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Introduction.

It ig well known that theoretical predictions made on the
bagig of current algebra are in excellent agreement with exper-
imental data on hadron interactions at low energies. Nowadays
there exists a great deal of good review articles on this subject]).
Similar results may be obtained in a field-theoretical approach
by using a chiral-invariant interaction Lagrangian. The field
theory with a chiral-invariant Lagrangian has been proposed by
Gursey 2) and Gell-Mann and Levy3). Connection of current algebra
with a chiral Lagrangian theory has been found by Weinberg 4)
on the basis of consideration of "tree" diagrams only.

Note that the chiral-invariant Lagrangian has nonpolynomial
form and leads to nonrenormalizable field theories. This circum-
stance favoured that for a long time many authors try to consgider
it only as a phenomenological Lagrangian on which basis one
should not construct quantum field theory in the usual sense. 1t
was used only for degcription of low-energy processes in a "tree"
approximation.

However, when there appeared the methods allowing the
description of quantum field theories with nonpolynomial Lag-
rangians (see, for instance, rer.5), more and more attempts were
made to construct a quantum chiral {ield theory, where, in addition
to "tree" diagrams, the "one-loop" approximation is considerede_li)
We immediately notice that in this approximation we obtain not only
corrections to the Born terms but also an essentially new inform-
ation which is not contained in the "tree" approximation. This

concerns such physical quantities as, for example, wave lengths
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and effective-range parameters of % % -system for higher
partial waves, starting from QD -wave, megon form factors,its
polarizabilities,and decay structure constants.

There immediately arises the question: to what extent ip the
perturbation theory correct for description of such interactions
of particles where, apart from the weak and electromagnetic inter-
actions, there are also the strong ones? But so far one cannot
give a comprehensive ansgwer to this question. However, there are
some grounds to believe that in describing the low-energy intera-
ctions in a chiral quantum field theory at energies J;z 49‘5’6_’ =~
1,2GeV ( f;. =492 /ev is the pion decay constant) one may obtain
quite reasonable results in the one-loop approximation.

The basic idea of our approach is tightly related to the
following supposition firstly made by Lehnmann7). Since, by the
Adler-Neinberg theory, in the low-energy limit the first pertur-
bation expansion order gives the exact result then,consequently,
higher-order corrections should also be small at small energy~
~-momentum. There, of course, remains the question concerning re-
lative importance of subsequent orders of perturbation theory.

As to the direct % % - interaction the use of perturbation theory
here is completely justified because there we have a small expansion

-~ 2
parameter of the type JZQL-) = 0.015. Unfortunately this is

95 L5
not the case for TV —interactions,where there appears larger par-
‘ 4
ameter /:Cﬂf ~ 0.66 (however, it is smaller than unity).
LS

Nevertheless, one may hope to consider the higher-order strong
effects by performing the finite renormaslization of the "atrong"

vertex: appearance of a factor for Dv (see ref, 7,15 )
A - ’

One of interesting features of the chiral quantum theory,
in particular, is that in the one-loop approximation for N
interaction there occurs the cancellation of all divergencesg when
all diagrams of a given perturbation expansion order in {Cﬁ;

are conpidered together.

Therefore, we shall need to use special methods (e.g., the

o,

superpropagator ones necegpary 1or description of non-polyno-
mial theories, only when conpidering direct % % - interactions
the contribution of which to physical quantities ig, as a rule,
considerably smaller than that from %A - interactions. The
latter are described by standard methods of the renormalizable

quantum field theory.16)

To complete thig section we would like to note the following.
Despite the absence of rigorous proof of validity of the employed
perturbation theory, one can say with certainty that the informat-
ion contained in the one-loop approximation of the chiral quan=
tum theory gives a correct physical picture of hadron interactions
at low energies. That the considered approximation works well is
confirmed indirectly by the following: i) The calculated physi-
cal quantities are in good agreement with the available experi-

mental data 17-20)

ag well ap with predictions of other known
models (e.g., the ,P -dominance model 21)); ii) the found expres-
sions obey the conditions following from the most general require-
ments of field theory (say, the HMartin inequalities for % 5 °-

-scattering 22)).



In the next section we present the bapic principles necessary
for construction of a chiral-invariant Langrangian. In the second
section we shall describe, in more detail, the perturbation theo-
ry uped here. In the third section pion strong interactions are
congidered and % % -scattering amplitudes,scattering lengths,
and effective-range parameters are calculated. In the fourth
section the pion electromagnetic interactions are studied and the
pion electromagnetic radius and polarizability are found.

The fifth pection deals with the main modes of pion decays and
with calculations of the decay structure constants. In the sixth
section the electromagnetic interactions are investigated for
kaons and their electiromagnetic radius and polarizability are
calculated. And finally, in the seventh section the mass difference

of neutral K2 and A;r mesons is computed.

l. Chiral-invariant Lagrangian.

Nowadays there exist various methods for construction of

Lagrangiang invariant with respect to the chiral group A?ZQ?V&fZOQ)

(see, e.g.refs.2’3)).We attempt to depcribe this procedure in the
most simple way.

