for $\Delta C_{2,0}^{\alpha s}+4 \Delta C_{1,2}^{N s}=0$ only.

2. Relations between Moments and Light-Cone Singularities

In the last time non-perturbative field theoretic methods have been developed (renormalization group or CallanSymanzik equations applied to asymptotically free field theories) in order to obtain predictions for deep inelastic scattering.

But asymptotically free field theory (AFT) does not imuediately evaluate measurable quantities like structure iunctions. On the contrary AFT concerns the concrete singularity structure of the coefficients $C_{i, n}\left(x^{2}\right)$ in the operator product expansion of electromagnetic currents [3]

$$
\begin{aligned}
& T\left\{j_{\mu}(x) j_{r}(0)\right\} \sim g_{\mu r} \square \frac{1}{x^{2}-i \varepsilon} \sum_{n} C_{i, n}\left(x^{2}\right) x^{\mu_{n} \cdots \mu_{n}} O_{\mu_{1} \cdots \mu_{n}}^{(n)}(0) \\
&+\frac{1}{x^{2}-i \varepsilon} \sum_{n} C_{2, n}\left(x^{2}\right) x^{\mu_{1} \cdots \mu_{n}} O_{\mu v \mu_{1} \cdots \mu_{n}}^{(n)}(0) \\
& \text { at the light cone } x^{2}=0 .
\end{aligned}
$$

To obtain really predictions from the AFT Ior deep inelastic scattering one has to make use of well-uefined correlations between the expansion of $T\left\{j_{\mu}(x) j_{\nu}(0)\right\}$ on the light cone (2.1) and characteristic attributes of the virtual Compton scattering amplitude.Usually one esserts that the Fourier transform of $C_{n}\left(x^{2}\right)$ is related to asymptotic behavior of the moments of the structure functions $W_{i}{ }^{[12]}$. Because of the methodical importance of this point it is worthwhile to recapitulate the underlyine assumptions and to ask for what can be proved in the general framework of QFi.

2.1 Light-Cone Fixpension and Lioments

Let us start from the one-nucleon matrix element (spin averaged) of the LCE (2.1).
The operator $O_{\mu_{1} \cdots \mu}^{(n)}$
is of spin n and its matrix element leads in a standard way to a polynomial of order n in the variable $p x$.Thus each of the invariant anplitudes $\widetilde{T}\left(x^{2}: p x\right)$ (whose imaginary parts are just the structure functions $\tilde{W}_{i}(x)$) Las the LCE

$$
\begin{equation*}
\widetilde{T}\left(x^{2}, p x\right) \sim \sum_{n} C_{n}\left(x^{2}\right) P_{n}\left(x^{2}, p x\right) \tag{2,2}
\end{equation*}
$$

$P_{n}\left(x^{2}, p_{x}\right)=x^{n, \cdots \mu_{n}}\left\langle p \mid 0_{\mu, \cdots \mu_{n}^{(n)} \mid}^{(n)} p\right\rangle=\operatorname{const}(p x)^{n}+\ldots$.
The usual ; roceuture ${ }^{[13,14]}$ consists in termise Fourier trans-
formation (for sin licity ve assume power kehavior $C_{n}\left(x^{2}\right)=\left(x^{2}\right)^{x}$) :

$$
\begin{align*}
& \int d x e^{i q x}\left\{\sum_{n} c_{n}\left(x^{2}-i 0\right)^{k_{n}}(p x)^{n}\right\} \tag{2.3}\\
& =\sum_{n} c_{n}\left(i p \frac{\partial}{\partial q}\right)^{n}\left(q^{2}\right)^{-k_{n}-2} \\
& =\sum_{n}\left\{d_{n}\left(\frac{i v}{2}\right)^{n}\left(q^{2}\right)^{-k_{n}-n-2}+d_{n}^{\prime}\left(\frac{i v}{2}\right)^{n-2}\left(q^{2}\right)^{-k_{n}-n}+\cdots\right\} \\
& =\sum_{n}\left\{b_{n}\left(\frac{v}{q^{2}}\right)^{n}+b_{n}^{\prime}\left(\frac{x}{q^{2}}\right)^{n-2}+\cdots\right\}\left(q^{2}\right)^{-k_{n}-2}
\end{align*}
$$

and comparison vith the qiaylor series for $T(q)$ (1.6)

$$
T\left(Q^{2}, v\right)=\frac{2}{\pi} \sum_{n}\left(\frac{v}{Q^{2}}\right)^{n} \mu_{n}\left(Q^{2}\right) \quad \text { for } \quad Q^{2}=-q^{2}>0 .
$$

