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1. Introduction

In a recent paper /v/ we have presented a general
method for derivation of all the constraints on the experi-
mental data and amplitude analysis of three (01/2-0°1°/2)
reactions related by internal symmetries. Then, we have
suggested that this method can be extended to the three-
body final state (0 1/2-50°0°1°/2) reactions and also to
the cases when zero-spin particles are replaced by un-
polarized J -spin particles. On the other hand, recently
Cashmore and Hey/z/ have developed a formalism to
describe the three-body final state reactions. This for-
malism is particularly suitable for the reconstruction
of all the helicity amplitudes from the experimental data
using all possible types of polarization experiments in the
three-body final state reactions. )

In this paper (1) we investigate the isospin constraints
on the experimental observables of three {01/2-500°1°/2)

reactions using the formalism developed in ref.”'/. So
in sect. 2, we define the polarized differential Cross sec-
tion o, and the spin rotation vectors ¢, isee

egs. (3a1brc1d)’ (4a;b1crd)’ (sa:b:c:d)) (6a)b’c)d): (7a:ab’c)d))
(8a,b,c,d), (9a) and (9b)i, in terms of the unpolarized dif-
ferential cross-sections Ioand all possible types of
polarization parameters discussed in ref./2/. Then, in
sect. 3, using the generalized helicity amplitudes (17a)
and the bilinear forms defined by egs. (19a,b,c,d), we
prove that the isospin sum rules (10) alone imply the
equalities: (12), (13a,b,c,d), (14), (15) and the isospin

=y

bounds (16a,b,c), valid for any unit vector & for any
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values of the kinematical variables in the physical domain.
The constraints on the experimental data and amplitude
analysis as well as the Pomeranchuk-like theorems,
when the isospin bounds are exactly saturated or degene-
rated, are discussed in sect. 4.

In the paper /3/ we shall investigate other improve-
ments of the isospin constraints on the experimental ob-
servables for the (0 1/2-0°0°1°/2) reactions, and their
experimental consequences.

2. Measurable Quantities for MB-> MMB  Reactions

Recently Cashmore et al. /2/ have developed a
formalism to describe the reactions of the type

a+bo->c+d+oe. (1)

This formalism is particularly suitable for partialwave
analyses at low energies. With this formalism they dis-
cuss all possible types of polarization experiments in the
three-body final state reactions which are necessary for
the reconstruction of the scattering amplitudes. They ob-
tain expressions for all measurable quantities in terms of
the helicity amplitudes [ ¥, ru =+ % :
For the reactions

M, +B, -~ M,+Mg + B, 2)
1+

(M, ,M,, Mg = 07 - mesons, By, B, - — —ba-

rions), there are four possible types of experiments:

(i) unpolarized differential cross section g ;
(ii) polarization "asymmetry”’: A=(A,,A;,A,);
(iii) final polarization: P = (Px,Py,P ) ;

(iv) ”depolarization tensor”: Dyx , Dyy, Dyz » Dyx;DywDyz,

Dzx, Dzy, Dzz.
The polarization of the initial barion (B,) and polariza-
tion ”asymmetry” A are referred to the fixed Oxyz

4

refergncg frame and the final polarization P and "de-
polarization tensor” are referred to the moving 0
frame.

In terms of the above measurable quantities, using the
results of ref. /2/, we can write:

XYZ

[RMEEET A AR AT PR S (3a)

2Re [ 17) *1 = (Ay+ Dyz) To= AgnrE™) (3b)

2tm () 1 =(A D)1y = P’ (3¢)

2= 10712 < (A4 D T = Ry (3)

[ A RN JOY B A (42)

2Re [ 177 (f77)*1= (Ay= Dyg) Iy = A 34, (4b)

2n (7 (17) 7 (Ay= Dy g = P 270 )

P72 - (A=D1, = RE(_)E‘"Z (4d)

2R 2 (s ATy = o) | (5a)
2Re [ (£7)*] = (P + D)1, = AQ(+)9‘+,’ (5b)

