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It is well known that theoretical predictions made on the 

basis of current algebra are in excellent agreement with exper

imental data on hadron interactions at low energies. Nowadays 

there exists a great deal of good review articles on this subject 1). 

Similar results may be obtained in a field-theoretical approach 

by using a chiral-invariant interaction Lagrangian. The field 

theory with a chiral-invariant Lagrangian has been proposed by 

Gursey 2 ) and Gell-Mann and Levy3). Connection of' current algebra 

with a chiral Lagrangian theory has been found by Neinberg 4 ) 

on the basis of consideration of "tree" diagrams only. 

Note that the chiral-invariant Lagrangian has nonpolynomial 

form and leads to nonrenormalizable i'ield theories. This circum-

stance favoured that for a long time many authors try to consider 

it only as a phenomenological Lagrang).an on which basis one 

should not construct quantum field theory in the usual sense. lt 

was used only for description of low-energy processes in a "tree" 

approximation. 

However, when there appeared the methodfJ allowing the 

description of quantum fjeld theories wHh nonpolynomial Lag

rangians (see, for instance, rer. 5), more and more attempts were 

made to construct a quantum chiral field theory, where, in addition 

to "tree" diagrams, the "one-loop" approximation is considered6-l1) 

We immediately notice that in this approximation we obtain not only 

corrections to the Born terms but also an essentially new inform-

ation which is not contained in the "tree" approximation. This 

concerns such physical quantities as, for example, wave lengths 
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and ef"fective-range parameters of 'Yf'iT -system for higher 

partial waves, starting from 'lJ -wave, meson form factors,its 

polarizabilities
1
and decay structure constants. 

There immediately arises the question: to what extent is the 

perturbation theory correct for description of such interactions 

of particles where, apart from the weak and electromagnetic inter

actions, there are also the strong ones? But so far one cannot 

give a comprehensive answer to this question. However, there are 

some grounds to believe that in describing the low-energy intera

ctions in a chiral quantum field theory at energies Jef.:. 'tli!.lf:- ::::: 
1, 2GeV ( .ri, -:::: £1 :Z Jvle V is the pion decay constant) one may obtain 

quite reasonable results in the one-loop approximation. 

The basic idea of our approach is tightly related to the 

following supposition firstly made by Lehnmann7 >. Since, by the 

Adler-.Veinberg theory, in the low-energy limit the first pertur

bation expansion order gives the exact result then
1
coneequently, 

higher-order corrections should also be small at small energy-

-momentum. There, of course, remains the question concerning re-

lative importance of subsequent orders of perturbation theory. 

As to the direct SiFJif- interaction the use of perturbation theory 

here is completely justified because there we have a small expansion 

parameter of the type(.,;}~ )
2 

z 0.015. Unfortunately this is 

not the case for XiAI -interactions,where there appears larger par

ameter f.. ·.M~)Z::::::; 0.66 (however, it is smaller than unity}. 
'1"i!./'y;-

Nevertheless, one may hope to consider the higher-order strong 

effects by performing the finite renormalization of the "strong" 
1'1;.~ . vertex: appearance of a factor #fi for 4 (see ref. 7,15 ), 
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One of interesting features of the chiral quantum theory, 

in particular, is that in the one-loop approximation for ~;V 

interaction there occurs the cancellation of all divergences when 

all diagrams of a given perturbation expansion order in 1;J~ 

are considered together. 

Therefore, we shall need to use special methods (e.g., the 

superpropagator ones5>), necessary for description of non-polyno

mial theories, only when considering direct c;;;-;,_ interactions 

the contribution of which to physical quantities is, as a rule, 

considerably smaller than that from ~AI- interactions. The 

latter are described by standard methods of the renormalizable 

quantum field -theory. 16 > 

To complete this section we would like to note the following. 

Despite the absence of rigorous proof of validity of the employed 

perturbation theory, one can say with certainty that the informat

ion contained in the one-loop approximation of the chiral quan~ 

tum theory gives a correct physical picture of hadron interactions 

at low energies. That the considered approximation works well is 

confirmed indirectly by the following: i) The calculated physi-

cal quantities are in good agreement with the available experi

mental data 17- 20 ) as well as with predictions of other known 

models (e.g., the~ -dominance model 21 )); ii) the found expres

sions obey the conditione following from the most general require

menta of field theory (say, the Martin inequalities for ~o~- 0-

-scattering 22 )). 
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In the next section we present the basic principles necessary 

for construction of a chiral-invariant Langrangian. In the second 

section we shall describe, in more detail, the perturbation theo

ry used here. In the third section pion strong interactions are 

considered and ~~ -scattering amplitudes,scattering lengths, 

and effective-range parameters are calculated. In the fourth 

section the pion electromagnetic interactions are studied and the 

pion electromagnetic radius and polarizability are found. 

The fifth section deals with the main modes of pion decays and 

with calculations of the decay structure constants. In the sixth 

section the electromagnetic interactions are investigated for 

kaons and their electromagnetic radius and polarizability are 

oolculated. And finally, in the seventh section the mass difference 

of neutral K~., and K,t mesons is computed. 

1. 22!!!!=!~!~E!~1--~s~~s!~n~ 

Nowadays there exist various methods for construction of 

Lagrangians invariant with respect to the chiral group ~t{(;)x~t{(;) 

(see, e.g.refs. 2•3>).we attempt to describe this procedure in the 

most simple w~. 

First of all we call attention to that one should distin-

guish between two different symmetries; kinematical and dynamical 

when constructing a Lagrangian of interacting :fields. The kinema

tical (algebraic) symmetry requires the invariance of a Lagrangian 

under space-time translations and rotations of coordinates.It is 

the condition of relativistic (Lorentz) invariance which must hold 

for any Lagrangian. The dynamical symmetry requires the invarian-
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ce of a Lagrangian with respect to certain transformations of 

fields entering into the total Lagrangian and, as a rule,it 

corresponds to some internal symmetries of the system of fields. 

The most known example ot· this symmetry is the symmetry of the 

electrodynamical Lagrangian under gradient transformations of 

fields fl /"1 and under gauge transformations of fields V 
Recall briefly a method for construction of the interaction 

Lagrangian in electrodynamics with the use of this symmetry. 

"' v The Lagrangian of free nucleon f~elds 

..... -cL; ;: t yl d y/- 1'1;t~y/ y/) 
(l) 

where viy;= j[tiJt,~y!-'j.,iftu~l'1tt is the nucleon mass, is not 

invariant with respect to gauge transformations or the :field~: 

where e 

~~ ·:::: V;.. e -te/lr.-rJ 

' is the proton charge) /,(.X) 

(2) 

is an arbitrary smooth 

function of X • If, however, one introduces an electromagnetic 

field .Jl,.~~~ interacting with ~ by the law 

Ly_r;;:- e~jj., /;{, ~ , 
(3) 

then the total Lagrangian will simultaneously be invariant with 

respect to trans:formations ( 2) and gradient transformations of tl1e 

field ./l...M 

fl' ::::: .fi T- ;: /1(.-r). 
...... 11 .. /4-1 .... 111 

(4) 

This symmetry corresponds to the well known requirement that the 

observables do not chanee under the gradient trans:formations of 

the fields ./1 . 
/.f 
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Now we proceed to construct a chiral-invariant Lagrangian. 

Consider again the Lagrangian (1). It is invariant under isotopic 
. .,..... ± 

transfonnations t.;J I = e t 'fW v , where ~- is the isotopic 

matrix, ~0 is the constant vector in the isotopic space. Let us 

examine whether this Lagrangian is invariant under chiral 

transrormations mixing up states with different parity: 

~ - ~.. . • I y ·= u "(a.)'t' ) ·u (a) Z(11
(a) :; 1. . 