(Fere the zoroth moment eventually has to be replaced b_{j} a subtraction term $T_{0}\left(\alpha^{2}\right)$).
The basic idea is that the coefficients of $\left(\frac{V}{Q^{2}}\right)^{n}$ in the two series for $T(q)$ (the classical and the asymptotic one) can be identified. ${ }^{+}$) The result is then

$$
\mu_{n}\left(Q^{2}\right) \sim\left(Q^{2}\right)^{-k_{n}-2} \quad \text { for } Q^{2} \rightarrow \infty \text {. (2.4) }
$$

where the inequalities

$$
\begin{equation*}
k_{n+2} \geqslant k_{n} \tag{2.5}
\end{equation*}
$$

have to be rulfilled as a consecuence of positivity of the $W_{i}\left(v_{1} Q^{2}\right)$.
+) It maines no difference if instead of power series expansions with respect to orthogonal polynomials are applied. [14]

There are three assumptions, one has nade to obtain (2.4) :
a) Term by term Fourier transiormation of (2. 2) is
allowed and sums up to the Fourier transfomed watrix
element $\tilde{T}\left(x^{2}, p x\right)$ at least in the region $q^{2}=-Q^{2}<0,|v|<Q^{2}$.
b) Identification of the Fourier transformed ICil with
the Taylor series for $T(q)$ in the region $|v|<Q^{2}$.
c) Validity of the inequalities (2.5) to have the possibility to detemine the leading term among tice infinite many coefficients of $\left(\frac{v}{Q^{2}}\right)^{n}$ in the Fourier transform ($2 \cdot 3$). It is obviously not enough cuantitatively to detemine the LC singularities $C_{n}\left(x^{2}\right)$ in (2.1) or (2.2), one siould rather know the mathematical meaning of the LCy,i.e., how to work with it,too.

Of course, only a derivation of the 1 Liv (2.1) or (2.2) from QFT can finally deteruine its mathematical properties and, correspondingly, the conditions of its validity (compare the proof for short distance expension [15]). ©ithout such a proof**ne should understand the LKE in a restricted sense which justifies the rocedure to get the corrcsuondence (2.4) :

The LCE (2.2) is an asynptotic expansion defined on the space of test functions $f(x)$ such that the fourier transforne $\tilde{f}(q)$ are insinitely cirierentiable zunctions with support contained in k.
Here K is an arioitrary compact marifold in the rocion
$\left\{q^{2}<0,-\left|q^{2}\right|<v<\left|q^{2}\right|\right\}$ of monentum space.
*)The inveatigations by Zimmermann [21] restricted to finite order of perturbation theory do not cover the more interesting case of removed dimension degeneration.

Thus the support of the LCE in momentum space is contained in the region of convergenae of the Taylor series (1.8). Then having two power series valid in the region of convergence uniqueness of coefficients emerges at once.The support puzzle ${ }^{[4]}$ (t like support only) disappears simply because by definition the LCE is meaningful outside the physical spectrum only. But the question about compatibility of QFT and so specified ICE remains open.
2.2 An Asymptotic Series on the Light Cone