Firpt of all we call attention to that one should distin-
guish between two different symmetries; kinematical and dynamical
when conptiructing a Lagrangian of interacting fields. The kinema~-
tical (algebraic) symmetry raquires the invariance of a Lagrangian
under space-time translations and rotations of coordinates.It is
the condition of relativistic (T.orentz) invariance which must hold

for any Lagrangian. The dynamical symmetry requires the invarian-

ce of a Lagrangian with respect to certain transformations of
fields entering into the total Lagrangian and, as a rule,it
corresponds to some internal symmetries of the system of fields.
The most known example of this symmetry is the symmetry of the
electrodynamical Lagrangian under gradient transformations of
fields ‘/ZM and under gauge tranpformations of fields 9/ .
Recall briefly a method for construction of the interaction
Lagrangian in electrodynamics with the use of this symmetry.
The Lagrangian of free nucleon fields 9)(

L, =i Y - My o
1
— <3 - -
where ‘4/99/: fi[g//l’";ly/-%y/ﬁ,ﬂlm is the nucleon mass, is not

invariant with respect to gauge transformations of the field 9%£:

L -ceArx)
9{", =¢Le , (2)

where & is the proton charge] A/x) 1ie an arbitrary smooth

function of X « If, however, one introduces an electromagnetic

field /4, interacting with 94, by the law

ZW:_@Q/’///"%/Z” ) (3)

then the total Lagrangian will simultaneously be invariant with
respect to transformations (2) and gradient traneformations of the
field
A
. . -
/6Z” :‘/614 ” ‘ﬁf/]ﬂxj-

- . (4)

This symmetry corresponds to the well known requirement that the

obgervables do not change under the gradient transformations of

the fields ﬂm .



Now we proceed to construct a chiral-invariant Lagrangian.
Consider again the Lagrangian (1). It is invariant under isotopic
transformations W’ =e¢'y‘"£9/ , where 97' is the isotopic
matrix, ;5 is the constant vector in the isotopic space. Let us
examine whether this Lagrangian is invariant under chiral

trangformations mixing up states with different parity:

, _{ ) .
W= U )y W)U a) =1
(5)

The matrix 2[ may be taken,’ for ingtance, in the form

Zle,/)(dhex/?{?/r;za}, Je=oi ;tf) ,

(8)

After transformation (5) Lagrangian (1) acquires the form

4(9/’)=14755/‘”#47%-{/2(”}”-%{.")4/- %)

It is eagily seen that if M = ¢ then Lagrangian (1) is invari-
ant under the chiral transformations. To this symmetry there
corresponds the well known law of helicity conservation for neut-
rino., When N/\/ #¢ one needs to make use of the dynamical met-
hod for restoring the invariance of the total lagrangian
under the chiral transformations, by analogy with electrodynamics.
There we introduce Yhe electromagnetic field _/zm . Here ,since
we deal with transformations changing parity of the system, we
must introduce an interaction with pseudo-scalar massless partic-
les, "pions", which change parity. Usually, these are called the

Goldstone particles

/%57(/ - MMJZ/Q‘;_')QJ (8)
To the chiral transformation (5) of the field y/ there corres-

ponds the nonlinear transformation of the field g—

5?\/ = 977”/’?");
(9)

which form is defined from the condition
/‘ N
U(Z ) U {a)Z/(,) i(a)

The dimensional constant .[;— is introduced to maeke the scalar

(10)

field % dimensionless. It is not difficult to verify that
the new Lagrangian

L1)5) =3 - JUE ) + 4

(11)
SRt (0 5 Y5
4 =B SHUENAE) ] )

ig invariant under the chiral transformations (5) and (10)*).

The appearance, in this way, of pions in Lagrangian (1) may
be interpreted as a reaction of the system aimed at restoring
of the chiral symmetry broken due to the nucleon mass. The algeb-
ra of the chiral group ,\_{y///Z) X SLr2) coincides with
that of the group of rotation of 4-dimensional space (7{4) and

Lagrangian (12) represented in the form

Lo = 52 Fig ()5 9,57

*) Por Z[ taken in the form (6) we have
2 1[0 2)2 (Fe, »‘/’Z?fiv ¢)7 (10t
s -] @
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has a beautiful geometrical interpretation. ézéf is the metric
tensor of a three-dimensional isospace of constant curvature (of
a sphere in the four-dimensional Euclidean space).
Trensformation (9) is a displacement of the coordinate origin on
the sphere by vector E; » therefore (9) has the meaning of summa-
tion of vectors in a curved isospace which will be denoted as

g ~»

F'=5nd |, F=ra. (1)
The constant 1;;- is a parameter characterizing a curvature of
the isospacg. For _j?%.-> oo there ariges the usual Euclidean
isospace 9‘/-:/»‘)5 - 7. 6;; .

If one identifies the introduced Goldstane field with a
real pion and the axial current ':Z;‘/u = /;a')';: - 0/9-3)
with a current appearing in weak interactions, then the constant
12; in the Born approximation coincides with the constant of pion
weak decay. Hence 4/;; = 92MeV.

The chiral invariance does not fix completely the Lagrangi-
an form leaving an arbitrariness in choice of the matrix U which
obeys only  the condition X X ¥=7 . thie arbitrariness
corresponds to the arbitrariness in choice of different coordi-
nates on a sphere. For instance, to the representation of the
matrix 2/ by exponential form (6) there correspond the nor-
mal coordinates along geodesics. The change of coordinates is

made by the transformation
g = 97’/’/‘7')/ 7//(/ =7 (14)

At present, the well-developed methods exigt for description
of theories with chiral Lagrangians. These are independent of a

concrete choice of Lagrangian, i.e.,chiral invariant methods.

In the"tree"approximation, the independence of physical obser-
vables of a choice of the chiral Lagrangian form has first been
proved by D.V.Volkov23). In the chiral quantum theory such an
equivalence has been shown in papers;?4’25). It will be conveni-
ent for us to use the most simple and natural, irom the geomet-

rical point of view, exponential form of the chiral Lagrangian.

2. Perturbation Theory for Chiral Lagrangian

Let us now discuss, in more detail, the perturbation theory
used here. To begin with, it is useful to see what changes appe-~
ar, in the chiral theory, in the Lagrangian describing the strong
interactions.

