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SUMMARY

It 1s shown that transition from the
standard parametrization of electormagnetic
current to the parametrization by the rela-
tivistic spin vector allows one to make a
physical interpretation of a form factor in
the rest frame of a particle (and not neces-
sarily in the Breit frame!). A spatial dist-
ribution of particles is described in the
configurational representation to which one
goes over using e:xpansions over unitary rep-
resentations of the Lorentsz group. For the
proton form factor we have found a formula
which gives the correct "almost dipole"
asymptotical behaviour for its form factor.

Intreduction

The authors or paper /1/ have propoeed a new relativistic
generalization of relative coordinate which allows one to §O over
to the three-dimensional description of the relativistic two-bedy
problem /2/. An analogous mathematical technique has been used 1n /3/
to describe the particle form factor,however the meaning of a
parameter N as a coordinate has not been found qut. This has not
allowed the auther oo /3/ to obtain the physical consequences I'rom
this approach. In paper /4/ the relativiatic cooydinate characte-
rizing the proton distribution has been related to a rather im-
pertant proton characteristic: itg mean-square radius., It has been
shown also that a new coordinate introduced in /1/ deserives the
proten distribution only at distances larger than its Compton wave
length.

sepides, in /4/ it has been eatablighed that since the relati-
viastic coordinate modulus is a relativietic invariant there is no
need to xo over to the breit frame ror three-dimensional apatial
deacription of a particle digtribution.

The present paper is a mequel to paper /4/ . In the first part
we show that the Breit frame is not neceasar” to find out
the pnysical meaning of the Sachs form lactors. A traneition to
the parametrization of electromagnetic current by the relativistic
spin vector /5,6/(the Pauli-Lubangxi, or Zargmann- Shirckov vector)
allows their direct interpretation in the rest frame ol' & particle
itgels.,

In the second part we introduce the description or particle
distritution in the relativiatic coordinate space and present a new

invariant delinition or the particle mean-aquare radius. In the
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tnird sect.a new coordinate ‘? is introduced which describes dig-

tances smaller than the Coupion wave length of a particle. A simp-

le nouel is proposed based on the vector dominance mouel with alle-
wing; for a contribution rrom the particle central part, this nodel

ives the correci "almost dipole"” behaviour Tor the nuclecon form

i'actor.

The nucleon electromagnetic current, in quantum rield theory,

Gﬁo + 245
Q—HCF Fl(?)ﬁ’lt ()

s yiven by the expression
o (551 50 [ (16
gu'w: !‘f__
0 (1)

wiere ‘Llw(r)’) are nuecleon bispinore normalized by the condition
WEHF) u {ﬁ’) ZMXand Fo (4)
“ii Jorm mctors, resp., which depend on the 4-momentum transter

aquared t' (i’ (P \c) « The matrix S of' biagpinor transror-
mation I'rom the rest frame 'u_r(ﬁ): SP U (c)

and F [Grl) are thne Dirac and Pa-

has the icrm

) Po+M P
(2)
wlere —y—
F i Yf' & = (o K . (3)

By analogy with procedure in /4,8/ in eq. (1) we go over to the
hieﬂninors defined in the rest frame ):

:u’(?) -Q'H(D)S {rﬂFL(f)'*gﬂ 7 z(ﬂ,)}
8 SA}K-:D%L{V /API,Q)j w10y, w
in {4) we have used the definition of the figner
rotation Y. -4
$'8e = Spe DHYTA0T

Now we employ the formula from /8/

S XS,D H% +,’13{5W-[7j (6)

where w {P)ia the relativistic apin vectorLSJ (the Pauli-
*)

To obtain 'ij;n

(5)

-Lubangki or Bargman-Shirckov vector)’ 7. As has been ghown in /8/
eq. {6), with (2) considersd, admits the part of current of (4)

with F':L( ) to be written as follows:
Ay )= . N
— fﬁ T 2 MR8 i o

V- Yy

*) In the ptandard representation, where X -(o _L) X (%o)l 'H{o) ﬁ_( }
in the spinor one, where r-( ) ) A (o) \/N {S