( 5) 

The matrix U may be taken,' for instance, in the form 

{ ...,...,.) . (o I) 
ZC~~1/t:t.)-= exp -is- 1 a. , ~-:: ·£ I o 

(6) 

After transformation (5) Lagrangian (1) acquires the form 

-:.. - - 'l.t - '1 . 
o4tilf) =it/ 9'! -~y./21. ({!j'li /ti)l/. (7) 

It is easily seen that if 11 = 0 then Lagrangian (1) is invari

ant under the chiral transformations. To this symmetrJ there 

corresponds the well known law of helicity conservation for neut

rino. When ./'1tv' J:C one needs to make use of the dynamical met-

hod for restoring the invariance of the total Lagrangian 

under the chiral transformations, by analogy with electrodynamics. 

There we introduce ~he electromagnetic field A j1A • Here , since 

we deal with transformations changing parity of the system, we 

must introduce an interaction with pseudo-scalar massless partic

les, "pions", which change parity. Usually, these are called the 

Goldstone particles 
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~.;;c;~ 1'1;Vy!ll.({_)t;l. (8) 

To the chiral transformation (5) of the field y/ there corres
r-:-

ponds the nonlinear transformation of the field 'h 

Iff/= r;;-i(97; a); 
(9) 

which form is defined from the condition 

2{ ( ~ 1 ) = U tl_z { ct) 21 (
1
f ). U t<z (t.'t J 

r,;- f" (10) 

The dimensional constant 1~~ is introduced to make the scalar 

field ~ dimensionless. It is not difficult to verify that 

the new Lagrangian 

Lt .. 1 ~) =uJffil-- 1'1-iJU(~ )-.! .,. L Y/ T T fit 'T' I); t' ~It 7 (11) 

.f.., t. I r· . 5i'J + h } L -=- J. ,.5;; ~ 21 (c._ ~ l((E- ) 
F'lr ~· /1 .Sfl ~ t; -

(12) 

is invariant under the chiral transformations (5) and (10)*>. 

The appearance, in this way, of pions in Lagrangian (1) may 

be interpreted as a reaction of the system aimed at restoring 

of the chiral symmetry broken due to the nucleon mass. The algeb-

ra of the chiral group /'~// { :Z) X 1f' d (.Z ) coincides with 

that of the group of rotation of 4-dimensional space 0(1,) and 

Lagrangian (12) represented in the form 

4h = ~zfl.i{1i)~r'<»i~y;i 

*) Fo "' t r ~ aken in the form (6) h we ave 

'at._·. ·= 1(2 1i)2· jJ(' '1 'Zj2- (w ;; ~;}L' r,!'ti1~ ] 
. ·flfl ~ /"' r :zLl t,.,'h "' . li / ,. ' -· ~:: =~ -' 17 )'f 7.;:-~ fi . 

( 12') 

L.'"t ~ \ o•l'\ ~'1\/-'-~ ,, i -::c Crir'Cr 1t)t 
' T11 l 2. \._ I 

(nu 1._~r\ I t _ 
.1T\t J\_ - ~ { 't 

11 f, -
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has a beautiful geometrical interpretation. f/ij is the metric 

tensor of a three-dimensional isospace of constant curvature (of 

a sphere in the four-dimensional Euclidean space). 

Transformation (9) is a displacement of the coordinate origin on 
-+ 

the sphere by vector t< , therefore (9) has the meaning of summa-

tion of vectors in a curved isospace which will be denoted as 

~ '== if (f-) ~ ;, Cf = .r; ct • ( lJ) 

The constant ~-- is a parameter characterizing a curvature of 

the isospace. For J-;, -+ oo there arises the usual Euclidean 

isospace ~(f-) a - ~ .,_ 3 
If one identifies the introduced Goldstane field with a 

real pion and the axial current .-:&-~ = 4- ~;; +- 0 (Si'"3 ) 

with a current appearing in weak interactions, then the constant 

~ in the Born approximation coincides with the constant of pion 

weak decay. Hence J; = 92MeV. 

The chiral invariance does not fix completely the Lagrangi

an form leaving an arbitrariness in choice of the matrix 2/ which 

obeys only the condition 2/ l{-t = j • This arbitrariness 

corresponds to the arbitrariness in choice of different coordi

nates on a sphere. For instance, to the representation of the 

matrix 2/ by exponential form (6) there correspond the nor-

mal coordinates along geodesics. The change of coordinates is 

made by the transformation 

~ = 9; I j/'ii) / f (c) = j . (14) 

At present, the well-developed methods exist for description 

of theories with chiral Lagrangians. These are independent of a 

concrete choice of Lagrangian, i.e.,chiral invariant methods. 
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In theNtree"approximation, the independence of physical obser

vables of a choice of the chiral Lagrangian form has first been 

proved by D.V.Volkov23>. In the chiral quantum theory such an 

equivalence has been shown in papers~4, 25). It will be conveni

ent for us to use the most simple and natural, from the geomet

rical point of view, exponential form of the chiral Lagrangian. 

2. ~!1~rE!!~2~-~~2r~_f2r_Qh!~l-~!sr2~g!!~ 

Let us now discuss, in more detail, the perturbation theory 

used here. To begin with, it is useful to see what changes appe

ar, in the chiral theory, in the Lagrangian descriWng the strong 

interactions. 