In a standard renormalizable theory, where the chiral symmet -
ry is not taken into account when constructing the lagrangian, the

interaction Lagrangian looks as follows

=g TR - A TYc
L int F Y77 (%7 (1%)

2
Here ? is the strong coupling constant ( ?/,’;;- = jf.? ),
/% is the pecond constant of the direct $% % -interaction.
Since the constant éz is large in magnitude, perturbation theory
expangion cannot give correct results for this theory. On the
other hand, one might hope to obtain reasonable results in the
low-energy limit. However, it has appeared that here also the
theory with Lagrangian (15) does not describe the right behavi-
our of, e.g., the % 5 scattering amplitude or ;sgr-scattering

lengths.



Now let us write the chiral Lagrangian (11) in the lowest
R 1 ) .
orders in the constant ( /f;?’) H

oA — - 0507
”(::,,f = " S‘/{ 7)’{4/- 2 ff;_z ‘(15)

Comparing it with (15) we see that, first, in (16) only one
constant, f— ) 1is present. This fact will help us to extract
the complete set of diagrams of given order in the constant/ /")
Second, there appears the connection with a derivative in the di-
rect % % -interaction. Third, there emerges one more term
describing >T/1/ -interaction. The latter ig extremely impor-
tant, because, as we shall see, its consideration helps to cancel
completely all divergences in loop diagrams in a given order of
(1@_) with the $ /4 -vertices.

Unforiunately, in this theory also there is no small expansi-
on parameter necessary for a successful use of perturbation theo-
ry. Neverthelepss,in the low~ energy limit we obtain the correct
description of particle interactions corresponding to the low-ener-
gy theorems of current algebra. For instance, for the 79— -gcat-

tering amplitude in the Born approximation we have

Algtu)= 23+,

that is in good agreement with experiment.

an

However, if in the limit of small 71( C/X* ¢ ) we have
the true result, then one may expect that the higher order in 7
corrections obtained from subsequent orders of perturbation
expansion in ('14;7)2 will be reasonable too. Let us observe

these higher orders of perturbation theory.

12

.1' 2
The second order in ( /jf.'.) the one-loop approximation,

as a rule, gives small quantities of the type )
PR (77

s ) . 3=6). i
(Gviig? (see sects. 3-6). The third order is more
complicated., Here, in addition to certalnly small quantities of
/7Z~
the type( ) larger quantitie
(47 75)* T > SAreeT a °

of the form ((9»5/ )dﬁ_&)may appear. Just this is the influence
of strong vertices of Lagrangian (16). However, one may hope

that the consideration of these terms will reduce gimply to re-
normalization of the strong vertices, namely, to appearance, in
(18), of the factor fﬂ necessary, at the game time, for fulfil-

ment of the Goldberger-Treiman relation *

F= Jﬂf,, , (18)

Then Lagrangia.n (16) can be rewritten as follows

mZ‘ “ff"/”vf/ j— VV F(‘) 28 ©(19)
To conclude the section, we stress once more that the
chrial quantum field theory contains some energy scale equal
to 47/;;— =1 REeV y @8 it has already been mentioned in
papers 7'26). Thererfore, till we are congidering the low-energy
interactions of hadrons with energies 7"<‘ (9‘57'[7:.)3 » we may hope
to obtain reasonable corrections, in the one-loop approximation, to

contributions from "tree" diagrams (the Born terms). In what fol-

lows we shall demonstrate this by calculations

*
) Further on, following Lehmann7), we put ?ﬁ =14.25
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of various quantities of strong, weak and electromagnetic hagron

interactionas.

3. %% _scattering (Strong Interactions)7'9)

Further we shall omit most of details of calculations
(these can be found in original papers7_14)), but mainly discuss
the results obtained. First of all, congider the elastic % % =~
-scattering. '

The scattering amplitude has the form
Ciclsl S > g1 WGg R ] TS (g pon
ST 8 fst)is, 8, Al S, 5, Alul 5)] j

‘2 3%y 1y 44y 1 ‘2’3 P

where _[ ig the unit matrix, [A,

(20)

are the pion isotopic indi-

ces, CY‘_J are the Kronecker symbols,,&'://ojf/oz)/z 7:604—/3-);24/-‘//0, ﬂ).z

In Fig. 1 the diagrams are drawn which correspond to the one-

~loop approximation (the order is not higher than /1('4 ). Diag~

ram Jla
%7p,) W7 R 2 %
S A S RN R e
= ’><_><& 10* Bl X, B A
VPRt F Y % % B8 v 8% <
v & 8 &
@ £
¢ v e
Fig. 1

corresponds to the “tree” approximation (the Born term (17)).
The contribution to the amplitude from diagram 1v is calculated

by using the superpropagator methodS). The contributions from

14

all the other diagrams are calculated by standard methods of re-
normalizable field theories and here only the terms quadratic in
variables ,S‘:f;d are kept, as the terms of higher powers will be
small, of the type 0/;’%/2) « Taking into account of the
contributions from all members of the baryon octet is performed
by the use of the ,SYZ{/3) theory 8, 27). As a result, in the

1/]}"’ approximation we obtain the following expression for

ﬂ/rfﬂ/ M) 9):
Als 4, 1512 = %l3.5-1) + 07 JT/ 5 z‘ “),
IT0523) = B8+ 5202005 a3% -(35-1) 2 705) -

~[3(8-0)(d-8) 133 1] J(it)- [307-1)(7-0) #3F 1] T0E) o1
1

where § = Jf 2 /f'mfz() H=-3,8=3(=0632 205 « - "/’”f)‘~
,]/;’/ =7 - “'/4;/’7 s2/(re-0)! _

(2/1 1)/
i -1 / -
er(ffX X:/_Z"f)/z
= Hof-i% b "_‘{] 4 f
Iy =12 % 7
k7 g1 . —/ . ') ;
? Eﬂj-! d 3« (22)
At energies considerably smaller than {/)ry_/;—; {formula (21)
is good expansion of the o -scattering amplitude in powers

of small parameter (., X ¢,0Z2 . The form of the amplitude in

channels with 1sospins O, 1,and 2 1s defined by the formulae

A" =305 01) UL 5 a) s flru Z,8),
A=At sa) Hlats) B Resa) it

(23)
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28) we introduce the notations

[('n) -

, -y L 11) z ] - -
x(, = C?;, ) / é; 0(21/1/ - C,ef’ Zl :;/1-,-(')(1-)()7
Lpey d=2(1-5)1x)
A{o //JT/ 2(,? )gr/:{/(‘(o/)(}ﬂ /rVX) 2 (24)
Here 64f_ are the scattering lengths, é; and (’9 are the effecti-

Following paper

ve range parametera, [‘3/}(} is the Legendre polynomial.
Then, for the 12 -scattering lengths and effective range para-

meters we obtain the values presented in the Table.