The two-componant spinora obsy the normalizatlon condition
. §(,-r = [ 3
Mn the reat ame(P = G) we have
—

Wo)=o ; Wle)

Therefore the relativigtic Bpin vector defined asW//;) /Ap)\iw")

hae tha following components )
W) S W) mE FIET
PetM (e



Making use of eq. (6) we also obtain

4 sa 5 3 - -
8o s = i L [P win-Wiplp =22 !f’()g})
where tha quantity

ey - WIEIWE) =Wip W)
2

(10}
AV
is constructed by analogy with & sbut [p’) are taken

instead of Yy -matrices. Note that in oconmtrast to }/ -matricee

the vector \J‘\f /P) enters into an algebra of the Polncaré group

and is related t¢ obeervables directly: its square gives the

- 3
particle spin by the formula W: —Mfs‘/,s"#l). On  gubstituting (6)
end (9) into (1) and using the obtatned in /8/ expression

Hw) Y, e M v .
WIEIWIE =4 (- 9) + 2 )
we arrive at the current (1) of the following form

J“(F’ *\[—%—H' §{(P+lc) Ge () +
L5 (m,, ; /f)jgc ;bg VT2,

{12)
Then, the arising combinationg G' (f) F {H+ (f)and C— ['&')-

-P ({')1' [‘f’} are, resp., the Sachs alectric and magnetic form

(11)

factora. A general paramstrization of the currents by the relati-
vistic apin vector which ie valid for particles of arbitrary spin
nag been derived in papar /6/. The derivation of (12) can be ra-
garded as a method for obtaining such & paremestrization from the
current of form (1) standard in quantum field thesory.

Now let us find out what is 8 form of the interaotion of
nucleon with an externmal field if the expression (12) 1g acecapted

for the current. If one takes into account the invariant gaugs

ant
condition ¢ /f( é):ﬁ,tha energy of interectlon of a nucleon

with an extemal field takep the fom

z. e ~

f /a‘s"%‘c)/ //) m ._.l/ {&(P /ﬂ) G‘ /f/"
+ 4t Z'/,o")/ 4hCm Hf 3, D B4 o L VT Ay, )F. 0
Hore the following should be recalled: In the Dirac equation, the
term describing ths interaction with electromagnetic field 4 G'ﬂ |" 3
is trangformed toc the form G" F,o ZH ‘lZE by pasaing to the
three-dimengional voctorsZ[--.o( r5 and & = a’ K constructed
of components of tensor 5"' « We ghall make an analogous procedu—
re in (13). To this end, we construct two—component analoge on

-l
end & but now from componente of the tengor Z [—7

7 = (TR, 55, 2(9)
®= (20,55, Z7(7).

Then, by using the definition of the field strength vectors

(F32.) 1-3) 11.) E (roj. rcu ros ?

where following 9/ we put

oo () = g r Aaly) - 4 Anty)
the expression Z:)" f—r—) Aﬁ ?'J - E/‘ (};"—)

entering into (13) can be reduced to the conventional form with

(14)

(15)

ssparated elsctric and magnetic field interactions

e 51 W (IH ) +e (AFHE)-
ENF, = e (M ) +e (T(7

As a regult, (13} can be represented n th

£'= Jcs//%f)ﬂ /;) /——fjﬁ’ ?[//3//}))§ /75/"'
1/3”/‘*)/9/6‘ /Y s £ £ (4/,,)5'7 /,Q_/ ‘.6, V

Thia general expresmion n 11 be considere for variou- caged.