In a standard renormalizable theory, where the chiral symmet

ry is not taken into account when constructing the Lagrangian, the 

interaction Lagrangian looks as follows 

~~~:t. = 1- ;Jrs- ri!y.f .. h (j;~z. 

is the strong coupling constant ( .:1;;;- = i't.7 
(1.5) 

Here 1- ), 

/z is the second constant of the direct ~y; -interaction. 

Since the constant [/ is large in magnitude, perturbation theory 

expansion cannot give correct results for this theory. On the 

other hand, one might hope to obtain reasonable results in the 

low-energy limit. However, it has appeared that here also the 

theory with Lagrangian (15) does not describe the right behavi

our of, e.g., the ~# scattering amplitude or ;;-y;- scattering 

lengths. 
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Now let us write the chiral Lagrangian (11) in the lowest 

orders in the constant ( 1/ ./9;-} 
...,:l - ;Z 

)11 ·- -+ ~- f /'1.' - .. 2 : 1/(d,..>tJ: L'~ 
ll?f 

f 111
: Y (.;- Y"» 'f/ · ·I-2;JJ.:y)t;Jfi:- f j:;z · 

Jr 9i 1i ( 16) 

Comparing it with (15) we see that, first, in (16) only one 

constant, ;:_ 1 is present. This fact will help us to extract 
>i 1 ) 

the complete set of' diagrams of' given order in the constant( ~W • 
Second, there appears the connection with a derivative in the di

rect 7f lT -interaction. Third, there emerges one more tenn 

describing ~~ -interaction. The latter is extremely impor

tant, because, as we shall see, its consideration helps to cancel 

completely all divergences in loop diagrams in a given order of' 

{ .fij;;-} with the y;-;j/ -vertices. 

Unfortunately, in this theory als.o there is no small expansi

on parameter necessary for a successful use of' perturbation theo

ry. Nevertheleas,in the low- energy limit we obtain the correct 

description of' particle interactions corresponding to the low-ener

gy theorems of current algebra. For instance, for the >f"W -scat

tering amplitude in the Born approximation we have 

J1r ~ z: tt) == 
.rf' 
j-~:z r . 7! ... J (17) 

that is in good agreement with experiment. 

However, if in the limit of small Cf.Z ( r .z ._.. c.> ) we have 

the true result, then one may expect that the higher order in 7't 
corrections obtained from subsequent orders of perturbation 

expansion in (' /f-;
1

} :Z will be reasonable too. Let us observe 

these higher orders of perturbation theory. 
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. .l 
The second order in ( i/ ./!;-) , the one-loop approximation, 

. a1. ) .2 as a rule, gives small quantities of' the type {/ -:-±-:::;-) < 
. /'7t }· . 2.. ( 'O• !-,;· or{(. ~ ·•} (see sects. J-6). The third order is more 'twh•J· 

complicated. Here, in addition to certainly small quantities of' 

0 
2 

3 (; n
2 

) • the type (L-.J:~;.z) · or 
1 ~ • ··' , larger quantities 

7YII;r .l· . .1 ( $<»: JT).._ 
of' the f'onn 1.£-.XI~)may appear. Just this is the influence 

'r 'tl'E>' n r y-"s, 
of' strong vertices of' Lagrangian (16). However, one may hope 

that the consideration of' these terms will reduce simply to re

normalization of' the strong vertices, namely, to appearance,in 

( 16), of' the factor f/.11 necessary, at t:e same time, for f'ul.fil

ment of' the Goldberger-Treiman relation 

Cl - tl /"f!V 
(j - if/1 C'_ • .l:iJ . (18) 

Then Lagrangian (16) can be rewritten as follows 

,.ch. - _..,. czZ - ... z ' -r.z/ -r .z 
<><.: ! =:CI,'rj/(,'TYry·,. -tf::- f/y/91 ·- ;:-:2 T y:J 71) : 

Of • if . Z/'1,..: 7~- v..., (19) 

To conclude the section, we stress once more that the 

chrial quantum field theory contains some energy scale equal 

to f ~I; :::::: 1, Z t! e V , as it has already been mentioned in 

papers 7 •
26 >. Therefore, till we are considering the low-energy ., 

interactions of hadrons with energies 1.:<. (',.>;-£;)~, we may hope 

to obtain reasonable corrections, in the one-loop approximation, to 

contributions from "tree" diagrams (the Born tenns). In what fol

lows we shall demonstrate this by calculations 

*) Further on, following Lehmann7), we put f/.11 =f. ;! . .s-
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of various quantities of strong, weak and electromagnetic hagron 

interactions. 

3. ~~--=~£~11~~~~~-i~1~2~~-!Ul!~£li2~~l::~~ 

Further we shall omit most of details of calculations 

(these can be found in original papere7-l4)), but mainly discuss 

the results obtained. First of all, consider the elastic ~~ -

-scattering. 

The scattering amplitude has the form 

· · r; · .t , ·JI . t-r-t~tJ <it';./}') 'J t'f) =i(2.'F/6'tvf'!jJi)Jf;:] z.l ft(16) tJ (A+fo-;JJ_; jJ~)J( 

y:(c;f ( r /!(" !,u) ,s;, s; ,· /1(~,~ u) f0; f; i J/(li, t, ,f) J? 
1t ~ ~1''1 L .1 ; ¥ L ¥ t .:1 '_/) (20) 

where I is the unit matrix, iK are the pion isotopic indi-

cee, cf · 
•J 

.z :l. 2 
are the Kronecker symbols, ,S' =(Jl1 jO.;J 

1 
/::{f1 J'.sl

1 
II =(jJ, jt). 

In Fig. 1 the diagrams are drawn which correspond to the one-

-loop approximation (the order is not higher than ~~~ ). Diag
fy; 

ram 1a 
. if c;- Si7 

Sf(~) W'~) » 'ii" It 9f 8 If , ... 8 ~ , n/3 .,. 
.t..><' ...,._-.../-X.,. '1;.~,- 8 K_"".,- i3 

""T' ,..._ ""' -"" .t.. ~" Va'"' B 
W"fp;.J W't1'+> '} lr W 7W"" 8 w /'-r B W" """" B '"-

lif 91 F 

a 8 c cl e 
Fig. 1 

corresponds to the ''tree" approximation (the Born term ( 17)). 

The contribution to the amplitude from diagram lb ie calculated 

by using the superpropagator method5 >. The contributions from 

14 
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all the other diagrams are calculated by standard methode of re

normalizable field theories and here only the terms quadratic in 

variables ,s' f Li are kept, as the terms of higher powers will be 
I ) 

small, of the type 0 ( ;:;)'} • Taking into account of the 

contributions from all members of the baryon octet is performed 

by the use of the r)YL{(J} theory 8 • 27). As a result, in the 

i;j~~ approximation we obtain the following expression for 
Yl 

/i(J',~u) 9): 

fl(J:/;ti#~J2 = vfo(~?;f-1) f.//17(~~ «J, 
17 f ,i; t~ ;;; == .ll ~-sf,. {'t.f-; 2 ~2rF~-u~- ("?,i- o z_J/i)-

-[~(ii-t)(u-1) t3ii-tJ](d}- [3/i-t}(l-;;; rrl-t]Jri)) 
(21) 

where /-::: f4m 2 (f. =rf'. i u} J1 :::-- J. ii =3 C:=O.C3 2) :,205" o!: f1!...11fi')2 

h ' / ) z J ' ' , ) ,. -) (dc-i-" • 
~ ~q~£' 

JffJ =I-f E(1 j/1 111
(/1-1)

1 
-

l (2/tr/)1 

{ XCM~X I I X ~(t-t/'" G
1 <.f..:: f 

- .!f. - . 8 1'.!f j -- y'£j-t'91 ~ ;-z -] I J ;> 1 '-.:1 ( ')'/_< -~/z Ert :f.!_!_ ,1 = f - 1 f..::c (22) .':1-i 
At energies considerably smaller than 't r;-/f- i"ormula (21) 

is good expansion of the )'f Y, -scattering amplitude in powers 

of small parameter v(. ~ o,o.z • The form of the amplitude in 

channels with isospins 0, l ,'lnd 2 is defined by the formulae 

/lo = 3/lf?, I, u) + /1/t,,J: tl} + .//(L-1, fJ'}
7 

/l t = J1 (I, s: u) -fl/~<.t.s· )) jf ~ /1( ( ~ tt) "/-! ( ;.1/ !, ,r), 
(23) 

15 



Following paper 28 ) we introduce the notations 
~ Trir)_ 17 -n ?n 17 T -) 

- . t - ~~n ~ ~4;Fn/ft (,rt' 
.L(eJ - - ,i' i ( , - t JttJ l E 2 - i ·-

ocf - Clf J ,,(. = #, ,;;.( ( ) = {.'I t = -(u·}(t-X)) _ t < ,
1 

e e , z ; 

fi/r;;; = zr;_,)e fJ~.f} ttJ/1 ~i,xJ. t~ = 1ft-.~~JI{;1> 
- -i ()l -

Here C{"
1 are the scattering lengths, 0, and C'/ are the effecti-

" t t 

ve range parameters, !; (I) is the Legendre polynomial. 

Then, for the ~~ -scattering lengths and effective range para

meters we obtain the values presented in the Table. 

!!!2!!! 

~J~ ----~~~~!!~U!______ -~~-!!!~~!~-- -----Y!!!~!~-!~2~-~!-=~~--
_!!~ ___ Q~!Qi_Q~~Q _________ Q~!2______ -----2~!2-~-Q~Qg _________ _ 
_!!4 __ :Q~!Qi_:Q~Q.}_____ _:Q~.Qig_____ _ ___ ::::Q~Q§.2_;_Q~.Qg2_ ______ _ 

~-Qi ___ Q~QJgi_Q~QiQ_____ __Q~.Q.}!_____ _ ____ Q~.Q~i!-~-Q~QQ.}§. _____ _ 

bt 
--L.I --±~!i~±Q:~_JL _____ ~!~QI~Q~gzl~!Q:~-----

-~l ---lL1~±Q:~i!L§~!Q:~ --!~§2~!Q=~- -----~!~1~~Q1.Q~L~!Q=~-----

-~l --=g~!Q:~i-~~!Q=~--- __ g1~~!Q=~--- -----~=.1;~l~!Q=~----------
-~i -------------------- -=±~Qg~!Q=~-- -----~=~~§;l~.!l~!Q=~---~--
-~t -------------------- _:2~.!~!Q=~--- -----~=1~.i;_!~!l~±Q:~-----·-
_£t -------------------- __ g~!Q=~----- -----~!~!.}~Q~.~~l~!Q:~----
_£1 -------------------- __ 1~2~~12:~-- -----~!~.gz;_Q~..1~l~±Q:~----·-
_!l -------------------- --~~JJ~!Q::__ -----~d~~;Q~.2l~!Q:: ______ _ 

0 -6 ( + ) -6 
_!i ------------------- --2~~Q_______ ------i~§:_Q~~-~!Q _______ _ 

l 
-!~ __ g~~Q=~-----L-----~~~r~-Q~§l~~Q=~--------

16 

For f>-3 , the above formula allows us to obtain the follo

wing simple expressions for the scattering lengths: 

ct/ ·=(,t!r-t)('tf,.rFlc, 

a/= ~(ff 2-2f -J)le, 

u. / = (ff 2 ~ 3l 1,?) lr. 
le 

~;J»ot;.z~f-t (f/)?(f-3)! 
[{21?+1)')2 

(25) 

The results given in the Table are in good agreement with the 

known experimental data 17a,d; 28 >, as well as with the results 

of the Palou-Yndurain phenomenological approach 28 >, where the 

Gribov-Froissart representation is used. The results we have 

found correspond to choice of parameters in the mentioned model 

which gives the value a·'= O.fS 
•' 

(see Table II in rer. 28 >). 
All the scattering lengths for e~;J 

E 
Cie,z 

..:: at re lf}(f r.2) 
- e 'J(2!•3J(.lf•.5-) J 

obey the inequalities 

(26) 

derived in papers22 ) from the requirements of unitarity and 

analyticity of scattering amplitude. 

Notice, that though the values of scattering lengths of the 

t!_andt waves are mainly defined by the Born term(l7)(Fig.1a), 

the Born term contribution to the scattering lengths of· higher 

partial waves, starting from ~-wave, is entirely absent, and their 

values are determined by the contribution of pion loop diagram lb. 

Expanding the amplitude J1 T in partial waves and making 
· · rl . -1. J.)t/..<f/ I 

use of the formula(c~oe -l) ={f·j f' , one may gain infor-

mation on a behaviour of the ~~ -phases. In Figs. 2,J 

the corresponding graphs are drawn. The dashed line shows the 

behaviour of phases in the limit mj; = 0 (the case considered 

in refs. 7 ,B)). In the P-wave one clearly sees the f -meson 

17 



resonance at energy -zoo /'1c>V with width - {.'JOI1t?V • 

'rhe points+ and+ are taken from ref. 17a) •tand•from ref.l7b), and~ 
from ref. 17c)(for the other notation see ref. 8)). 

&,' I ,~; .. 
"" 
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To comple~e this section we also mention some inequali-

ties found by Martin 22 ) in the subthreshold region from the 

conditions of unitarity and crossing-symmetry for the S-wave of 

the process ~( fi ·· ~ y; '' F" 
t 

~ ,.,( j) = 6-: w Jd~ / /!(;; ~ t!) ~ /l(t,,s•tt) f/i(v, l,,s•J} 
·t (27) 

Let us write down these inequalities 

1 J ;.: ·' ·/,r J < _l ·· ~r, J 0 ~ ,S' ~· i 

d f/''(j) . 
. J > 0 ' 0 . . ii" ~ ,.\' ~ i 

u; ~· 
1 

2) 

.1) j:···r;r;J ~ z j~I;F f.'''(~J, 
o .. s-

••• 

't) j/~(,i) > j''''(j(/f~J)' 

..-l c/ j_"{';i) < C! 
-'/ cf ;I' 0 =~~ 

f,.l!J 

~ 

t) cl j/(;i) .>. o .17£ !t ·;:;-£ 176. 
dj7 ' ' ,., ' 

7} ;:.··/c-~?) > _/; .. /c;,'f.ct) > f/'/~/c) (28) 

Direct calculations show that amplitude (21) obeys 

tely all these inequalities. 

comple-

4. ~i~~-~!~£ir2~~BP-~i!£-~2~-~~£i2r-~~~-~2!~ri~~2!!!i~-t~!~£ir2= 