In this part we represent another possible asymptotic series on the light cone developed in connection with the scaling case.
Let us outline the general procedure to determine the IC singularities to arbitrary order for the matrix element of the current commutator in case of the invarients $\widetilde{C}_{i}(x)$ which are the Fourier trensforms of $W_{A}(p, q)$ and $W_{2}(p, q)$ 。
It has been shown ${ }^{[16]}$, that the $\mathcal{C}_{i}(x)$ are causal and fulfill all necessary conditions for a DJL representation, For this purpose we consider now the distribution $\bar{C}\left(x^{2}, \vec{x}\right)=\varepsilon\left(x_{0}\right) \bar{C}(x)$ defined by

$$
\begin{equation*}
\{\check{C}(x), \varphi(x)\}=\left\{\bar{C}\left(x^{2}, \vec{x}\right), \frac{\varphi\left(\sqrt{x^{2}+\vec{x}}, \vec{x}\right)-\varphi\left(-\sqrt{x^{2}+\vec{x}^{2}}, \vec{x}\right)}{2 \sqrt{x^{2}+\vec{x}^{2}}}\right\} \tag{2.6}
\end{equation*}
$$

Because of antisymmetry of $\tilde{C}(x)$ the test function $\varphi(x) \in S\left(R_{v}\right)$ has to be antisymmetric, too, so that on the right hand side of (2.6) there is a test function with respect to x^{2}. Notice, that the support of $\bar{C}\left(x^{2}, \vec{x}\right)$ is restricted to $x^{2} \geqslant 0$. For the so defined $\bar{C}\left(x_{1}, \vec{x}\right)$ the DJL representation reads

$$
\begin{align*}
& \bar{C}\left(x^{2}, \vec{x}\right)=\frac{1}{4 i r^{2}} \frac{\partial}{\partial x^{2}}\left\{\theta\left(x^{2}\right) \int_{0}^{\infty} d \lambda^{2} \xi_{0}\left(\lambda \sqrt{x^{2}}\right) \tilde{\psi}\left(\vec{x}, \lambda^{2}\right)\right\} \tag{2.7}\\
& \text { with } \quad \tilde{\psi}\left(\vec{x}, \lambda^{2}\right)=\int_{0}^{1} d \vec{F} e^{i \overrightarrow{u x}} \psi\left(\mid \overrightarrow{a \mid}, \lambda^{2}\right) . \tag{2.8}
\end{align*}
$$

Further it has been shown ${ }^{[17]}$:
If there exists a real numberk., such that the sequence
of the distributions $\frac{1}{\rho^{2 n},} \bar{C}\left(\frac{1}{\rho^{2}} x^{2}, \vec{x}\right)$ for $\rho^{2}-\infty$
approaches some nonzero distribution $\bar{g}\left(x^{2}, \vec{x}\right)$ (if
integrated with a test function $\left.f\left(x^{2}\right) \subset S(Q),\right)$, then the
limit has the structure $\bar{g}\left(x_{1}^{2}, \bar{z}\right)=G_{0}(\bar{x}) \frac{\left(x^{2}\right)^{k_{0}}}{\Gamma\left(k_{0}+1\right)}$ and is
called the most singular part of $\bar{c}\left(x^{2}, \vec{x}\right)$ at the light cone $x^{2}=0$.
After subtracting this leading part $\bar{g}\left(x^{2}, \bar{x}\right)$ from $\bar{C}\left(x^{2}, \bar{x}\right)$ one has to repeat this procedure described with an appropriate $k_{1}>k_{0}$ and so on. Of course, there are genergliza-
of an asymptotic series by the well-defined Fourier transformation of an integral representation for the matrix element $\widetilde{C}(x)$ itself.For reasons of simplicity we restrict the consideration to a DGS representation
with

$$
\begin{align*}
\tilde{C}(x) & =\frac{1}{2 \pi i} \int_{0}^{\infty} d \lambda^{2} \tilde{\psi}\left(x_{0}, \lambda^{2}\right) \Delta\left(x, \lambda^{2}\right) \tag{2.12}\\
\tilde{\Psi}\left(x_{0}, \lambda^{2}\right) & =\int_{-1}^{+1} d \mu e^{i \mu x_{0}} \psi\left(\mu, \lambda^{2}\right) \tag{2.13}
\end{align*}
$$