2Am T < (P s D) = P RS (5¢)
TARMRSEIT S Y] S IS P RQ(+)Q(+,) (5d)
TR T - (- A1 = 07 (6a)
2Re[f (7)) *l = (Py - D,y) Ig= AQ(_,Q“’, (6b)
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2im [ (£7) *] = (Py - D) g = Py ™) 6¢)
(7 = 1077 = (B = Dyp)lg = R0, (6d)
2 T e (D) T2 AT, (7a)
2Re [ 17117 %] = (Dyy + Dyy) Iy = AA(+)A‘+’ (7b)
2Im [E7H (7)1 = (D, - D) 1, = PAH)A(H . (o)
ET P TR = (A, v Tos R AT L (70)
12 T P2 (1=Dyp) 1= AT, (8a)

2Rel £ (£ ) ¥

il

i =) ‘
(Dxx—PyY)lozAA(_)A( ., (8b)

Am [T (£ *!

)
}
—
jows}
‘-

[t}
o~
~
1
=
=
U
&
]
7~
[+ -]
fo )
\

- —t, 2
T

Therefore, we have defined the following differential po-
larized cross sections

o = (305 o® Aty (9a)

a

[ see eqs. (3a), (4a), (5a), (6a), (7a) and (8a) | and the
following ”spin-rotation” vectors

’

gaE [A(I’Pa’Ra}’ (IE2(+),2(—),Q(+),Q(—),A(+), A(_) (gb)

[ -see egs. (3b,c,d), (4b,c,d), (5b,c,d), (6b,c,d), (7b,c,d,)
and (8b,c,d)} , respectively. We note of course that the
spin rotation vectors 5 have unitlength (|§ | =1).

Therefore, a large number of isospin constraints on the

experimental observables of (0 1/2-0°0°1°/2) reactions
can be derived just as in (0 1/250°17/2) scattering
case /1/,

3. Isospin Constraints on Differential Cross Sectzons T4
and on Spin-Rotation Vectors § ak

In order to obtain all the isospin constraints on the
differential cross-section % ok and on spin-rotation
vectors fak , defined in sect. 2, we start with the follow-

ing definitions. Let fi¥ (7,4 = + %) be the helicity
amplitudes for three (01/2 070" 1°/2) reactions
satisfying the isospin sum rules:

S oepfyf =0, forany r,p =+ L (10)
k=1 2_’
whgre c are real numbers. Let A(s,) , A(k-& a%a)
Nw o 5 Hyo, M%) 205 and a, (ij) be the func-
tions:
A x,y,2) = x2+y2+ z2—2xy—2xz-—2yz, (11a)
)\(oa) = A(Cfoal ’0220(12’6320(13 ) , (llb)
-> g d 2 2~ >
M« Egoq) = A C?K éhal a1’ 2" éta2 Taz » 3% §a30a3 )
(11c)
(%) 2 - P > 2 2 N
)‘aK = Al 1(1 K Eal) al > Z(It K'{aZ) Taz c3(lt K {a3)oa31’
(11d)
1 - .9
Ha”=—2—[1—§m- ‘fa]‘”a aj ° (11e)
(tK) (K)
M E( hd {ap)gaf, YB—.(K ffag UE, E=1,2,3,
¢ (11£)
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1/2
2 .o-.-H ..]
al aj ai) 25 (k) 25 (K) 2,(K)] _
Bok= P (e w6 2 i — %5 Zayj)
ai aj
E'(gai'* f_)aj) .
2 2 2
_ [ H ]1/2 [ckgak_ cioai-CjUajJ,
ai %aj - aij

ifj#k=1,2,3. (11g)

Then, the isospin sum rules (10)alone imply the follow-
ing sets of equalities:

L 2.2 _ 2.2 _ 202
Hy= cjegl 1 = cgesH 3 = cgefH 5, (12)