~~~~i!£_!~!~r~£i!2~~2:~:::~ 

The interaction with electromagnetic fieldJ!Mis introduced 

into Lagrangian (11) by the standard gauge-invariant way 

~* ·~ (~~ ~t"d4,J0, 
.·) 1" .. ) . Ll f" c If- ~ ( t: ! /t:fi. ) .»- -
J" .,"1 /"1 ( 29) 

Then,in addition to Lagrangian (J) for the jJJt -interaction, we 

obtain the following Lagrangian of· the 9i/l -interactions 

~ ~ ~ !' t] ~ • --- -- . - ') . 0 
1.--":!-- .'?II/ -o(,_. =te/l.(t,'•'» ·>i•'~' ,.t'./7 /;)1 L;; '(JO) 

j,fi .;'II _,.., .M _,'-1 ~2_.,- ., •• 
/L~' 
~/T 
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a) The matrix element for the pion in an external electromagne

tic field}f~ equals 

< ;;'"~ SfiiJI»? =te JY/1/t,.~ P-rJ 
I {fW)32/jJtcjJl' )II r J (Jl) 

where P.t and Pt are the pion momenta, f':.:f't'f'-:'7 =prjJ% and 

.-h - ,.l;fw-; fm 
Y:.),-f7J ·= t f- :t;. frJ 1- #w- !7J r . . .. 02> 

is the pion form factor. rJ3.!_·wj( v) is the contribution 
ii I _,+, ( ,dj 

to the form factor from pion diagram 4b and ':f/ ;r ( r) -
that from baryon diagrams 4c, d,e in the ~--.2 -approximati.on. 

» 

i (tf) ~ ~ ~{..0- ~-Ql+ 1 »' lT 
''" 'X I 

J3 ' 
Jfi+ 

B 8 / ' I 'llr I It .;. ,. ' , \ -;;+rpiJ w(p2J 

a 8 c cl g 

F1g.4 
I»J P W (f/ we again employ the To calculate the function 

euperpropagator method. As a result, we have 

rli tiiJ I -.zra 3 o 1;;-;;;.j 4 -z - 1 7 , 1 Z 
~~ (f)=ot;,/ tf L.u - jC nn m: ··i +Jf/ t-(t-tf1J.J(tj.t}j

7 

:G 
-1 !/.:.. / 1'-f ·-.2 

where c = o. 577 •••• 9' = i' /11: ' oc-, and -1( r ) are the same 

(33) 

as in formula (2l),From (33) it is seen that the contribution 

from the pion loop to the pion radius equals 

20 

• fit) 3 o:· - 13 ~ ,_Pj . _l 
('!.)91 = .2 m1l ~-;: ·-

2
?-C +~11 ::.;:_w- Z().L)61)-(jm) . (34) 

" ..:, 171); 

The contribution from baryon diagrams is again calculated up 

to C(t -term due to smallness of the other terms. All the diver

gences in diagrams 4c, i,e cancel and for -p;/.3) ( r) 
we obtain the expression*) 

' (1~) l 7 ,t !1!. 
-¢77 11; :::: 6 r.;s-;;. i /"~~ (35) 

Hence, for the pion mean square radius we find the contribution 

( 'l2/'it~BJ :::: 0. 36 ( jm) ;! 
(36) 

From (34) and (36) we have finally: 

/<. Z~/: =I< 'l 2)
0
!_F} t( 'lz)_{_:!J 

1 
:::- c7• 6:'1-(jrrt) 

7 11 II n ( 37) 

that is in a satisfactory agreement with the recent experimental 

data18). 