Table
o(gm[ Experiment Our values Values from ref 28)
2%  0,10; 0,60 0,15 0,15 ¥ 0,02
at|  -0,10; -0,03 -0,042 -0,065 ¥ 0,025
afl  0.032; 0,040 0,031 0,0341 ¥ 0,0036
b 1,14,1073 (1,07%0,27).1073

a3l 1,4.107%;1,8,107% 1,85,1073 (1,48%0,08).1077

adl -2,1074; 3,107 2.6,10~4 (-3%8),107°
b -1,02,1074 (-3,8%1,1).107°
2
) . -5,1,107° (=4,4% 1,1).107°
% 2,107 (1,13%0,36).107°
% L 1,06.107° (1,27% 0,36).1072
o+ 1,33.107° (3,8%0,5),107°
al 5,10~° (4.8% 0,8),107°
al 2,107° (1,7% 0,8).107°
16

For [)ej , the above formula allows us to obtain the follo-~

wing simple expressions for the scattering lengths:
a, =(22:)4847) 25

L/, TN ’)’
a) = (443l +8) Zp . (25)
The results given in the Table are in good agreement with the

17a,d; 28)

known experimental data , as weall as with the results

of the Palom-Yndurain phenomenological approach 28)

g where the
Gribov-Froissart representation is used. The results we have
found correspond to choice of parameters in the mentioned model
which gives the value cz; = 0.15 (see Table II in ref.28)).
All the scattering lengths for F?,,S obey the inequalities
af, «af Q00
W2b+3)(26+5) ) (26)

derived in paperszz) from the requirements of unitarity and
analyticity of scattering amplitude.

Notice, that though the values of scattering lengths of the
Sand £ waves are mainly defined by the Born temm(17)(Fig.le),
the Born term contribution to the scattering lengths oi higher
partial waves, starting from D-wave, is entirely abgent, and their
values are determined by the contribution of pion loop diagram 1b.

Expanding the a.mplltude H in partlal waves and making
use of the formula (<{¥5- -t) {l-,S’) /zﬂ , one may gain infor-
mation on a behaviour of the % % -phases. In Figs. 2,3
the corresponding graphs are drawn., The dashed line shows the
behaviour of phases in the limit /ﬂi’—r-&‘ (the case considered

7.8)y,

in refs. In the P-wave one clearly sees the Jo-meson

17



resonance at energy ~200Mev with width ~ 150MeV ,

The polnts* and+ are taken from ref. 17a) {and from ref.17b)’ and %

from ref.17°)(for the other notation see ref.e))
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0 o
o Fig.2 -
o "
ISR
150 + . |
vl &)
130 bd
120 o
7]
ne
“
w0 30
20 20|

S

Fig.3
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To complete this section we also mention some inequali-

22)

ties found by Martin in the subthreshold region from the

conditions of unitarity and crossing-symmetry for the S-wave of

the process % ‘% "+ 37§ °
b4
co { y .
Fo (8)= i fan [R5 2 ) s flftou) s figu, t.5)]
-1
Let us write down these inequalities
SR L — T e —
1) S0 (F)< fo (1) o<t

7) dfe“(:f)
a5

3) £.0F) =2 /c/,v £708)

(27)

S
Q
W
‘N
1.
In
[N

4 L0 > £ D),

- a/://-r'}<6,v 05;75 /,.,',g

B o 7 R
¢) AL 5 , 1747 476
a5

7)7/ Vo) > A /mt) / / ve) (28)

Direct calculations show that amplitude (21) obeys comple-

tely all these inequalities.

4. Iii_o_n_Electromagnetic Form Factor and Polarizability (Electro-

magnetic Interactions)lo’ 11)

The interaction with electromagnetic Fieldﬂm is introduced

into Lagrangian (11) by the standard gauge-invariant way
g/u% — /é)m ,,/-CJ%)%I
- o~ 7 /'J ‘A — 7
7Ll tieh,)8 (29)

Then,in addition to Lagrangian (3) for the /J// -interaction, we

obtain the following Lagrangian of the 77/97 ~interactions

- - (”/;‘/ =
)// //7/”"'”"’ "”’)"’/7 ’j APAe 7 (30)
7 - /):’



a) The matrix element for the pion in an external electromagne-

tic field,/ZM equals

_ vy g LY
CFUSANT) =8 s G D7) 1)

where p, and p, are the pion momenta,/O:/%ifb,?’:/&i%k and

L)<t Gty + 1) (32)
ig the pion form factor. gizfﬁ%/yq ip the contribution
A3
to the form factor from pion diagram 4b and ¢{ //7}

that from baryon diagrams 4c,d,e in the €Z%;2 -approximation.