B

%l)\ax - )\aK | = 2["'4Ha_x( Ua)}l/2 [4Ha_)\(z' Eaga) 11/2

(13a)
1 1., 7 1.(+n1/2 1.(91/2
|2Ha+71\(0a)——ZA(K'é-aUa)I=[—Tll\aKl [_TI\LIKJ ’
(13b)
|2Ha+ 4Moa) - MR a0 a) + el =
. 1/2
LA o) MR (13¢)
1.5 2 1 (5 _
‘?J—Ia_'_i_x(oa) ——&'A(K-gaoa)—-z-xa’( =
(1) 11/2 > 7 1/2 13d
Sl LA - NS e )1, (13d)

2 i (K eZM(—K) — cZM(—%) | —
ma[chgﬁ()— ciZM(Lx('i)— cj M£1+j?)] [c%(Ma;S( ciMaii cj ajj ]

4 42 2 > ,7 212
—4dcjcjogj 9qj e (£qix ‘fa.i)] =

_ 25 (K)_ 27 (K)_ 25 (K)\2 > 2 _.2 2
=Mo ) qZ i s Zau €y Lyl + Ak o )qo, —clo LAy
1 (+) (=) 20 (K) _ 27 (K) 29 (K)
+ E[_)‘ax + '\ax }[ckzakk_ ciZaii *cjzajj 1
x[cfaak-c?oai-cﬁaaj], i£j£k=1,23,. (14)
B (i) K7 (6 xE 1) N
A I for any «’ and <~ (19)
B All) R (Faix £ay)
and i#£j=1,23, and the following inequalities:
1,(2) 22 (5K) (%K)
0< =~ Trax < min {cichaii L }, (16a)

(ij)

maxg—cizcjzzl(l‘i(i) Z(a'fi; b < %)\(Z'fa(’a) <My,

16b
i} (16b)
A(U (l) 5 m.in {c?c -20' PR 0 } . (lﬁc)

These results can be proved as follows. We define the
functions

V2 .
Fé FF o+ wil? i,
ak (1+ [W!Z)l/z k k
(17a)
2
plo. ¥ —[—wig e ],

where w is an arbitrary complex number,



The helicity amplitudes fg/
such that

and f;“ are chosen

=g

T2 TR
[T M

(17b)

f2Re [E7 (€21 )y, am [EFF (0 F ) e, (]F 1P 01 =g

aK ok’
(17¢)
Therefore, denoting by
> 2Rew 2Im w l—lw12
K = { 3 R
1+ | wl L+ |w|”

1, (17d)
1+ |w]
from (17a) we obtain

(k) 2 >
Il‘akﬁ :(liK'Sak)oak'

(18)
Next, let us define the following bilinear forms
(k) L (EK)y, ((iK) () 2 (+K) (+K)
Maij = [Fqi FFoy s MMoiy 7= Mgy Mgy (192)
(0)_ 1 ag(+K) ag (=) (02 _ 17,7 .¢
Z 4ii= E[Maij+Maij b 1245517 = 2[1+§ai Cajloqi %)
(19b)
( 1 g (460 p( =) 7 1 7(6)(2 5 2 e D
ZaKij)E "2"[Maij _Ma_ﬁ‘ ], lz(:ijl =Haij+(K'fai)(K'é-'baj)aaiaaj’
(19¢)
(0)_ 1 p(+k) g (=) _ g () F(+K) Y®x2_H .
Yaij - 2[Frzi Faj ai aj L | aijl a ij (19d)
Now, since the sum rules (10) are equivalent to
(0) (0) (0)
1Y g1z = €ac3Y 3= €361 Y3 (20)
10

Now, since the equalities ‘(Zla,b,c,d) are equivalent to

then we obtain direcily the equalities (12) [ see eq.
(19d) | . Next, the equalities (13a,b,c,d) can be proved,
observing that the sum rules (19) imply the relations:

ReN

S 2 2
aij = (264¢) 7 T LegNop ¢fNaii — eNgy; 1 (212)
_ (o) (K)
for any Naij = i , Z aij and
MZ(I%;()( Z(aod:gae’ Z(aKef :(K'é_a?) T af )7
and
2.2 (+x)12_ _ 1.,(% _ 1 1/2
¢ e [lmMai';] _—]’\ax_”_Ha_Z)‘(Ua)] +
1 - 2
inaK[Ha_Z/\(K"gaUa )J1/2 22, (21b)
2 2 0) 2 1/2 i - . 1/2 2
4clc][ImZ(alJ)] *‘ma”)‘(”a)=-/ll-”—)\((;l} +((1;\' l")\(a,‘zl / } .
(21c¢)
4c?c 2 Im 2%

- 2 1 2 (-)y1/2,2
_| aij]2:4Ha_)\(K.éana): 'ZH')‘(;LjL_((lKl_)\aK] i<,

(21d)
where 5 and « are defined by
uK ukK
. 0 . -
Mg = Sign tm ZLi;lm Z(ﬁfj)l = sign f—A(a+K) + )\(aK) b, (21e)
, S B CE S - 2
ax T Sign ilm“a’:]. lmMa;\j {=signi-8H -A(a,) +A(k- & o )0

(211)

2 1 2 2 2
ci2Cj2 HReN ;i 17Ny i Nosi 1=Z)‘[c1 Nair€2Naze 2 ¢3Naasls

(22a)



K Mo MR- £304) * 205 [~H -M(0,) 1V2 [ ~NRE 0 )]V
(22b)
BH, =~Mo,) + A&+ £,0.) =, [-A9 /2 [ a0 112 (220)

respectively, then we obtain the equalities (13a,b,c,d)
while the bounds (16a,b,c) are derived directly from
(21b,c,d) and (22a).

Next, from the definitions (19a,b,c), it is easy to obtain

K, (0) % ;
Z il Z g5 1= %ai J[ (‘faﬁ'fa,) i (.fal £,)1. (23a)

On the other hanc&3

bilinear form Z‘au_ |Za” | exp {i <¢>a?1 b,
express Z7(X) in the form:

if we mtroduce the phases ¢ (%) of the
then 'we can

aij
%i%j - T 2 0y -~ 7 7 (0,
Rez('l(J) T{K'(gar* ‘faj) WSP gjj +K- ( $ai Xéaj ) s“‘f’au ,
2AZa (23b)
o L
[ngl'fu?_ M_{K (¢a1+ faj) smc,szz?j) -k+(£4i xfal)coséfzgl)i
2| Z(O)I 23c)
2 2 2
Co T _— C. g .—C. O _.
cos¢(0?= k ak ai j aj (23d)

2¢iclogs 0g5 — Hyyj ]

Then, the equalities (14) can be derived using the follow-
ing relation:
Hm [ZO5(Z3) ¥ 1% = DIR(€ x £,01%0 % 02, (24)
and egs. (2a,b,c,d,e), while the equalities (15) are obtain-
ed from (23b,d) and (21a).

It is interesting to note that the result (23b) can be

written in the form:

12

2 2 2; 2 2 > -
Cx ‘fakaak - ¢ éaioai -G faj 9aj rscai+ 'faj ¢(0)'_
= cos
1/2 > aij
2¢; ¢jlogy ogy )1/ | Eai + &
- -
H, 1/2 aiX 'fa] (0)
+[— ] - sin ¢ , 25
2 2 > al] ( )
CiCj 9qj 9qj ¢ £ail

al

where H, is defined by eq. (12) and cosd¢ (o) by
eq. (23d). !

4. Experimental Consequences of Isospin
Constraints

The results obtained in this section may be conveni-
ently summarized by the following interesting conse-
quences:

i (0) (K)

(i) Let ¢‘aij’ b . ij and
z(0) z %) ana  wm(y%©

aij ) aij aij

5 (t._") be the phases
of the bilinear forms

respectively. Then, the sum rule (10) alone implies that

all the phases ( and hence ¢fz"i? , Bé;l'() can
unambiguously be determmed from the experzmental

data. Indeed, if o, 94ir Oq and g’al,gal areknown,

eq. (23d) alows to determine cos¢ (:’) while the sign of

sin ¢ D) can be obtained from [ see eq. (25) ]
SIg1{sn¢»au}—SIg1{Eak (g .)}. (26)
Then, eqs. (23b,c) and M‘i.'f) z‘a“l; A 'yield the
phases ¢ ) and 5 3" .
(ii) The lower bounds (16a c) and the upper bounds
(16b) are exactly saturated on the (85 ¢ D)=

=nn bhase contours (n=0,1,...) respectzveliy see
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eqs. (21b,c,d)| , while the upper bounds (16a,c) and the
lower bounds (16b) are exactly saturated on (n + %) 7

phase contours, respectively [ see eq. (22a)] .