Inserting the functions ( 33), ( 35) into (32) we arrive at the 

following expression of the pion form factor 

P;; ~ .f '"X:. {~l rF.Ctj 2 r(t-tj'JJ(ij 2
)} 

(38) 

This formula describes the behaviour of pion f'orm factor at 

energies ,;-;-;;zt < I{.! e V in good agreement with the expe

rimental data recently obtained at Dubna and Serpukhov18) (see 

Fig 5,6: Pointe J are from reflBa, b 
l L 

from ref ,18b). 

*)Factor 1.7 arises as a result of consideration of all members 
of the baryon octet (see 1 0)), The 51- K -interactions make a 
very small contribution to the pion i'orm factor and these will not 
be discussed here. 
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It is interesting to notice that the pion radius is defined 

almost completely by1he contribution of the baryon loop diagrams. 

The value of the radius we have found is close to predictions on 

the basis of the ..P -dominance model { v' < Z1 )11 "'" II; "'" 0. 6 't(jit~J ). 

b) Now let us write the matrix element corresponding to the 

Compton effect by pion 

<I , ·d,(f) . ,M J .I 
(ifr/L)ii~4 Jt,f/.(;,(CftlJAtc;r~=' fPt'"f;:-'/r'f:;.g,Afr~ 

1 
d) 

:~: 1 {29?} 2 fl;r/'f!f'f,..·'" lq;f/1tziftp,o9> 
are the photon momenta, ~-~ E; are polariza

~t 1 Az 
p~ are the pion momenta, a,b isotopic indices. 

where C/t' 1~ 
bilities, Pt , 

Note immediately that for this process in the one-loop approxima-

tion divergences cancel not only in the baryon loop diagrams but 
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I 
I 

' I 

also in the pion ones. Therefore we shall not need to employ the 

superpropagator method and shall be able to confine our conside

ration to the lowest orders of the nonpolynomial chiral Lagrangian. 
mt ~ t. 

On introducing the mass term - -Yr .J( , the Lagrangian 
2 ,....-z *) ( 12') in the . ./-Y7 order takes the form 

~-(:) == -(.!1:;/z:~'l(~~)~- ~;/ ~~zj; 
(12 11 ) 

Without giving the general expression :t"or the covariant amplitude 
~Jllv 
I 11~ , we write here only the two first orders of perturbation 

expansion of this amplitude 
. . . Jll ~ J ~ 

'T;:v==2eV~-J;,,~,)~~~v_ f: (;' -~::~ 1 (j~Yt'/L -c;/y/h 

xr1/il)/. J .e,r.st: JJ2 ~r r _,..,,, "' I'( tiil 
Lfii r7't1-t ~-);- rf.Lr.·!J; ·de'"c!_;Qd_rtfJ' 1tY:·-1f/..ij1~Z.~40) 

rL>r sr 15 G ~· ~f i5t-o 

J'(~~.,{'.ji) ( 1{ lfl')~ i{J s)i's a~BB 8 B 

~ -~ +- ~ . X /\ ,. \. , B .,. "' B y 
~+ - ~~- rr:-- ,.. ' ' 'r a 
l1 {j1J 'll(p.) "II 11 Jf >I.. - _r c-- r;:- f .,-;; Jf" t' W;; ~o r.. y;-t jfD ifD Ff D no ,. 

a ~ c a' e l j 

~vr 1· ~r[& 1· 1 '\ 1\ 13 ,a .8 / /1 
~ -<::>-- ,_ - ..._ ~ --<::>-- +- -+ l ~ ,.._ 
Jlr /3 9/- y; r 8 y; - It- r J3 fi- Jf-,.. /3 ;; -

hl It_. 
Fig. 7 

h) lz" 

The first three terms in the braces are the Born terms 

(diagrams 7a and 7b), f.l(y-;) /<1
1 

'/.:) is the contribution 
.F y; I ( ') 

from the pion loops (diagrams 7c, 7d), /'·;;-" (ft'/_t} that from 

*) The mass term can be introduced in a different w~~· Nevertheloo~ 
it changes slightly the final results (see refll)J. 
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the baryon loops (7e,f,g,h~. In }~/3) only the constant tenns 

are kept because of smallness of the other tenns of expansion in 

powers of ( Cft f/:l ). Besides, in deriving (40) the equalities 
. t ·1 t ~ z 

( Cft t l) = ( 1/1 t;) = '-', 'ji =r:·= t·;;r =;;, =;11Yl have been used. 

In combined calculation of the contribution to the amplitu-

de from diagrams 7c and 7d one arrives at the finite expression: 

~ :2. " -1/ z } (Yi:1 -1 1 t-< ,, If! . ~ ~ 

j ~ /c;,tf<J:=(i!t£) '(!- f!!_n ),f =-:-N"&rtlt~P111fT -f l Z 7_, (41) 
" " " '/t<f.t ~ ft'f;. r d lft'/1 ) _/ r ' 

\Vhen considering the Compton effect by a neutral pion all 

the contributions from diagrams 7e,f,g cancel • For charged pions, 

the contributions from nucleon diagrams 7e,f, 

(;V} 

f:--; 
1 z _ij_ 

2 . ·- '"')l r-1 (It 'It l~T 

h· I equal 

Ii' one takes into account the contribution from the other 

(42) 

m~embers of the baryon octet the factor 1.7 again appears in 

(42). 

Defining the pion polarizability as a coefficient for the 

effective interaction of a pion with an external electromagnetic 

field ~11 •) 

*)The factor ( gft<•rirt- 'j/"'cj/) , always en1e/ing into the 
one-loop approximation of the amplitude Tq·; (see formula 

(40», in a language of quantum mechanics corresponds to the com-
bination( E).- iJ 2

) • Hence it follows that the pion 
electric and magnetic polarizabilities are equal in magnitude 
and opposite in sign. 
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~11! -=- 2~1:' ( E_t- JiZJ . ) 
(43) 

we get 

o!.wr = d;;t(ftf.d. ~ :./(;f;l~hjl:~PJ:o,33::} ~ 1N}j1>1)~ 
1t'/..• -C Yi ' ~ ( _ ~ ) 

IX"- 'iii 
/ ./ · e.z !»J · ~ - 't, · ):;:: 

""W'' = V{fi''liftf'_t)j ·=2- 8 ?'(o)=-O.tJ'f.-J =-.5'·/t1 /j.Ht . 
<fi9';=<' 11t:;r.l7r m>t (44) 

It is interesting to note that the function pfJ:J ft(t '/z) is 

rapidly varying in the threshold region. As a result, at the 

threshold of two-pion production we obtain 

'Jt o!- .;. (~"' m 2 ) =eva 
17

.., 3 
YJ- ff ';; 

1. . ,( 
-/ !'-? ) = d. _j 6 -:: 
iJ<- •' I 4 111,~ 1n"' / 'II )'J ,, (45) 

The found values of ~! coincide in the order of magnitu

de, with the estimates made on the basis of current algebra 29) 

and quark modele 30), but differ by a factor of 2 from predictions 

of ref. 29). The value of o(Yil) differs essentially from the result of 

ref 29 : o( Yi ,, = 0 • 

5. ~!£~l~_2f-~h~rg!~_E!2ll~-~!~~!-!ui!£~£i!2U~2=~~~ 

Consider now main decays of charged mesons and calculate the 

structure constant of these decays. To this end we shall need 

to complement the chiral Lagrangian with the part responsible 

for the weak interactions. It is as follows 

,P(C) /""J( r;;</:..,Jr--- 'r.?l<. -) ,. >~c--) 
u..,. t =: 1v - ~'2 1i ~~ - o'i 1 W c,.,'ii- ft't7, ~-' 

'" • J4'f . - ./11 (46) 

-~-il;.o;,.(1-ijfi{s>91t +-t"efi'J; w--~};, 
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f;.J {! - -
where ~M = ifCv,l'b)ufe./t{J-IJj-)), G is the weak coupling constant, 

() the Cabibbo angle, jA, e and J the muon, electron, and 

neutrino fields. 