{iﬁq) x;éi)? B/\ 8 *jf ;j ] <l_<é§>5;§‘&

VAR / B\ wr
_ S N . ’/ \\ / x
7P ¥ 4 \
<4 é c J Y]
Fig.4
(%

To calculate the function 95- /?7 we again employ the

superpropagator method. As a result, we have

/»}

/7}_ /72 [: 3 &Z”F]14’7 ,_/1 72/]/?;)12
(33)
where £ = 0.577 o.a, 57 ;%; 5 06; and .9??72) are the pame

ag in formula (21),From (33) it is seen that the contribution

from the pion loop to the pion radius equals

; Z/;’\) 30"0 [3 3 47;[— . £
= .. Zp f LV [ =0 065/
<1 ),”_ =3 ,? g 207 - -~ ] .085 (fm)”. (34)

The contrlbutlon from baryon diagrems is agein calculated up

to 672 ~term due to smallnesgs of the other terms. All the diver-

gences in diagrame 4¢, d,e cancel and for (B/ (7)
we obtain the expression*)
() _ 17 p <
Te@td rlf (35)

Hence, for the pion mean square radius we find the contribution

2 5 (8) - - 2
{7 )ﬁ = 0.36 [ fm)

(36)
From (34) and (36) we have finally:
% 75 (%) 4//.’/ - e
N R DNy T I,
that is in a satisfactory agreement with the recent experimental
datala).

Ingerting the functions (33), (35) into (32) we arrive at the
following exprespion of the pion form factor
Tp =1t *8572*/1'(/_1)]/(72".}. (38)
This formula describes the behaviour of pion form factor at
energies 1/1?1/ < I e in good agreement with the expe-
rimental data recently obtained at Dubna and Serpukhole) (see

Fig 5,6: ©Points % are from reflsa, § from ref.lab).

)Factor 1.7 arises as a result of congideration of all members

of the baryon octet (seeilo) The %-A -interactions make a

very small contribution to the pion rorm factor and these will not
be discussed here.
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Fig., 6

It is interesting to notice that the pion radius is defined
almost completely by the contribution of the baryon loop diagrams.

The value of the radius we have found is close to predictions on

the basis of the P ~dominance model (\/( Z‘) ~,//ﬂi N 069(//”/)
b) Now let us write the matrix element corresponding to the
Compton effect by pion
<V T m)/,f//ﬁ 404 () “;//3:' <9 - 92068
7) f//? P //“' ‘7}44/02/7171;(39)
where 71’ 72

are the photon momenta, 54 ’g v are polariza-
z
bilities, p,

s Pz 8re the pion momenta, a,b isotopic indices.
Note immediately that for this process in the one-loop approxima-~

tion divergences cancel not only in the baryon loop diagrams but

also in the pion ones. Therefore we shall not need to employ the
superpropagator method and shall be able to confine our conside-
ration to the lowest orders of the nonpolynomlal chiral Lagrangian.
On introducing the mass term - W_Fz
(12') in the /]

- = z / - \_4
GF Aoy F Y 7

¥ithout giving the general expression for the covariant amplitude

r—-r/'“’
/qéy » we write here only the two first orders of perturbation

the Lagrangian

-2 order takesg the form )

(12'1)

expansion of thig amplitude

/*r/" b4
=ze /é,; T2 ré’)/f ;j /0172 /7 /171'/1/ s

x[/’»- #ete) 5l /2 »93 5,4, 3// /,/ 9 /z% T
45°
37% d%k) ; ‘z ;f§<£( i‘ i} ‘;’g 5 B 5 g

¥y < >/ / ) 8
e T T ¥ ¥ \_ SRR 4
'

a 4 C ad e F g

L “ Pig. 7
The first three terms in the braces are the Born terms

(diagrams 7a and 7b) , /6;,’/ /71 7 )
from the pion loops (diagrams 7c, 74d), /ﬁ h//%yl/ ) that from
Y

is the contribution

*) The mass term can be introduced in a different w? Nevertheless,
it changes slightly the l'inael results (see refl {
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the baryon loops (7e, f,g,hl). In ﬁ (s) only the constant terms

p=-FUERTY,
are kept because of smallnegs of the other terms of expansion in n (43)
powers of ( 71 ?1 ). Besides, in deriving (40) the equalities
P we get
v L = h be d.

(9ut0) =(9:8,)=¢ 71 " i1 have been use Lyt = Ly2lgq) = /r)ﬂ/r ‘) =0,33%; = 7'/4";//"/3

In combined calculation of the contribution to the amplitu- - - %71 7 ‘,/ﬂ /; /ﬂ»_’ p’
de from diagrams 7c and 7d one arrives at the finite expression: ' 4 ("‘/' /f?)

2 . .
Lo = G ulg 22)] —zé’ 817)) =004 Zy =510 (1)

ml[ims it Y Apzo 17 ' (44)
JB /71‘/1) (157 )//“ }/71/‘ d/’f\fj/q-{—‘—/;ﬂ-/) ]—!‘/'(41) , .

It is interesting to note that the functionj‘/)"}/%yz) is

rapidly varying in the threshold region. As a result, at the
i i i t t £ .

When considering the Compton effect by a neutral pion all threshold of two-pion production we obtain
the contributions from diagrams 7e,f,g cancel . For charged pions,

the contributions from nucleon diagrams 7e,f, ﬁ‘e equal 0("'/"0’”2) 2.5 /7?3 ; /1"/72'2} d. ”(/;;_. (45)
(W) - é _Ziﬂ_ The found values of ’/y;rf coincide in the order of magnitu-
/%)7 - 3 (f?f/;’-/z ’ (42) de, with the estimates made on the basis of current algebra 29)
If' one takes into account the contribution from the other and quark models 30)’ but differ by a factor of 2 from predictions
m-embers of the baryon octet the factor 1.7 again appears in of ref.29). The value of 0()’7" differs essentially from the result of
(42). ref 22, 0(97" =Jd .
Defining the pion polarizability as a coefficient for the ) ) 12)
effective interaction of a pion with an external electromagnetic 5. Degays of Charged FPions (Wesk Interactions) .

rield A, *)