The above phase contours lie on ghe zeros %Ij%jectories
of ImN,; and ReNujj, Npjj=Maij AR AGE res-
pectively. The zeros trajectories of ImNg;; are in-
dependent of channel indices (i,]) [ seeegs. (21b,c,d)].
The bounds (lﬁa,b,c) are degenerated if and only if |Ng;j [=
-0 for Ngy=MG4, G and Zz5)  respecti-
vely. We note that if |N,; | =0, then the phases of the
bilinear forms Naij are not determined.

(iii) The exact saturation of the upper bounds (16b) or
of the lower bounds (16c) imply the linear relations:

> -2 2 2

Jr"'fiz"“‘éajaaj lcjoa_i"ckoak_ci oqi 1 =0, (27)
between the projection of the spin-rotation vectors E wl
0=i#j#k. .

We remark that eq. (27) is valid for all < if the
lower bound (16c¢) is exactly saturated.
(iv) If one of the conditions:
1°) the bounds (16b) are degenerated;
2°) the lower bounds (16b,c) are simultaneously saturat-

ed; ’
3°) the upper bounds (16b,c) are simultaneously saturat-

ed;
4°) the bounds (16c) are degenerated,
holds for a given a,(i,j) and %, then weobtainthe
mirror symmetry: .

-

(R Eqp) == (R-£g) - 28)

14

These consequences are obtained using eq. (27) and

2 2 2
ceNapk = €2Ngii + N0 for N,pp= zgz‘;g), Zé'éz) ,

(£=1i,j, k) respectively.

(v) The exact saturation of the bound ~i(o,) > 0 imp-
lies the equalities ¢ = ( 0= &43 - . This result
is a direct consequence of the lower bound (16c¢).

(vi) The lower bound (16c) is equivalent to

2 2 2 2 2 1.2
L efoqi= €5oq317+ My < 260,00, + €705 =5 ¢ 00y] (29)

This bound requires that if

(c?0 .+ c20 . 5> 0, 30a
7 ak i ail ]Ualls_,er ( )
when the other kinematical variables are all fixed, then
[ see eqs. (11e) and (12)] ;

S E L0, (30b)

a) S > o0

Ci2(7 —c2%o > 0, ¢

ai j aj S > 400 ai

and conversely, the cross section o cannot vanish
for so 4+ if one of the above relations (30b) does
not hold for s-+= [ /s is the c.m. energy].

The Pomeranchuk-type theorems (30b) can be genera-
lized in the following way. We observe that according to
eqs. (22b,c) the bounds -A2) >0 and A(R-€,04) <
<SAH, < - Ao p) are equivalent to

D[ H = Mo )12 [l = AR+ £, o) 1/2 <=M ) MR- £0,);

(31a)
and
(XD V2 LD V2 choy) -MR-€2,) s (31b)
respectively.
IS



Therefore, let X and B be defined as
aKk akK

2o £ 22> 7 2 > 2
2¢{KkEqioai +2¢5K€gj 045~ Ch K Eqpoak
X gr = - . (322)

2¢? 2¢?
Ci0qit 2¢50,-CLo

Bye= maxt N 212 LA V2 2 al Ao V2 4, A (£, 12

(32b)
then, the bounds (31a,b) can be written in the form
2 2 2 2> & 2 - 2
[ciaai - ¢04; 1+ [ci Ko Ei i — G K- “;aj O 1* <
32¢)
2 2 2 1 2 > 2
<2¢0,, Lefog, * €% T 9 %k ak M4k & X 1 =B gy