The process amplitudes ~will be defined as usual. For 

instance, for the process r;;t -.;u:rv(' this definition has the 

f'orm 

. r~~ - -t (;uJrfi/AfrJJ r J'i:(pJ> = dt C- cP 'I ) c')"' T 
(47) t /;Jc'!"' A ~ 

where c'~1A is the photon polarization, f, 1 and t are the 

momenta of pion, photon1 and lepton pair, respectively. Since the 

baryon loop contributions are much larger than those from pion 

loops, as can be easily seen f'rom the example or earlier calcu

lations, we here shall consider only the baryon loop contributions. 

a) •Ve start with study of' the main pion decay wr-+_jl/· J(e:! Ji) • 

On the basis of this process the only parameter of the chiral 

theory- £;- is fixed. It appears that the perturbation expan

sion order next to the Born one gives only a small correction to 

~ and in loop diagrams Bb and Be again all the divergences 

cancel. 

--~>- /J1i /fr"""' ,; 
a 

/.~ .Jii 
-; ,:-<::>-_ f 
/1 tJ )1.~ --~ ;;;"~ 

b' c 

Fig. 8 

As a result, in the one-loop approximation we obtain 
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~- - 'li /:.~ fj- !../ift111») ;Z 7 ! ( ~) 
(YI"*)ffv)-t'2fli" C('.tw-.r!r/}/?M ~ ; (48) 

JJ /) (t-J C! . ;/ . ( ' 
where J./'1 is the pion momentum, ~ -::::- {j'c'O,s8"'.Jl1{1)f f-,~-)JI¥ 

is the lepton current. The second term in brackets is essentially 

smaller than unity. Comparing (48) with experiment gives .~ ~ 
If 

~ .f/31-feV. 
+ f yl b) Now consider the process Jit -.-_;w- J) (J • A detailed discussion 

on this process can be found in papers 3l, 29). 

f'r'l' {'lkl t -"' ~ji t r" P _t_ fi' 

~~,}-< \J< rr<w~~ fr, .-< 
JrKi) v v v 

~ ~ ~ ~ ~ 

!' _p- . ,fW ;ut -+ 1 -t <r ;.-9-K -.-:?-.. K -;-?., y 
v v '-v 

r e3 .iii, 6''_f ;}/ _t t-- -, 
;~9< .-ry<( F~-

j) v j/ 

c L 
c c Fig. 9 2 3 

The Born approximation is defined by diagrams 9ai 

T BDm == t'e F,;-f lf(";u ' 1- p,~~~rp ·rJ .. ')!. ( rJ-
_Ill .f; " ;:J1 v 

- C: a·,!' tJ u;u~ (; f:; -/7?./"} -t11(f ~-)it,_, J .. 
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The one-loop approximation is mainly determined by diagrams 9bl 

and 9cj • Their contributions are of the form 

o i($ m-)2,-rr&rtt C!{lz D a -T =-- "!!_.: j -iev'JJ' y~Mf>!"'l.JJ 'IU 6 Jttj-- -M 

J- ~ / - {~ 

where 
-lz/f ~v/f/-/:M 1,~ J} !Y 

tt." ·= JlL.!_ 
z 

(50) 

hv '> " h = p 
o »-¥;;- 1 /I 6(;tfliF2ff (51) 

and S'!!vvt_}3 is the fully antisymmetric tensor,Thus, taking 

account of the nucleon loops is reduced: 1) to renorrnalization of 

the constant .f; (see ( 48)) and 2) to appearance of the terms 

describing the structure constants oi' emission. 

For the ratio h/-1 /;z Y = J' we have 

r = :1.1i0 ~ o.~f) 

whereas experiment gives two possible values 

(52) 

r ={o.~z.-2] 32) 
) -

Note, that in our approach there hold the following from 

current algebra 29) relations between the constant )ZV and cons

tant J of the decay y;"_,. (._,( , as well as between the constant 

h Jl and pion polarizabili ty j!f . 
The amplitude for the process F''-+t]':( has first been 

calculated in the paper by Steinberger 33) in the one-loop 

approximation (see Fig.lO): 
,...,... 

j "'" "' 

=jf.· a-< .f1. _,M""'/'1, t r. ) t''£;. 
1- /f 

-(iw;2A; 
<)(' 

~t-'.S!l ;-;;-

"' (53) 

where C{ t are the photon momenta. The experimental values of j 
are as follows 
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(
' 34) 3!.-) 1 o{ 

ljl= o.1!i ;o.sr ..imii· 
The relation following from current algebra is 

hv =- llze'1. 
Comparing (53) with (51) one can easily see that this equa

lity is fulfilled. 

The pion polarizability, at energies (tft f.z) = (} 

(54) 

(55) 

is basically determined by the baryon contributions (see 42)). 

Comparison (42) with (51) gives 

hr = f ... jfK) 
./f 'il (56) 

It is just the relation following from current algebra 29 ) 

The consideration of contributions from the other members 

of the baryon octet results in the appearance of factor 1.7 in 

coefficients with af/: and of factor 1.2 in those with at/l 
Therefore equalities (55) and (56) are not violated. 

''Y-: 
sr--~ lf .. 

r' 

-~~ 
fli"O~ 

J" 

a 

e~~v: 
- jJ 
fi--1- - ,_ 

B ;!'""' 

~ 1-ev.j) 13 ~ 
+-.";~)to )i• Tl .8 

8 

- £~-
w~~ 

L'J '' 91" 

c d 
Fig. 10 Fig.ll 
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c) And nnally, consider the process ft ·r -"P Yi"t? r V (Fig.ll). 

The calculation of its amplitude is analogous to that of the 

pion form factor, and results in the following expression 

, _,"!"'T.Scrtt/ j_ :ffL , v'J. .'..iJL 2 z v (+) 1.1 t;;" . .2 . 

T;ff~'ii"e'J)j -l L
1,. 6(;,Eff)r~ t- 6UFflt)r~n,;..,-nr,-)tJ ~ _, 

(57) 

where 

T /1c•t·a-G'/o r/J_);,'o(;.J d=;'J-+-Dff,. 
- ~ .. r I i7 ' / !tt ~ [ J) ' I Yr I '" 

This result completes our study of the pion interactions. 