Congider now main decays of charged mesons and calculate the

*)The factor (g’“'%%-/:ﬂ IJ) , always entering into the structure constant of these decays. To this end we shall need
one-loop approximation of the amplitude 7:)'?/ (see formula to complement the chiral Lagrangian with the part responsible
(40)) in a 1anguage of quantum mechanics corresponds to the com- for the weak interactionas. It is as follows
blnatlon(t —//z) . Hence it follows that the pion
electric and magnetic polarizabilities are equal in magnitude 0((6) : /H/ v’:z"/- (2” -2 ( /1?/"' ,@“’:)5;);—
and opposite in sign. J inl (46)

(1= iy # 0BG T [
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/
/ ao - i
where 4/“ ':E‘”A'@/EK/I-%—)J) » O is the weak coupling constant,
ﬂ the Cabibbo angle, /ﬂ4‘e and v  the muon, electron,and
neutrino fields.
The precess amplitudes Qr will be defined as usual. For

£ 7
instance, for the process % - ﬁ;ﬂ/‘Vd/ this definition has the

form

§(4)
=) = g—_____!Zi.ﬁL__. M7
oIS 171y = g Gl

where 6-:1"‘ is the photon polarization, /0,7 and f are the
momenta of pion, photon/and lepton pair, respectively. Since the
baryon loop contributions are much larger than those from pion
loops, as can be easily seen from the example of earlier caleu-
lations, we here shall consgider only the baryon loop contributiong.
a) #e start with study of the main pion decay 9'3—»_/1121)(8!1)) .
On the basis of this process the only parameter of the chiral
theory - jg; is fixed. It appears that the perturbation expan-
sion order next to the Born one gives only a small correction to

1%; and in loop diagrams 8b and 8c again all the divergences

cancel.,

M 2

<ﬂ' A3 < s 2

=T > > +4<><
#r v 57 5 %! 77 53

Fig. 8

As a result, in the one-loop approximation we obtain

26

777*/”/ g //"/m—)]ﬂ« U -<48>

where /7/,, is the pion momentum, P fr) 40,:6’ f,,,(f—(/)l{,

is the lepton current. The second term in brackets is egsentially
smaller than unity. Comparing (48) with experiment gives '[C; <

~ 93MeV.

b) Now consider the process E‘z—t/ujﬂ)dV « A detailed discussion

on this process can be found in papers 31'29).

L L < -

1)/4”

(23

v

The Born approximation is defined by diagrams 9a;

7;5”"45 //"/f .fﬂﬁz_)f”/

—-g(‘c",f'ﬂt?/u(/;u (; f%-/‘ﬂ/u)_i/;/i ‘/s')"(/f,, (49)
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The one-locp approximation is mainly determined by diagrams 9bi [ 45_.34) 057-—“7}&
and 9c; . Their contributions are of the form A A Mg - (54)
The relation following from current algebra is
o E 12 y
7 = =- 5’ /,m) ’_15”,77:3// /{‘7/3 R, o=~ f/ZEZ
M M /’"’(ﬁ (50) 4 (55)
, - ) (*) Compari with (51) one can easily see that this equa-
A/;/‘i/,,-/’?' /?m?'o’)]fyv 7 paring (53) (51) ¥
where lity is fulfilled.
/Z. = 9 s b = f;z The pion polarizability, at energies (71 71)= o,
Y A‘[i;" ’ A 6/,’2'7)2_/;- (51) is basically determined by the baryon contributiona (see 42)).
and {fuv’d/@ ig the fully antisymmetric tensor,Thus, taking Comparison (42) with (51) gives
account of the nucleon loops 1s reduced: 1) to renormalization of
- h, = £ p"
the constant ﬁ7 (see (48)) and 2) to appearance of the terms /4 ?7_/g (56)
describing the structure constants of emission. 29)
/ It is just the relation following from current algebra .
For the ratio 7,4//2 = dV we have
e The consideration of contributions from the other members
()/ = yﬂ{f <041 of the baryon octet results in the appearance of factor 1.7 in
. )

(52) coefficients with yﬂz and of factor 1.2 in those with #ﬂ .

. : : . 32)
whereas experiment gives two possible values \/ __[a,,‘) _2'} . Therefore equalities (55) and (56) are not violated.

Note, that in our approach there hold the following from

L |
| N e\
current algebra 29) relations between the constant /ZV and cons- \/ A
y > NV

tant J[ of the decay ¥ ‘» ﬂ/ y, as well as between the constant Ft g):“ -;‘r e »e
hﬁ and pion polarizability ﬁg . d/ o g
The amplitude for the process 5«7"—*{{ has first been 4 X /

. A _ N7
- 33) e\ °\ /¥
calculated in the paper by Steinberger in the one-loop 7° B )
P

approximation (see Fig.10): 4 — > ”Oy;’, Z
37

vty §T g* we
- o ) (1
/ Myt fi ? 7« / =059 = C
707 /Zﬁ/{/- M s (53)
. : i Fig.
where 71 are the photon momenta. The experimental values ofJ[ Fig. 10 le-11

are ag follows
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; 0
¢) and finally, consider the process 57#-77 eV (Fig.11).
The calculation of its amplitude is analogous to that of the

pion form factor, and results in the following expression

: =reenf, 1rgy 2T VI gaN, 2 g, ypl+)
];77’»&7"9'#) / /‘/’5(7#;.)7 i é;*/,;)/”}a“;%/? 4 P