{16)

I:t the external field be of the pure magnetic nature, i.s.,
E
A f £ + Then from (17) we have
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E=flalfiihurg) = W_%ﬁ iE/e// 75) . ()«
,\}6‘/37‘//?7/2;7[ /87/5‘_23 /V—/’l"/// (18)

Le wag noted in /Y / |, the #irst term of (18) with the external
potential does not relate $¢ the mapnetic moment o a particle.
nereiore the vectcr/é% 747 /;o/ congtructed by formula (14)
v the relativistic aspin vectors L/ /:}can be treated as the
magnetic noment of a aplnor particle wmoving with mementun p.

The function ,‘b%/V/} lcg/ll"cludlﬂ{‘ the Jigner rotation V//éo "5)
“esc¢rives the Towmas precession o1 spin regulting from the partic-
le nomertwa change when interacting with the external Tield.

Due to the 2 s0llowing Lfggf(14), {15) equalltmes
777/ e) = J Q /%) = g7

expression (17} takes the most sinple iorm

E=-/7 *‘é’) / /7//

(19)
V L= 2447
in the system where the nucleon wag at rest bei'ore interaction,
/)—z) 76 /fyyq tZ/ f Equation (19) demonstratesg the fact that in
tne systen, where the particle was at resat before interaction, the

Sachs l'orm vactors 63? [/f7 and CEV //Z/ really describe “the

charpge density" and "magnetic moment distribution™ of the nacleon.

Lote that such an interpretation is achieved without uging the

ugual Jreit t'rame,

Relativistic Configurational Space.

The nucleon current parametrization (12) is used usually to

interprete the form factors Ce: /15/ and é; /Gi/ ag charge

and magnetic moment distributions, resp., 01 a particle by means

ol the trangition to the coordinate space in the Breit frame,

In this {frame ;:?:- ;;_ and onecause ol that the time coumponent
03 4~vector of the momentum transie;f A2~ turng into zero

;u e -t =g and, congequently, //?/“/—/}7- ). thus the
4=-dimenpional Fourier transiormation reduces to the 3-dimensional

one /10/ g

§(v) =(5%-)‘ SAi e P : (_{1) . (z0)

However, as is well known, such a form oy the gpatial description
of the nucleon distribution is not satisiactory since in the Breit
irame the nucleon itasell 1is moving,i.e.,its internal motion ana
translational motion as a whole are not separated.

In paper/4/ it has been shown that this’dijliculty tiigappe-
ars i1’ the nucleon spatial distribution is described in a new re-
lativistic ceoordinate representation Introduced in /1, 2/ « A pre-
liminary remark should be made that in the momenvum space :he
three~dimengional description can ve introduced in any coeriiinate
irame il the lanjuage o the LobachevsKy space is used., Indeed, irn

>
(1) and {12) the monenta p and k are on the mnass saell
z

2 2
F“ P = M= (21)
Bquation (21) is tue equation of hyperboloid on Lue upper chieet 0.

which the Lobachevsky space is just reulized.

- >~
fne vector A = P‘“J £ —the differencs 1in the Lobachevsky space

I-’F“"?:/—t): ‘—'//) r.;*ﬂ)
= (poir), = [A04)= /—Tﬁﬂ‘ﬁ" 22

can ove CquldEred as a relat1v13u1c e“erallzablon ol the 3-dinern-
- = e

gional vector oj the nonrelativigric nomentum urausxex‘jf /D £,

In the nonrelativistic limit, when the curvature o:r the Lobachevsky

gpace tends to zero and it turns into the rlat 3-dimensional



-> g —— - e -
Buclidean space, the vector A =P f“?/c”'f:/?-t + The four dimen-
Oyt
sional momentum transfer vector squared, as one can esaily verify
with the aid of (22), in any coordinate system can be expressad
-2
through A by the formule /1/

Z‘*//’"k_)l:ﬂﬂl—ﬂf}/ﬁfzf-fu . (23)
3

Consequently, in any reference frame s form factor/:/é/can be
parametrized by the square of the t_hree-di.mensional momentum
tranafer fri //—bp"—);)l of the Lobachavsky apace;;#/: ;ﬁy').