(vii) The bound (32c) implies that, if the condition
(30a) holds, then

2 2 g i (k) ,(K) (0)
Ci%qi~ Ci%aj s:mo’ éai— éaj S:w?’ [ﬁaij ’ ¢’aij , ¢ai.i S_):mnn,
(33)
n=0,1,..., when the other kinematical variables are

taken to be constant, or conversely, the Tk cannot
wanish for s. 1+ if one of the Pomeranchuk-like
theorems (33) is violated. The proof follows from egqs.
(21a,b,c), (30a) and (32c¢).

(viii) The bound (32c) also requires that, if

2 2 1.2 > 7
2oy [ciog; + 3 aj =5 CkOakl[ 14K Eq) Xo)~B g S:Hg (34a)

for a given K then

-

0, (R-&,) - (R&

c.zo .- c.zo )
aj

i“ai ]

. 0. (34b)

.o
a) S 400 S - 400

Next, starting with the bounds 4, < - (0,) and
4H < - A (oB) , , a # B, and using the inequality

B
2al/2 p1/2 < a v b, a>0, b>0 (35)

for a=-4H, -0 ), » —Mo ) and bz—4H,8—)\(UB),
- /\(aB) then we obtain the bounds:

2[-—)\(0a)]1/2 [0 ,8)]1/2 <=Mo ) -Nopg), (36a)

oA —aH - No )] /2 [-mB-A(OB)]I/Z +4H, +Hg] <

<-Xo ) —)\(aB). (36b)
Let (¢,7) bechosenas [S(*) (21 [P o),
[ A+, A=) ], Then, since ogp=(1 + Xyp) Igg i

o = (1 -Xy)I ’ X=P,,A,,D_,, ,respective-
ly(f the boundﬂs (306ga,b) can bezexpzressze%i in the following

equivalent forms:

2 2 <

2 2 2 2
[cilgi—cjlos)” +LefXlgy—ciX; T4l

2 2 2y _ 1.2 _
<2, 0o (14X Xy ) [efTg, + efl g, 2cklok]

~ Ao VY2 [-No5) 1 V2, : (37a)
[C%IOi_c§10j]2+[c2iXil 0i- chle 0j]2+ 2[Ha+HE] <
1
<2 (14X o X ) (el g Blg = el gy ) -
- No) )V N1 (37b)
‘where

2 - c? . (37c
[%?loi““?‘c?loj'ckzloklxijk: 2cixi10i+2cj2[0jxj ciX, 1oy B70)
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Now, it is easy to see that the bounds (37a,b) imply the
following interesting results.

(ix) If

2 2
lOk[ciIOi+ cj[0j] S_’:w(), (38a)

(all the other kinematical variables are fixed)
then the bounds (37a,b) imply:

o= log 2 0 (38b)
Xp= Xy - 0, (38c)
g(ll - '_)ai S5 400 0, gZi h g—.i S oo 0, (38d)
e 1 e 5 e e
n=0,1,.., (38e)

for all (a,a),and conversely, the unpolarized cross
section Ly x cannot vanish for s- + if one of the
Pomeranchuk-like theorems (38b,c,d,e) is violated for
S>> 400 ,

We note that, the results (38d) are equivalent to

Ai—AjS:“oo,Pi—Pj . O,Di—D,-SLLMO, (381)
where A , P are the polarization “asymmetry” and

final polarization vectors respectivelyand D is the ”de-
polarization tensor” [ see sect. 2] .