and $\Delta\left(x, \lambda^{2}\right)=\frac{i}{(2 \pi)^{3}} \int d q e^{-i q x}(q 0) \delta\left(q^{2}-\lambda^{2}\right)=\frac{\varepsilon\left(x_{0}\right)}{2 \pi} \frac{\partial}{\partial x^{2}}\left\{\Theta\left(x^{2}\right) \mathcal{F}_{0}\left(\lambda \sqrt{x^{2}}\right)\right\}$
Because of the finite support in $\mu, \tilde{\psi}\left(x_{0}, \lambda^{2}\right)$ is an entire function with respect to x_{0} if integrated with a test function $\varphi\left(\lambda^{2}\right) \in S\left(R_{1}\right)$. Therefore $\tilde{\Psi}\left(x_{0}, \lambda^{2}\right)$ can be expanded in a Taylor series
with

$$
\begin{align*}
\tilde{\Psi}\left(x_{0}, \lambda^{2}\right) & =\sum_{n=0}^{\infty} x_{0}^{n} \frac{i^{n}}{n!} h_{n}\left(\lambda^{2}\right) \tag{2.14}\\
h_{n}\left(\lambda^{2}\right) & =\int_{-1}^{+1} d \mu \cdot \mu^{n} \psi\left(\mu, \lambda^{2}\right) \tag{2.15}
\end{align*}
$$

To derive a similer series for the commutator itself it is useful to consider the symmetrically extended distribution $\bar{C}(x)=\varepsilon\left(x_{0}\right) \tilde{C}(x)$. Remembering that the functional $\left\{\varepsilon\left(x_{0}\right) \Delta\left(x, \lambda^{2}\right), x\left(x^{2}\right)\right\} \quad$ is a test function with respect to $\lambda^{2}[17]$ (where $X\left(x^{2}\right) \in S\left(a_{1}\right)$) we obtain from (2.12) and (2.14) a Taylor series for $\bar{C}(x)$:

$$
\begin{align*}
\bar{C}(x) & =\frac{1}{2 r i} \sum_{n=0}^{\infty} x_{0}^{n} \frac{i^{n}}{n!} f_{n}\left(x^{2}\right) \tag{2.16}\\
f_{n}\left(x^{2}\right) & =\int_{0}^{\infty} d \lambda^{2}\left[\varepsilon\left(x_{0}\right) \Delta\left(x, \lambda^{2}\right)\right] h_{n}\left(\lambda^{2}\right) \tag{2.17}\\
& =\frac{1}{2 \pi} \frac{\partial}{\partial x^{2}}\left\{\theta\left(x^{2}\right) \int_{0}^{\infty} d \lambda^{2} \exists_{0}\left(\lambda \sqrt{x^{2}}\right) h_{n}\left(\lambda^{2}\right)\right\}
\end{align*}
$$

which has to be understood as a functional with respect to x^{2}.
The distributions $f_{n}\left(x^{2}\right)$ and $h_{n}\left(\lambda^{2}\right)$ are connected by the special Bessel transformation studied in [17].
It should be mentioned that $(2,16)$ has not been derived as an expansion on the light cone. Nevertheless,this power series can be connected with the moments $\mu_{n}\left(Q^{2}\right)$ expressed in terms of the amplitude at $q^{2}=-Q^{2}<0$

$$
\mu_{n}\left(Q^{2}\right)=\left.\frac{\pi}{2} \frac{Q^{2 n}}{n!}\left(\frac{\partial}{\partial v}\right)^{n} T(q)\right|_{v=0} ^{q^{2} \text { fixed }} \quad, n=0,2,4, \ldots
$$

From the DGS representation ${ }^{+ \text {) }}$ of the amplitude

$$
\begin{equation*}
T(q)=-\frac{1}{\pi} \int_{0}^{\infty} d \lambda^{2} \int_{-1}^{+1} d \mu \frac{\psi\left(\mu, \lambda^{2}\right)}{\left(q_{0}-\mu\right)^{2}-\vec{q}^{2}-\lambda^{2}+i 0} \tag{2.18}
\end{equation*}
$$

+) For the amplitudes T_{i} corre monding to the structure functions W_{i} there seems to be no need for subtractions in the DGS-representation.