The relativistic coordinate wpace ig introduced as canonically
conjugate to the momentum space which geomstry ia the Lobachevaky
geometry. The group of motion of the Lobachevaky space ig the
Lorents group, Therefore, for tranasition to the relativigtic coor-
dinate repregentation the expansion over the principal serias of
unitary irreducible representations of the Lorentz group f1/, /2/
is used ingtead of the usual Pourier trangformation, The mathe-
matical mapect of the expanasion procedure over the Lorentz group
is well known /11/, /12/, /15/ . In papers /1/, /2/ +this appa-
ratus has been employed in the form developed in /13/. Due to
the ppherical symmetry of a form factor /C'/?‘/ such a trangfor-
mation has the form /4,3/

7 Sin r M x

p/r) =£-7:’:o m ;/A*‘yl/yo?. (24)

The hyperbolic angle )C parametrizing the vactorﬁfzﬁn the
spherical coordinates

*) Por the first time form factors were parametrized b
¥ uein,
the lobacheveky space in paper /17/. The auther of /17/ 1§ke
those of /3/ and /1)/ have alaso used the expanzion of the

form (24) but they have not given the parameter in /24
senze of relative coordinate. p 724/ the

10

- - i
A‘,::/Vc/f}' ; 4 :/z,d/t/;'[)('/. i =4

is c@lled "rapidity". The inverse to {24} transtormation
ol

FIE) =4t [3E28 £5) et 25)

has the property o
£ o) < 4 [ F1r)

due to the equality LZ@;U resulting from (23). "

In the Lorentz group there is the invariant Casimir cperator €

o d MM T pTh 4 D 2clhr . dey
_-— 'ﬂ -

4 ’Y'zﬂ/'l‘t /"/"’/I‘f /V"'Zh{y {20)
Pt ,
Itg eigenvalues on the iunctions /% , which are elemen-

tary spherical functions of the principal series of unitary irre-
dusible representetione of the Lorentz group, are determined throuph
the squared relativistic relative coordinate # in the 1ollowin;; way
Cf/.&'z'n.nﬁ ) =/_z/ . ’_1)/5"('/'2/'/‘/)(' i ’
rﬂ;zfﬂ wr? P SAEX (27}
Ae the operator ¢ is relativigtic invariart, the modulus of the
relativistic coordinate » ig a relativigtic invariant too. In this
way the runction ﬁ?i) in (24) pives the invariant description
of the nucleon spatial distribution in any rererence rrame {(mud
not only in the Breit one), Hence, the new degcription with the
uge ox‘F(r) is applicable aleo in the rest frame o a nucleon. ‘i'o
agcertain the physical meaning of the new coordinate we relate it
to the important characteristic ol a particle: its mnean-square
radlus. It should be remarked beforehand that ita definition vy (20)
in the Breit frame whigch has the nonrelativistic form
4,53)5)( - -_ﬁ%g_éo:_/_.;;? 1[/’?‘/}/’;‘0=
K Flo) Flo)
_ J:~‘;[{E/4¢’

W )

(28)



-rom tile group-theoretical point of view has the meaning or
expectation value ol the eioenvalue ol the Cagimir operator oi
thie Buclide broupC: { ) the group ol metion oiv the 1rlat
Zuclidean space. The eigenvalues oI the cperatox‘ﬂ?ﬁfjén the lunc-
tiong é‘ (or on the zero-order Hessel yunctions f%;;?fﬁ )
witich realize the unitary representations of the EBuclide group, are
the square ol the nonrelat1v1at1c coordinate f':
g
{ Lf?);' = e’ :
Sy using (20) it can be checked cagily that the u%ual i'grmal
invariant deifiniticn of the mean-square radius (r >= 5(2;:; /f;:.

algo hag a proup meaning: the meaning of expectation value or an

eiyenvalue oy the Ca }mlr operator of the Lorentz group /4/’

(rEy=t /‘L = /%ﬂ” : (25)