(x) If

2 2 2 1
2] g Leilos + ¢iloj - Eck o] (1+ X X5 -

-8, -No)) P _ao 1 Lo, 39)

a S > 400

then the bound (37c) requires the Pomeranchuk-like theo-
rems (38b,c,d) only for a given (a,a).
We note that the results (38d) can also be obtained if
“Mlg) - AM(XIg) -
S5 4o
where )
MIg) =A(cqly,, A

M

2
02 ©3lg3)
and

MXEg) = M(e3X Ly, e2Xplgp,¢3X51 g5)
[see the definition (11a)] .
(xi) Let Aag and l;g be the “asymmetry” and

final polarization, respective:ly (f=1,2,3), and let
D, ﬁze , Z\'g and R, be defined as

5zz =(DyzesDyz0:Dpzp) » Dy = (Dyxp s Dyyp:Daze ), (40a)

Af E(Dxxg,-—Dng ’PZQ)’ AE E(Dng,Dyx,Az ). (40b)

Then, the equalities (12) for

[Hzm’ Hool THow» T
and [HA‘” , HA(_) ] imply the following equali-
ties:
F_-zc%?1+P. P -A.A -D _.D JI 1 =
ST 712 zZ1 72 12 71 72" 01.02
2 2 5> o _-» >
= Qe L1+ P P e = Ay Ay =D, Dy 1l
=c23‘%[1+Pz3pz1'A3'A1‘Dz:)‘:[)21“03101’ . (41a)
2 2 -> -> - - _
€€y Py + By = A D= Ay - Dy gyl



B 2 2 - -> - -> —
2 2 - - - -> (423)
=cgey [Pyg+ Py Ay-D, = A Do Tl (41b) S=MIg) =AP, 1),
A B 2 - > - - -
Eq - el 114 A, A, =P P, ~D,y - Dgpll 1, - [—4HQ(+)—A(Q‘+’)]‘/2 [—MQ(_;A(Q‘“)) V2 £ 2B, <
~ 2 2 - - - -
= eyl 1+ A A =P Py =D D N1 = <=A(Ig) =A(Alg), (42b)
_ w2427 1 5 B 22 o ALt 11/2 () y11/2
301 LIvApAy=Py Py -Dpp Dy dlgly + (@10 (-1 (y-MADN IV [ MDY MRy <
2 2 - -> > -
clcz[AZ] "'Azz_Pl'Dzz_pz'Dzl ]101[02: <-AIg) ')‘(Dzzlo)' (42c¢)
_ 2 2 - I - -> )
= CpCgl Ap A =Py Dg— Py D Mgl =

Now, it is easy to see that these bounds imply the follow-

- Ze? [ A > o > o ing interesting consequences.
= 4% 73" AZl -3 Dzl - P1 * Dz3 “03101 > (41d) (xii) If the bound
E,= ¢&c? CAA —A A _ AMXIg) <-Mlg), X=Pz, A, D7, (43)
A ¢, [ 1+ nzZln 7 /\1 /\2 /\1 2] 01[02 - 0 0 72z Vzz )
2 I is exactly saturated, then
2 - -
= C€CgCqg [ 1+ D7ZZDZZ3 '—AZ'AB— Az- /\311021 = - - - > > ->
g 03 A=A, = A D,,=D,, =D (44a)
| 2= N3 Vz1T Yz z3°
2.2 N 2
= cgey [ 14Dl 00 = A3 A= A Al s (ale) 6 (O g0 g0 0,1, (44b)
z(i)lz E(t)% 2(1) 31
2 2 - - - > .
€12 (Dot Doa =800 = 8, A Mole = when X =4,
-> - I - I ->
-> - P =P =P ] D =D =D ’ (440)
= ¢c%2%2[D +D -A -A -A 1 _ 1=F2="F3 z1= V2= VY23
2 3 z72 273 2 3 3 27 02 03
(0) (0) _ (0 =0,1 (44d)
O OA g b (+ =¢ (+ =¢ (vy =nh7, n IETEIER
2.2 > (1) (%)
= ~A . - . 1 Q723 Q7

Next, let us consider the bound (36b) for (a,g) [P (7
(a0 O 1, [AD A ], Then, we have b
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(44e)
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(0 _ () (0 _ =0,1,...
¢A(i’ 2 AD gy Pamg T T (449

when X=D,, where the vectors D z> 6z , K and
R are defined by eq. (40a,b).
(xiii) The exact saturation of the bound

(-4l - Mo ) 1172 [—4HE—>\(05)]1/2 <-MIg)-A(XIg) , (45)

X=Pgz,A,,D .,z , respectively, implies the results of
form (44a), (44c) and (44e) respectively.