Further, we shall demonstrate in what way it is possible to employ 

such an approach for description of kaon physics, 

6. ~~2~-~~~£!r2~~s~~!~£_!~!~r~£!i2~~-:~2 

To describe the kaon interactions in the framework of the 

chiral theory one should use a Lagrangian invariant under the 

5'1 7 

group 1 ///))i)/((.3) • The mass terms violating both the 

1r'/1(3)f J'd!lj and j'l/(~) i;i'tl(!) symmetry of the Lagrangian are 

introduced according to papers 36 ,37). The interaction with an 

electromagnetic field is again introduced by a gauge-invariant 

way 

) J! ( ") 
{' - (' ~jl.l _,frl 

"re/!~)J! 
7 (58) 

where 
;r~ ( + +- .. ~ -~ ..--r -) ::: Yi -/ ,.r-.1 jJ) X. -I.::.., 

Then in addition to Lagrangians (3), (12 1 ) and (30) we obtain 
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the following parts: 

__ .. _ fr ... 1 y; fi:J.. ;;r 4K - (.it{~~~~ 1"' tJK t«}( 2-fi? 
ro ri' L ,.tit ), , 

~~ ... 1. • ' 
;; (5~) 

where ~ = (:oJ
1 
i1 =(A',-K'), E-<)3tf' is the antisymmetric 

tensor. We need this nonpolynomial Lagrangian, together with 

Lagrangian (30), to calculate the contribution from diagrams 

of type 4b to the kaon form factor by the superpropagator method. 

Since in other calculations we shall not use superpropagators, 

the remaining parts of the Lagrangian are written here only in 

the lowest orders of(1/f--;) with taking account of the mass 

terms*) 

~K =-t(f~/fff2J(1.iJ1-m: %tj· ~ 

~K = -/1J;F
2 .J 21(~ ;;2-m: iy·, 

/' .· . L7 /v') - -, ""} 2 a,t v'v-
q(. K .J1 '"'It'·/;,( ;r fc. .tf" -A'_~ ,t( / ·r e j;.. 11 11 • ~ 

r --, T 

oG1M = ;: e ~ ll "//"' 11-: " 

(59 I) 

(60) 

(61) 

(62) 

s . - -- ' 
/'~I -=Jj'.~_~N...,t"':"'~r~J7 /_,JP:t (N-t)r._·· SE_(3-.lr'/A. _(~.t-.3J,;j 63 ) 

o(jK ".//j':' ·n '-' ;L. '"' .- ljt... I ,. r= .Gj ·)- r.' f":" /I >7 r:< ._. 
;; # ;Z v..Z v6 r '' J 

Lr:K') ~ j} fjf'-+' "K1L""J:-,.fi-u)';..=.rzr •.tjJ t,fj-,;t/- .xf: ·ot Jj;J;J ,. 
+2[.5..2-t(I-vl)l-f «{f-ot} lf: ::;- r(lteu!tvl'' !ui}/M..fJj:. (64) s t J• . 
Here K2 =2k'.A" -rl'K'Ii-': Jfj = .. ? >Y ";_-- r()!7').< .1~ • t-r =" ti Y- /.) ./ ' 1 J .J 

B are the baryon fields, p( is the parameter of mixing of J' and 

t.t coupling ( rX ~ Y_.3 ) , 

*>we put l'"'i -z h . As an example, for baryons we write only 
the part of the Lagrangian which contains K- • The otheiflj'art s 
can be easily obtained with the use, e.g., of monograph • 
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Now proceeding in the same way as in sect.4, we calculate the kaon 

electromagnetic form factor and polarizability. 

a) Defining the kaon form factor by analogy with (Jl) we 

write it in the form 

- .. ('/7) 
~ lp') :: f t- ~ fy) f 

-fl<) -(B) 

P~< (y) t- ~ (Cj)r .... 

(65) 
--fi(il) ( 

Here :r:-/( lf) is the contribution to the form factor from 

the pion loop diagram ... ,,..h(KI. 
of type ,.b, yk · (f) that from the 

kaon loop diagram, and -(JJJ 
>:jl/( ( c;) from the baryon loops 

of type ic and 4d#but with kaon external lines. These contribu

tions again correspond to the ~;-z approximation. As for the 

pion foi'!Ii factor, the contribution from the kaon loop can be 

neglected, and we 
.-TJ H) 

and 'f !( ( '1) . 

rl7 OJ) write here only the expression for -r K (f) 

1 
1

/ r[ 
11 J t !/-

2 'I! 1 7/..f/-t )l Z ~r~ f)= ~tfi./ flr(z(1,;;/'} I -,JC rfj-1 ~j-nz,f t-(t -'tttt,f }Jf'tt11/ !f. 
(66) 

:l 
Here the constants o(, _ C and function J ( /!ii! ) are the 

' » 
same as in f'ormulae (21) and (JJ). The term in brackets contribu-

tee to the kaon mean square radius. It equals 

t. (-;) - . 
('Z ).Kt. =t).t1SfjiMJ", 

(67) 

The contribution from baryon diagrams again turns out to be 
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essentially larger and equals*) 

~ tA) / ) t. 't :z !1-2 

~k r 1 = e!U)zj 1'1) 

Hence it follows 
(13} < 7 2 )/(! Z' 0.3(jlf'1)

1 

(68) 

(69) 

From (67) and (69) the charged kaon radius is obtained to equal 

j ('Z t) .<,_' ·:: tJ • 6.1 (/";;,) 

(70) 

For the neutral kaon the baryon loop contrib~ti~is zero and ·-------
that from the pion loop is the same as for the charged kaons. 

Thus, we have 

1\ 'Z ~)K 17 ::::: 0.22 (j/t.IJ , 
(71) 

This result is in good agreement with the predictions following 

from the vector dominance model (a variant of the model with cur

rent mixing 21 >). 
b) Now we present the calculation results for the amplitude 

on the Compton effect by kaon. 

*)Factor 1.4 arises due to account of all contributions from the 
whole baryon octet. It is interesting to note that in case of the 
exact ,Jft/(.3) symmetry all the one-loop diagrams for the meson 
self-energy, form factor and Compton amplitude appear to be 
proportional to the function [/of )=3(t-ot}1 ·,.J oc 1

• Its minimum 
corresponds to o( •0.65 , that agrees well with experiment. 

33 



In addition to diagrams in Fig.7, but with kaon external 

lines instead of pion ones, we will consider also two diagrams 

of type 7c and 7d, with the kaon internal lines. The latter 

diagrams give the negligible contribution to the Compton amplitu

de by pion but in the case of kaon these diagrams should be taken 

into account. Then, without the Born terms, for the amplitudes 

with charged and neutral external kaons in the e~_z approxima

tion we obtain: 

Uv z J .t'llf (Y,J {K'~ ) (,8) 7 L:./ =-Je (jJlf"tjdz-tjt'j.11Jf,.- f~y_~)~/3K /tft'/.t -rJK -" (72) 

'T' <lv l · _,M " Mlf ('if) (k•) t7 
t <·· = 1 €. {j '<jdz -r, 1.:. /L J I( ( '/t 'I~} ·t- _}I( ( 1-' 1-< J.J , 

('HI 
(73) 

The function ()K f'/tYz) 
..1 

corresponds to the contribu-

tion from two diagrams with the pion internal lines (of type 

7c and 7d). Being calculatedtogether these diagrams give the 

following finite contribution 

1: f {t 'ft) =('t ~ F/.t eft 1~ 5/(:M_z) 
· '.tJn,.; 11n f (74) 

where i . . ~ z } 
~(f)== J / f /on(/(/-1) ']- 1 (75) 

The functionfrapidly changes with increasing / • Therefore 
(>T) ) ,_,., _114.! 

the contribution from f.< (tf, '/,t to the amplitude j 

equal to zero at '/t '/.1 = C' may become considerable at suffi-

ciently large tf1 Cj.<. • 
. (Ki-) . 

The funct1on fK ( '(t 1-< ) corresponds to the cont-
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ribution from two diagrams with the internal kaon lines and 

external charged kaons: 

{;t+)/ -1-f. d d. ). ---~~ /K rrt'fl) =(!i71-lr) (i;. z!E ,j( fttf-:) 
:ZI1l} 1111} . 