By virtue of (29y) and (28) this definition can be written in the

:orm QI
n(r) 7 o A GRS
= £/0) T T Fse) (30)

of direct geometrical generalization or the nonrelativistic deri-

rition of the mean-square radiue (28), obtained by changing the

modulus of vector of the momentum transfer )? by the corres-
ALt
nding; rapidit =
po ng; P ¥ jf /11 Cﬁ’ —:?;237 _
In terms of the invariant function /ﬂﬂk the mean-equare

radiug, according to 27) hi;Jthe jpllOWlng form *)
& CELY PR 42
r =2 o ‘7
<") £/o) /vlof f;x.)/,? /v.oz"'("/"(Jl)

In the nonrelativiastic limit the Casimir operator oi' the Lorenty

*) Here we again write h and C for more clear presentation.

el 2
sroup C?:/¢’—/V reduces to the Ca51m1r operator oi the sroup of
motion of the Buclidean space Cc::::‘("/Q 4)/'2 and exp. (31)turns
into (2B). “hus, it can be said that in the relat1v1qt1c enera-
lizatien the group~theiretial meaning of the mean=-square rodius of

a particle 1s conserved,

Prom expression (31) it follows that for particles for which
the Compton wave length squared in small as compared with the
experimentally measured value oif the mean-square radius {f;f} the
quantity (f~i> should be positive. An example oi such particlesg
is a proton. For a proton, as i'cllows from (31),the new coordinate
and the function F{#r) descrive not the whole size but only the
region outside a sphere of the radius equal to the Compton wave
length of a nucleon. This result is consistent with the hiewton-/ipgner
concluslon that the relativistic particle cannot be loealized in
the space with aocuracy better than 1its Compton wave lenpgth /14/.
Besides, in our approach there ig 8 rather definite prediction on
a8 magnitude of the contribution to the form factor {rom the central
part which is not described by the coordinate / .

Indeed, to the sphere withﬂ=,‘7€ there corresponds #= o

4
or Ffr}) = ZFJ{T;L « Substituting this function into (25) gives

the I‘o;lowin’?{io;?/;actors 2/'/'2& /-{Jﬁ-’ 2 VZ/'/_zt_j,V-y/
E:jc” / 0 / T) Vere-arsy 9

corresponding to the contributlon o' the central aphere ﬁ?-j;z .

Accordingly, the standard form ractor can be represented in the

fle) = () 2,

where the "external" form factor E?Zgélobeylng the same normaliza-
tion /} /C’/O) £ correpponds to the nucleon distribution

form



outgide the sphere with R. =Nfl" . Such a factoring of the
standard nucleon rorm iactor i(t:lto the actore which correspond to
contributions rrom the central and "external" regions is obtained
according; to their contributions to the mean-pquare radius ot a

particle. Indeed, uslng (25), (30} one can easily see that
. 2?21 f/z, =0 _ f,.#—"/r}c/»? ¢ )
e f 4 p /y.tc..?. ) Fre) IF/")"/" = (34)

It is important to note that the central region with ,Q:—A—-

and the corresponding contribution /—-;}_/ have n¢ nonrelati-
vistic anelogs since as € —mon Q Y R ﬂan(//f)-a-_{
MO O, ot

Hence, only the "external" fore ;actor_?/}’)can be considered as
a8 direct relativistic generalization of nonrelativistic form fac-
tors. It is interesting that in terms of the "external" form isc-
tor f)/}() the transirormations (24), (25) lock like the usual
transi'ormations w1th the_Bessel functionse oi zeroth order

Ffr) = 5;__ fs:nr/‘/}” f/f/f'/)f (21“,_)

The relativistic coordinate here,however, in distinction with the

nonrelativiatic case, is conjugated not to the modulus of the
momentum tranaler ; but to the rapidity ){‘

A question naturally arises whether it ig always posgsitble ror
a8 l'orm l'actor to be represented as a product ol contribution from
dirferent regions of & particle (33). We here notice that such an
interpretation of factors in (33) is baged on the positivity of
(r’)’ resulting from experinental data on the proton radius.
‘Thie poseitivity is possible 1'or example when the :unction /C/f')ia
ol congtant eign.