$$
T(q)=\frac{1}{\pi} \int_{0}^{\infty} d \pi^{2} \int_{-1}^{+1} d \mu \frac{\psi\left(\mu \cdot \bar{\lambda}^{2}+\mu^{2}\right)}{-q^{2}+\mu \nu+\bar{\lambda}^{2}-i \varepsilon}
$$

ne obtain
with

$$
\begin{align*}
& \mu_{n}\left(Q^{2}\right)=\frac{1}{2} Q^{2 n} \int_{0}^{\infty} d \lambda^{2} \frac{\bar{h}_{n}\left(\lambda^{2}\right)}{\left\{Q^{2}+\lambda^{2}\right\}^{n+1}} \tag{2.19}\\
& \bar{h}_{n}\left(\lambda^{2}\right)=\int_{-1}^{+1} d \mu \cdot \mu^{n} 4\left(\mu, \lambda^{2}+\mu^{2}\right) \tag{2.20}
\end{align*}
$$

In sucin a way we have established a relation between the noments and the uniquely defined coerficients in the raylor series $f_{n}\left(x^{2}\right)$ mediated by the spectral function $\psi\left(\mu, \lambda^{2}\right)$ in $h_{n}\left(x^{2}\right)$ and $\bar{h}_{n}\left(\lambda^{2}\right)$, respectively,

$$
\begin{align*}
& f_{n}\left(x^{2}\right)=\int_{0}^{\infty} d \lambda^{2}\left[\varepsilon\left(x_{0}\right) \Delta\left(x, \lambda^{2}\right)\right] h_{n}\left(\lambda^{2}\right) \tag{2.21}\\
& \mu_{n}\left(Q^{2}\right)=\frac{1}{2} Q^{2 n} \int_{0}^{\infty} d \lambda^{2} \frac{\bar{h}_{n}\left(\lambda^{2}\right)}{\left\{Q^{2}+\lambda^{2}\right\}^{n+1}} \tag{2.22}
\end{align*}
$$

It should be noted that the second of the above relations has been obtained by Cornwall and Nortion [19] already. Ihese authors,however, considoring neither Tasylor series nor expansions on the light cone,tried to consect the momerits with the B JL comatators (i.e., equal-tine
commutators involving higher derivatives of the current components $\left.\left[\left(\frac{\partial}{\partial x_{0}}\right)^{n} j_{i}(x), j k(0)\right]_{x_{0}=0}\right)$.In any case existence of the infinite set of BJL comnutators is a rather strong assumption whereas the connections contained in eqs.(2.21), (2.22) have general validity.

In particular, eqs.(2.21),(2.22) yield relations between the asymptotic behavior of $\mu_{n}\left(Q^{2}\right)$ at $Q^{2} \rightarrow \infty$ and $f_{n}\left(x^{2}\right)$ at $x^{2} \rightarrow 0$.
For this purpose it is useful to apply the method of the quasi-limit,i.e., to consider in the sense of functionals $f_{n}\left(\frac{1}{q^{2}} x^{2}\right), h_{n}\left(\rho^{2} \lambda^{2}\right)$ and $\bar{h}_{n}\left(\rho^{2} \lambda^{2}\right)$ for $\varphi^{2} \rightarrow \infty$, respectively. In reference [17] it has been shown that the transformation (2.21) constitutes ah unique correspondence between the singularities at $x^{2} \rightarrow 0$ and the asymptotic behavior at $\lambda^{2} \rightarrow \infty$ (e.g., $\mathfrak{l}_{n}\left(x^{2}\right) \sim x^{2 k_{n}}$ equivalent to $h_{n}\left(\lambda^{2}\right) \sim\left(\lambda^{2}\right)^{-k_{n}-2}$). The large Q^{2} and large λ^{2} behavior in (2.22), on the other hand, are uniquely related, toon(e.g., $\bar{h}_{n}\left(h^{2}\right) \sim \lambda^{2 \alpha}$ equivalent to $\left.\mu_{n}\left(Q^{2}\right) \sim Q^{2 \alpha}\right)^{[20]}$.
On this basis a direct connection between the asymptotic behavior of $f_{n}\left(x^{2}\right)$ and $\mu_{n}\left(Q^{2}\right)$ will be established if $h_{n}\left(h^{2}\right)$ and $\bar{h}_{n}\left(\lambda^{2}\right)$ show the same asymptotic behavior. This is the case if positivity is fulfilled (see Appendix II). Therefore we have derived relations between the asymptotic behavior of the moments $\mu_{n}\left(\mathbb{Q}^{2}\right)$ and the L_{C} singularities of $f_{n}\left(x^{2}\right)$ which are similar to (2.4) but refer to the Taylor series (2.16).