We note that the experimental situations are more
varied than the typical cases considered in this section.
The results presented in sect. 3 are sufficient to obtain all
the constraints on the experimental observables, implied
by the sum rules (10), by specializing the unit vectors « .

Finally, we note that the isospin sum rules (10) imply
that each set of equalities (12) as well as the bounds
(16a,b,c) have an integrated analogous. Proof of this sta-
tement can be obtaines just as in (/2 - 0°17/2)
scattering case discussed in ref. /1/. Hence, the re-
sults (29), (30a,b), (31a,b), (32¢), (33), (34a,b), (36a,b),
(37a,b), (38a,b,c), (39), (41a,b,c,d,e,f), (42a,b,c), (43),
(44a,b,c,e) are also valid for the integrated (partial or
total) cross-sections and average values of the
”asymmetry”, final polarization and ”depolarization ten-
sor” components.

5. Conclusions

In this paper we have investigated the constraints on
the experimental observables of three (01/2500"1/2re-
actions. So, using the results of ref. /2/ , in sect. 2,
we have defined the polarized differential cross-sections
o, and the spin-rotation vectors E’a . These definitions
allow to discuss a large number of the isospin constraints
by analogy with the isospin constrains for (01/2-50°17/92
reactions [ see ref./! I . Then, all the constraints on
7, and £, have been derived, in sect. 3, using the ge-
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neralized functions F flt ) | see definitions (17a)land the
bilinear forms M), z49) and Z{j) defined by
eqs. (19a,b,c,d). In this way, we have proved that the sum
rules (10) alone imply the equalities (12), (13a,b,c,d), (14),
(15) and the bounds (16a,b,c).

These results are presented in the most general form
and are sufficient to obtain any particular constraints on
o,p and Eaﬂ , £= 12,3 Dbyspecializing the unit vectors
x . Thus starting with these results, in sect. 4 we have
derived a number of interesting experimental consequen-
ces. For example, we have shown that the exact saturation
of the upper bounds (16b) and of the lower bound (16c)
implies a linear relation {see eq. (27), sect. 4] on the
projections of the spin rotation vectors Eal » 0=1,2,3.
We have obtained that the Phases ofall the bilinear forms:
N ij =M (;i’j") , Z L"l; , Z il(;j can be unumbiguously de-
terrilined from the experimental data. Then, the exact
saturation of the bounds (16a,b,c) is expressed in terms

of the [nﬂ,(n+—;—) 7,n=0,1...,] phase contours or equiva-

lently in terms of the zeros trajectories of ImN,;; and
ReN ,ij respectively. Next, using egs. (22b,<§), we have
obtained the bounds (32c¢) which are more stringent than
the bounds (3la,b) and (16a,b,c) respectively. These
bounds require the Pomeranchuk-like theorems (33)if the

conditions (30a) holdfor s - + and the other kinemati-
cal variables are fixed. Also, using the inequality (35) and
the lower bound (16c) we have derived the stringent bounds

(36d) which imply the Pomeranchuk-type theorems (38b,c

d,e) for all (a,a)= [P0 1009 0l (AP A ] when the
condition (38) holds. Moreover, the bounds (36b) imply
the consequences (xii) and (xiii) when the bounds (43) and
(45), respectively, are exactly saturated. .
Therefore, the results obtained in sects.3,4, of .thlS
papei are of greatinterest for phenomenological descrlp-.
tion of the three-body final state reactions as well as in
testing of the different theoretical models. These res'u.lts
are sufficient to obtain certain tests [ see the equal.itles
(12), (13a,b,c,d), (14), (15) and (41a,b,c,d,e,f)] of theiso-
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spin invariance, SU(3) -symmetry, quark models,
etc., in the single meson production processes and to de-
termine unumbiguously the symmetry-breaking parame-
ters when the complete and accurate experimental dataare
available.
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