(57)

where
r7 36,711 Vet
7 =/7 # vp! ) -
B o) L G = e Pe
This result completes our study of the pion interactions.
Further, we shall demonstrate in what way 1t is possible to employ

such an approach for description of kaon physics,

6. Kaon Blectromagnetic Interactionsg 13)

To describe the kaon interactions in the framework of the
chiral theory one should use a Lagrangian invariant under the
group /5146/7)X/5?7/ﬁ7/ « The mags terms violating both the
[S§Q23)XIJQYZ£/and /f577fJ{JCQ7ZQ symmetry of the Lagrangian are
introduced according to papers 36’37). The interaction with an
electromagnetic field is again introduced by a gauge-invariant
way

g 2 ; r
T) /l{ — // 624 Ty E,{ZM4) XV 5

4
S (58)

where
z o2 * - xTr -
/?/ - /)I/ /A/)/])z“ ;A

Then in addition to Lagrangiasns (3), (12') and (30) we obtain

the following parts: =P
L
P LT Ay e
=y g T E 7 F1, ’
R O TN S 7 L

where 9/‘ 2/:,(;)7;2 =/A’;A’_7, é;(/gd/ is the antisymmetric
tensor. We need this nonpolynomial Lagrangian, togetper with
Lagrangian (30), to calculate the contribution from diagrams

of type 40 to the kaon form factor by the superpropagator method.
Since in other calculations we shall not use superpropagators,
the remaining parts of the Lagrangian are written here only in

the lowesat orders of{/cégn) with taking account of the mass

terms™)
oy, = ROES FYGR) i A (59)
Loy =(15) R (R -} KT (60)
Lo e Bl Gt QDo A e
<, =”:e-//7‘,237%15”: , (62)

DB My fest S et DE Gl bk
,{2‘/-} ’E&I_}//g 'Z"Iﬂ’a/-sz. 4 r-/z, - 7 A/? ks 763)

N L 5 NN S )50,
Loy GRw VBT 02 T o3[ iy 22 [
r —
42[-!—-11/1-‘//1 # M{/Z E- f//{(’u//‘t//" A’u//‘_;/z’ﬂ,f,/.f.', ' (64)
X H = o — el _ 7 2
Here K7 =2k'W w2kx’, 5= 252K oW yR, 1383 = B4 83,

B are the baryon fields, o« is the parameter of mixing of’f and

A coupling ( « = %3 ),

*) - 5 . As an example, for baryons we write only
zgep;:rf»of th: Lagrangian which cor'ltains A"‘ « The otgefnparts
can be easily obtained with the use, e.g., of monograp .
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Now proceeding in the same way as in sect.4, we calculate the kaon
electromagnetic form factor and polarizability.
a) Defining the kaon form factor by analogy with (31) we

write it in the fomm

~ %)
S?A,/y/‘-'f’é 7) * 7//7/ 77 /7)+

(65)
Here Qp(w/ / J is the contribution to the form factor from
the pion loop diagram of type 4b, gg/k,/yj that from the
kaon loop diagram, and Q7AB7/’7_) from the baryon loops
of type 4c and 4dgbut with kaon external lines. These contribu-
tions again correspond to the €§§;Z approximation. As for the
pion form factor, the contribution from the kaon loop can be
neglected, and we write here only the expression for Qﬁ'/» / )

and 25{ ;///
2t e BB -V

P (66)
Here the constants aﬂjﬂ ¢ and function L7Y;£;1 are the
z ¥
same as in rormulae (21) and (33)., The term in brackets contribu-

tes to the kaon mean square radius. It equals

5 »
< '21)1”5/ =0, z.u"//'m}‘,
(67)

The contribution from baryon diagrams again turns out to be

*)

essentially larger and equals
&y <7
(ﬁf)‘f M . (68)
Hence it follows

()
(71);1 :0,361,”)‘? .

(69)
From (67) and (69) the charged kaon radius is obtained to equal

/< ) e 0.6Lm)

(70)
For the neutral kaon the baryon loop contribution-is zero.and
that from the pion loop is the same as for the charged kaons.

Thusg, we have
/<2, xa.22(fm).
£° ’

This result is in good agreement with the predictions following

(71)

from the vector dominance model (a variant of the model with cur-
rent mixing 21)).
b) Now we present the calculation results for the amplitude

on the Compton effect by kaon.

*)Factor 1.4 ariges due to account of all contributions from the
whole baryon octet. It ig interasting to note that in case of the
exact S'4(3) symmetry all the one-loop diagrems for the meson
self-energy, form factor and Compton amplitude appear to be
proportional to the function f(b/}:}(i-d}z'ffa(z. Its minimum
corregponds to of -0.65, that agrees well with experiment.



In addition to diagrams in Fig.7, but with kaon external
lines instead of pion ones, we will congider algo two diagramg
of type 7c and 7d, with the kaon internal lines. The latter
diagrams give the negligible contribution to the Compton amplitu-~
de by pion but in the case of kaon thesge diagrams should be taken
into account. Then, without the Born terms, for the amplitudes
with charged and neutral external kaons in the ei?;? approxima-
tion we obtain:

i—r MY _

£, =28 2/1 "G09: ‘71072”/[ /",?7//71 9¢) ’r /J’L,(K%?'/ %)+ /ix/ﬂ)]’ 72)

r My . .

g g g b7 ) e
R i T

' (73)
. /»'//, . .

The function j/?x 71?‘1) corresponds to the contribu-
tion from two diagrams with the pion internal lines (of type
Tc and 7d). Being calculated together these diagrams give the

following finite contribution

(5 , -2,
P ’/7171'#/1{»‘./"/ g}L’Z‘ JEL) (74)

217 f

7 :;/;[57/-[{7/;1-,}' 1/"]:i zj 4 (75)

The functiong;apidly changes with increasing . Thereiore
the contribution from ‘/31”7/y}72) to the amplitude jﬁ/ud
equal to zero at ??7& =0 may become consgiderable at sulfi-
ciently large 9@ 9z .
. The function /;Af"//y, Je ) corresponds to the cont-

ribution from two diagrams with the internal kaon lines and

external charged kaons:

ﬁfﬁfyt 72) =5fy) 1+ 12, ) /s

2712 2mtl).