The question could arise about the existence of a physical meaningful amplitude with moments showing different asymptotic Q^{2}-behavior. In Appendix I we give an example for an amplitude iulfilling causality and spectrum conditions such that the moments differ asymptotically by powers of $\log Q^{2}$.

3. Conclusions

There are, in principle, three types of series which could be understood as expansions on the light cone. The first is the canonical LCE (2.1), (2.2) abstracted from Lagrangian Field Theory. Its mathematical meaning is rather unclear and correspondingly additional assumptions must be imposed to get useful information from this LCE. Second, an asymptotic series (2.10) in the strict sense of generalized functions can be defined. The physical significance of its individual terms, except for the leading one, remains obscure, however.
There is finally an approach via the Taylor series of the matrix element $\bar{C}(x)$.

On the basis of general QFT we have established a connection between the moments $\mu_{n}\left(Q^{2}\right)$ and the coefficient distributions $f_{n}\left(x^{2}\right)$ of the well-defined Taylor series for the matrix element $\bar{C}(x)$.
Need for subtractions may spoil the definition of some
of the lowest moments.In this case the same connection is mediated by the Taylor coefficients of the amplitude.

The LC behavior of $f_{u}\left(x^{2}\right)$ is uniquely related to asymptotic behavior of the moments, at least if positivity conditions \mathcal{Y} or the structure functions are fulfilled. In this case the LC singularities in eq. (2.16) appear in decreasing order. Nevertheless, this series must not necessarily coincide with the asymptotic series on the light cone in the strict sense (eq. (2.10)). From present investigations it seems reasonable to identify the series (2.16) near $x^{2}=0$ with the LCE (eq. (2.2)) used in Lagrangian Field Theory (if (2.2) accordingly is rewritten for the matrix element $\boldsymbol{C}(x)$).

Acknowledgemente.
The authors are indebted to V.A.Matveev and D.Robaschik for useful discussions.

Appendix I Example for an amplitude with different asymptotic behavior for its moments Attempts to construct structure functions $W\left(\xi, Q^{2}\right)$ corresponding to given asymptotics of $\mu_{n}\left(\alpha^{2}\right)$ have been undertaken more than once ${ }^{[3],[17]}$, consider it desirable, however, to give an example in the DGS representation in order to verify conpatibility oi causal and spectral conditions with particular asymptotic vehavior of $\mu_{n}\left(Q^{2}\right)$ (differing by powers of $\left.\log Q^{2}\right)$.
The cxample is described by spectral function

$$
\begin{aligned}
& \psi\left(\mu, \lambda^{2}\right)=\frac{\left(\lambda^{2}-\mu^{2}\right)_{+}^{k(\mu)}}{\Gamma(k(\mu)+1)} \\
& k(\mu)=k_{0}-c|\mu|^{p}, k(\mu)<0, k_{0} \neq 0
\end{aligned}
$$

to be inserted into the DGS intecral (2.18)

$$
\begin{aligned}
T(q) & =\frac{1}{\pi} \int_{-1}^{+1} d \mu \int_{0}^{\infty} d \bar{\lambda}^{2} \frac{[\Gamma(k+1)]^{-1}\left(\bar{\lambda}^{2}\right)_{+}^{k}}{\bar{\lambda}^{2}+\mu \nu-q^{2}-i 0} \\
& =\frac{1}{T} \int_{-1}^{+1} d \mu \Gamma(-k)\left\{\mu \nu-q^{2}-i 0\right\}^{k}
\end{aligned}
$$