(76) 

For the external neutral kaone such a function has the form 

13 (K'rdt'f.t) ~ r" 'ifF 1" t' r" ,--~.rw )-
.~-/( I' N' ._.

1
nz..:tf ,z

171
Jl. 

~ K K 
(77) 

Hence it is seen that at (Cf1 ef-t) :: 0 only the function 
(K•J TfliV I (Kfj ) }K (tft'/t) gives a nonzero contribution to .,. fJK'roJ"::::O.tJBftfii;l, 

In the case of the neutral external kaone (like in the case 
'T' i'11V 

of the neutral external pion linea) the contribution to 1~· 

from the baryon loop diagrams is zero. For the charged external 

kaone the total contribution !'rom diagrams of· type 7e, 7f and7h~ 

equals 

/3(EJ (- " 
j K ~ 1. 'i "9i .~; r .< 

(78) 

Here we again have kept only the constant terms because or 

smallness of subsequent terms of expansion in powers of ( C(t c;,~_ ) 
(of the type o ( ~) ) Hence it is seen that at {Cft'/t}::: 0 

/"1/V 
the baryon loops give the main contribution to the amplitude of 

T ,_,-u,; / } Tf"v the Compton effect t- r (J • The amplitude tJ (t')-=tJ. 

Making use of formulae analogous to (43), we find the 

following values of the kaon polarizability 

o( . - t. s- I e )1. -.3 )-' x! - m ( i'Yl:..- ~i.e ftJ (1m 
K ~» ] ' 
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(79) 



o</(,. = 0 .. (80) 

These values are consistent both with theoretical estimates 

found recently on the basis of current algebra and PCAC 38 ): 
·1/.t .J 19) e,r;J 

o(k',. "-IC1 ·,:/1'11) , and with the experimental data :,X"'~ "" 

~ -('t t ft)-10--'Yjmt! 

7. .!( -K,.r mass difference 
------------------------

We complete the study of low-energy meson interactions cal

culating the neutral-kaon mass difference, 

To this end, we introduce one more Lagrangian describing 

. V ;( -interactions and corresponding to the rule .1 'T = 1/.z • 
The simplest chiral Lagrangian of such a type, having no deriva

tive coupling is o:t· the form l4): 

( ~,(} . /) (.ft. ) ( ' ·fo , ·, L- = q.;.:; j·' 0'/( t.C, ) »K ;; 

where ,. / _ ('A'J '7K - !('' • and 21(») 
~ 

(81) 

is the same chiral 

matrix as in Lagrangian (11). Taking again the exponential form 

f'or the matrix 1/ (F) one may write the part of the Lagran
./f;-

gian responsible for the neutral kaon interaction in the follo-

wing form 

(Y;) ;· jc /Y J . Jr'' L .. = tt - % ('t,')' v f, -1 f" /(, --::; 
91 k"' tf ;;. ~ t. j-y;-

,r'//71 t! ~--.: } 
" ' -~-;:: .. ::==: =:'::;,- • 

11/ -z J 
/ .1":,; 

(82) 
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~rKo 
where Krr ~ Vj' I( =i 

I. 

...(.. -Kc 

rz' The Born approximation 

of this Lagrangian reproduces correctly the low-energy theorems of 

current algebra concerning the nonlepton decays of neutral kaons 

into two and three pions. 

The coupling constant ~ can be fixed by using the proba~ility 

of decay A"" .. --'>' 5rlf' ( 'J.U)- ( .Z h') ) • As a result, we have; 

. i 
at= .Zflm.K(.t/;) r.D;-J 

..3 I' -r:z (!!w-J .z.; Z/;< w- . . 
11'!,.; (83) 

Now we proceed to calculate the ~ -~ mass difference • 

The mass difference of these mesons is due tc the different virtu-

al states into which these mesons can go over, with the account 

of their(}' parity (see Fig.l2) 

/( 
,.J7 ,--- ...r; ----..1~ >-;.s'---

A',J> -- v_ 
--~'1:~-~ --

. 
w ..K"' K,.r _,..-in->--· -· '--

C( 

/(L. Yi' I( t, -·------
,.( 39;-

.(, - v' -. ::....<,-.. --:... ll 1.. __ .,-
_. 

. 'il 
~ -- Kt. 

-~Zn•t>---
Fig.l2 

(J 

Therefore for the mass difference Ll m !('' one may write the follo

wing formula 

11 !1?1(<' = 111/( -11?"' := J.[j',, -I~ ] 
I. "',r ,. -· ) 

(84) 

where J~· is the sum of matrix elements corresponding to the 

infinite set of diagrams with even number of virtual pions 
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(Fig.l2a), and//... 

pions (Fig.l2b,) 

is the same for diagrams with odd number of 

The quantities~- and}~ can easily be calculated by 

using the euperpropagator method 5>. In eo doing, the difference 

AI1?K'' appe,are to be almost completely determined by the 

two-pion diagram. Contributions to /1!1?
1
,:'' from diagrams with 

three and more virtual pions are smaller than 1%. The contribution 

from the one-pion diagram should be calculated together with that 

from the diagram with one virtual p -meson. In the framework 

of the exact /sr t{ ( 3) theory these contributions cancel. The 

consideration of p -meson for the loop diagrams is nonessential. 

Now let us write the matrix element corresponding to the 

two-pion diagram 

1 (./'Yi)::: 3(Jiitl)
2 

j&(~t1tr;)·-1c+ t3 -J(m/)17 
J~· IJ~('t>-1/>~J't m;,- 2 tz (rml!l; 

t (85) 
'/( 11?K ) where C is the Euler constant and -1 I ;;;7

1
,! is given by (22). 

Inserting (85) and (83) into (84) we have 

,f~ .d 11'! , =: {). S;( u.s: O'F) 
K ·J (8b) 

whereas the experimental value ror .IJI·nkc equals 0.48 1t~(.1:li) 

(see ref. 20>). 

8. 22££!!!~!.2£!. 

SUilllllarizing all the above examples of utilization OI' the 

chiral quantum l'ield theory for description o1 low-energy meson 

interactions we can note the following: 

38 

The chiral quantum theory not only in the tree but also in 

the one-loop approximation is in good agreement with the consequ

ences of current algebra and PCAC, Reproducing correctly all the 

relatione following from current algebra the chiral theory
1

be

sides, allows one to calculate also the absolute values of va

rious physical quantities. The results obtained reproduce, at 

least, the real qualitative picture of various physical processes, 

giving in most cases good quantitative agreement with. experiment. 

Due to that there is no rapidly convergent perturbation seri

es for strong interactions, one must carefully treat some quan

titative results of this theory, Nevertheless, even now it is 

possible to point out some very reliable results due to their 

weak dependence on the contribution from diagrams with strong 

vertices. These results concern, for instance, the values cal

culated here for ~~ -scattering lengths of higher partial wa

ves which are defined by the pion loop diagram lb, a noticeable 

increase of the pion polarizability in the threshold region, in 

comparison with the region where (tf1 '/.t) = t.' • 

Consideration performed in eect.2 allows one to hope that 

the strong interaction effect may be taken into account correctly 

by renormalizing the strong vertices (see also ref. 15 >). This 

question, however, requires a more careful investigation. 

In conclusion, I should like to express my belief 

that the chiral quantum field theory
1
giving in numerous cases, 

good agreement with experiment and having a number of remarkable 

intrinsic featureti (for instance, cancellation of divergences in 

loops with the strong vertices)undoubtedly reQuires the most 

thorough study and represents a highly perspective trend. 
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