(76)

Por the external neutral kaons such a function has the form

L P P 7,9 -
R (9:)= (4574) % R4 )

z
;2/7?/

Hence it is seen that at ﬁ?}g&) = ¢ only the function

"
;?ﬂ?;ng) gives a nonzero contribution to QWIMV Cﬁﬁié

(77)

zao%gﬁ;fl

In the case of the neutral external kaons (like in the cage

My
of the neutral external pion lines) the contribution to 71'

from the baryon loop diagrams is zero. For the charged ext
kaons the total contribution from diagrams of type Te, 7f
equals

@) RSP ¢
fk x L40454) 7.

[
ernal

and7h;

(78)

Here we again have kept only the constant terms because of

smallness of subsequent terms of expansion in powerg ol /?Q?Q)

(of the type ¢ /-%%2%) ) Hence it is seen that at (9:142)=¢
'~

the baryon loops give the main contribution to the amplitude eof

Ny ’ v
the Compton effect :7:“ n/ﬂ) . The smplitude 2:/1?7:0.
Making use of formulae analogous to (43), we f'ind the

following values of the kaon polarizability

g = {;Z. _é; Z~ -3 -3
“ot = (i) ¥16 07 4m))
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=0

o< 0. (80)

These values are consistent both with theoretical estimates

tound recently on the basis of current algebra and PCAC 38):
.2 exs

oLy 10 "(/M)J , and with the experimental data 19): ¢ ¥~

~-(yt11)-10 )l

7. A/l . A/rf' mags_difference

We complete the study of low-energy meson interactions cal-
culating the neutral-kaon mass difference.

To this end, we introduce one more Lagrangian describing
,3'—/( ~interactions and corresponding to the rule 477: 1/2 .
The simplest chiral Lagrangian of such a type, having no deriva-

tive coupling is of the form 14):

/’/z} o~
(81)
where % :/A'f‘f) , and Z///_'):;‘) is the same chiral

matrix as in Lagrangian (11). Taking again the exponential form

for the matrix Z’///—__y?) one may write the part of the Lagran-
L

gian responsible for the neutral kaon interaction in the follo-

wing form

N R
7 :(('//(//(z;ﬂ.’z-,—j]f,(’-:.‘ *_,—r—f‘
0<§;k“ A V;%~ “e o fTY -
7

(82)

PRV RPN AL |
where o TT— s YT /" . The Born approximation

of this Lagrangian reproduces correctly the low-energy theorems of
current algebra concerning the nonlepton decays of neutral kaons
into two and three pions.

The coupling constant a can be fixed by using the probability
of decay A’/‘., > % [ s (Z5) ) . As a result, we have;

1 25m (245)F

(25)

e-(zmv)i gy T

/72 (83)
Now we proceed to calculate the /(/‘ —/(;, mass difference.

The mass difference of these mesons is due tc the different virtu-

al states  into which thege mesons can go over, with the account

of their £ parity (see Fig.12)

Ko —~_ K ' -
A R
—— ¢ 3%
_K"'_@‘i >>_A’/‘:_ _(." - —_\7 _ A/L
/(,p —T\ A/,jv A, __}Z A
— = >—— —--L—<2mt)—‘ -~

o ;g

Fig.12

Therefore for the mass difference A/ﬂA,u one may write the follo-
wing formula
A =11ly -pt, =2 [ £o -1£2 ]
< e J £
2 5 fr‘ 2 (84)
where ‘7(’5. is the sum of matrix elements corresponding to the

infinite get of diagrams with even number of virtual pions
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(Pig.12a), and_fl is the game for diagrams with odd number of
pions (Fig.12b.)

The quantities~/;~ and ,/L can easily be calculated by
using the superpropagator methods). In so doing, the difference
A/7? « appe~ars to be almost completely determined by the
two-pion diagram. Contributions to A/Z?/o from diagrams with
three and more virtual pions are smaller than 1%. The contribution
from the one-pion diagram should be calculated together with that
from the diagram with one virtual ;7 -megon. In the framework
of the exact ,S'/(/—i) theory these contributions cancel. The
congideration of ;7 -meson for the loop diagrams is nonessential.

Now let us write the matrix element corresponding to the

two-pion diagram

B A e )2 - )]

’ /72 /g;/ /‘1 /7?
2 (85)
/72
where C is the Euler constant and ~77/9/1G‘ ) is given by (22).
Ingerting (85) and (83) into (84) we have

Kedm,, = 0.52 0 (%)

g (86)
whereas the experimental value for A//? equals 0.48 ’14.9/1’7)

(see ref. 20))

8. Conclugion,

Summarizing all the above examples of utilization or the
chiral quantum {ield theory for description oi low-energy meson

interactions we can note the following:

The chiral quantum theory not only in the tree but also in
the one-loop approximation is in good agreement with the consequ-
ences of current algebra and FCAC. Reproducing correctly all the
relations following from current algebra the chiral theory, be~
sides, allows one to calculate alpo the absolute values of va-
rious physical quantities. The resulte obtained reproduce, at
least, the real qualitative picture of various physical processes,
giving in most cases good quantitative agreement with experiment.

Due to that there is no rapidly convergent perturbation seri-
es for strong interactions, one must carefully treat some quan-
titative results of this theory. Nevertheless, even now it is
possible to point out some very reliable results due to their
weak dependence on the contribution from diagrams with strong
vertices. These regults concern, for instance, the values cal-
culated here for % § -scattering lengths of higher partial wa-
ves which are defined by the pion loop diagram 1b, a noticeable
increase of the pion polarizability in the threghold region, in
comparison with the region where (g,9,)=¢.

Consideration performed in sect.2 allows one to hope that
the strong interaction effect may be taken into account correctly
by renormalizing the strong vertices (see algo ref. 15)). This
question, however, requires a more careful invegtigation.

In conclusion, I should like to express my belief
that the chiral quantum field theory, giving in numerous cases,
good agreement with experiment and having a number of remarkable
intrineic features (for instance,cancellation of divergences in
loope with the strong vertices)undoubtedly requires the most

thorough study and represents a highly perspective trend.
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