Applying formula (1.9) we obtain for the moments

$$
\begin{aligned}
\mu_{n}\left(Q^{2}\right) & \left.=\frac{\pi}{2} \frac{\left(Q^{2}\right)^{n}}{n!}\left(\frac{\partial}{\partial v}\right)^{n} T(q) \right\rvert\, \begin{array}{l}
q^{2}=-Q^{2} \text { fixed } \\
v=0
\end{array} \\
& =\frac{1}{2 n!} \int_{-1}^{+1} d \mu \cdot \mu^{n} \Gamma(-k(\mu)+n+1)\left(Q^{2}\right)^{k(\mu)}
\end{aligned}
$$

Asymptotic behavior is determined by the contributions from $\mu \geqslant 0$:

$$
\begin{aligned}
\mu_{n}\left(Q^{2}\right) & \approx \frac{\Gamma\left(n+1-k_{0}\right)}{n!} Q^{2 k_{0}} \int_{0}^{\infty} d \mu \cdot \mu^{n} e^{-\mu^{p} \cdot c \log Q^{2}} \\
& \sim \frac{Q^{2 k_{0}}}{\left[\log Q^{2}\right]^{n+1}}
\end{aligned}
$$

Remark that the amplitude has time-like and space-like support which is guaranteed by the finite extension of the support of $\psi\left(\mu, \lambda^{2}\right)$ around $\mu=0$.
The stronger individual moments differ trom one another $(p \rightarrow 0)$, the narrower vecomes the support of $\psi\left(\mu, \lambda^{2}\right)$. We expect that stronger differences in asymptotic behavior (by powers of Q^{2}) would spoil support properties at $q^{2}<0$.

Appendix II

We have to show that $\bar{h}_{n}\left(\lambda^{2}\right)$ and $h_{n}\left(\lambda^{2}\right)$ have the same asymptotic behavior if positivity of the structure functions
$W\left(E, Q^{2}\right)$ is fulfilled.
Positivity of the $W\left(5, Q^{2}\right)$ is equivalent to the relations (1.2)

$$
\mu_{i, n+2}\left(Q^{2}\right) \leqslant \mu_{i, n}\left(Q^{2}\right)
$$

and therefore equivalent to

$$
\bar{h}_{i, n+2}\left(\lambda^{2}\right) \leqslant \bar{h}_{i, n}\left(\lambda^{2}\right) \quad \text { for } \lambda^{2} \rightarrow \infty . \quad(A 2.1)
$$

Let us assume that $\bar{h}_{n}\left(\lambda^{2}\right)$ has an q-limit of order α_{n}

$$
\frac{\left\{\bar{h}_{n}\left(\rho \lambda^{2}\right), \varphi\left(\lambda^{2}\right)\right\}}{s^{\alpha n}} \underset{\rho \rightarrow \infty}{ } \text { const } \neq 0
$$

with $\varphi\left(\lambda^{2}\right) \in S\left(R_{1}\right)$.
Then for the difference of $\bar{h}_{n}\left(\lambda^{2}\right)$ and $h_{n}\left(\lambda^{2}\right)$ it holds
(comp. (2.20), (2.15))

$$
\begin{align*}
& \left\{\left[\bar{h}_{n}\left(q \lambda^{2}\right)-h_{n}\left(\varphi \lambda^{2}\right)\right], \varphi\left(\lambda^{2}\right)\right\}= \\
= & \int_{-1}^{+1} d \mu \cdot \mu^{n} \int_{0}^{\infty} d \lambda^{2}\left[\psi\left(\mu, \varphi \lambda^{2}+\mu^{2}\right)-\psi\left(\mu, \rho \lambda^{2}\right)\right] \varphi\left(\lambda^{2}\right) \tag{A2.2}\\
= & \int_{-1}^{+1} d \mu \cdot \mu^{n} \int_{0}^{\infty} d \bar{\lambda}^{2} \psi\left(\mu, \rho \bar{\lambda}^{2}+\mu^{2}\right)\left[\varphi\left(\lambda^{2}\right)-\varphi\left(\lambda^{2}+\mu^{2}\right)\right] \\
= & -\frac{1}{\varphi} \int_{-1}^{+1} d \mu \cdot \mu^{n+2} \int_{0}^{\infty} d \bar{\lambda}^{2} \psi\left(\mu, \rho \bar{T}^{2}+\mu^{2}\right) \varphi^{\prime}\left(\lambda^{2}+\theta \frac{\mu^{2}}{\varphi}\right)
\end{align*}
$$

where we have performed the variable transformation $\bar{\lambda}^{2}=\lambda^{2}-\frac{\mu^{2}}{9}$ and used the mean value theorem.
Now at the right-hand side of (Ac.2) we derived the $\bar{h}_{n+2}\left(\lambda^{2}\right)$ because $\varphi^{\prime}\left(\lambda^{2}+\theta \frac{\mu^{2}}{9}\right)$ is a test function again. Therefore

$$
\frac{\left\{\left[\bar{h}_{n}\left(\rho \lambda^{2}\right)-h_{n}\left(\rho \lambda^{2}\right)\right], \varphi\left(\lambda^{2}\right)\right\}}{\rho^{\alpha_{n}}}=\frac{1}{\rho^{\alpha_{n}+1}} \bar{h}_{n+2}\left(\lambda^{2}\right) \longrightarrow 0
$$

because $\bar{h}_{n+2}\left(\lambda^{2}\right)$ has a q-limit of order α_{n+2} with $\alpha_{n+2} \leqslant \alpha_{n}$
(compare $(A 2.1)$).

Reforenceg:

1. A.Zee, Phys.Reports, 3, 127 (1972).
2. G.Motz, E.Wieczorek., Fucl. Phye., B83, 525 (1974).
3. D.J.Gross, F. Wilczek, Phys.Rev., D8, 3633 (1973). D.J.Grose, F. Wilczek, ibid., D9, 980 (1974).
4. R.A.Brandt, G.Preparata, Xucl. Phys., B27, 541 (1971). for a review and a comprehensive list of references see: Y. Frishman, in "Proceedings of the XVI. International Conference on High Fnergy Phyaics Chicago-Batavia, Ill., 1972", edited by D.Jackeon and A.Roberte (NAL, Batavia, Ill., 1973), Vol. 4, p. 119.
5. W.N.Cottingham, Ann. of Phys., 25, 424 (1963).
6. K.Wilson, Phys.Rev., 179, 1499 (1969).
7. H.Harari, Phya.Rev.Lett., 17, 1303 (1966).
8. J.Ellie, R.L.Jaffe, Preprint SLAC-PUB-1353, Stanford, 1973; see also Ref.l.
9. M.Elitzur, H.Harari, Ann. of Phys., 56, 81 (1970).
10. W.A.Magradze et al., JINR preprint E2-7028, Dubna (1973).
11. J.M.Cormall, D.Corrigan, R.E.Nort on , Phys.Rev., D3, 536 (1971).
12. N.Christ, B.Haselacher, A.H.Mueller, Phys.Rev., D6, 3543
(1972); see also Y. Prishman, in Ref. 4.
13. G.Altarelli, Riv. Kuovo Cim., 4, 335 (1974); G.Mack, Nucl. Phys. B35, 592 (1971).
14. O.Hachtmann, Nucl. Phys. B63, 237 (1973).
15. K.Wilson, W.Zimmermann, Comm.Math. Phys., 24, 87, (1972).
16. N.N. Bogolubov, A.N. Tavihelidze, V.C.Vladimirov, Teor.Mat.Fiz., 12, 305 (1973).
17. B.I.Zarialov, Teor.Mat.Fiz., 17,178 (1973).
18. E. Brüning, P.Stichel, Comm. Math. Phys., 36, 137 (1974).
19. J.M.Cornwall, R.E. Northon, Phye.Rev., 177,1637 (1969).(-)
20. V.A. Matveev, D.Robaschik, E.Wieczorek,Teor.Mat.Fiz.,

19,14 (1974).
21. W.Zimmermann,Ann. of Phys., 77,570 (1973).

Received by Publishing Department on May 19, 1975.