It is also known 1rom experiment that a numoer or particles
{esq., % -meson) have m.s.radius smaller than their Compton wave

length, Por them, obvicusly, the quantity(}"z)should ve

negative. Let ue establish in which way it can be achieved in the
vector dominance model (VDM)} that well describes the pion form
factor. In the VDL the pion form ractor is depcribed by thej ~me -
son pole X /= 7= Z- 411 . It is known / 2/ that the transiorm
of such a relativistic propagator in the relativistic conrigurational
repregentation essentially depends on the relation between the mass
of a particle iiielx W and that of an exchanged particle /t 1
Ha, Mokl
i) = !!.'Iir sk (rMT) 0, = ane coff ()‘12M=-
=] 4 cos(rMay) _/ >am

aM
hse Sh (M%) A'LP}L('#‘zma )(35)

From (35) it ieg seen that for pion the second inequality /J’ )4 Ng-

holds and p/f‘) is an alternating function. For a nucleon in the
VDM the relation j yf-éN,/ holds for P Wp and_?’ -megon, and
the funection F ) £s of constant sign. By ueing /-'//'-) from (35),
we obtain from (34} the express:.on tor £ p )

(P) = _——ZN_C ’ju-t v
within the /DM. One cah easlly see that for pion [N- ){r}_
1s negative and for nucleon (M /V/V / _/"-./‘f,/w;/l_y/

is positive. Thus, for pion <l‘; 7%._-;;_-— /<l‘ )/ and it ias impo—
saible to interprete, ag before, the coordinate p ag describing
the particle distribution at distances larger than its Compton
wave length. Hence, for pion no analog of the central part exists
and the factorizing (33) makes no gense.

However, the difference between the pion and nucleon mean-gquare
radius has more fundamental grounds from the viewpoint of applicabi-
lity of expansions over unitary representations of the Lorentz Zroup.
It will be shown that, in sccordance with the general theorems pro=-
ved in /1145, 12/) these expansions differ essentially in form

for plon and nucleon that is dud to the experimentally obaserved



apymptotic behaviour diiferent for their Zorm iactora at large = 2.
I:..deed, the avove congidered cage or nucleon ipg distinet sin-

ce the nucleon rorm tactor {(es 1o iﬁen irom the ritting experimen-
tal data dipole I‘ormula Cé,/?y:zz::?ZG? is a square-integrable
sunction, i.e.,j/fi,/éy%c!%x%zkzoe By & theorem proven in /12/
such iwiections are expanded over represgentations oi the princi-
pal series only (=mee also rer./’l5/ }y i.e., rormulae ror trangi-
tion to the coordinate space are of the vorm (24), (25).

The pion rorm ractor is not a square—integrifle I'unciion
singe it isg known .rom experiment to decrease BB)GE? . By a theo-
rem proved i]h/ll/’ such tuncticns sre decomposed into a direct
cun of repregsentations of the principal and complementary series.

B Eiseuvalues o1 the Casimir operator ol the Lorentz sroup
= )(2 playin; the role or square o: a distance ;rcﬁlthe particle
centre are not bounded Jron Lelow by the quantity'jfﬂzi when taking

account oy thie complementary series, since by results or/hl' 18/

one hag i 2
N VERRRS 0 Ly Lo
C :)Cl = Jor the pincigFl series )
{ 3 049 < n (36}
M= _'j> iJor the complementary series

‘e  parauecer 9 can be treated ns ¢ coordinate describing the in-
terior ol a re__r;ion with R,=PTE- ard Leasured . rom the Sprere pour;-
dary to its cventre.

To a particle localized at ihe cexter, 1.e,, at X =0

the value ol the paraueter j?z e corresponds. in tils case,

Cor an elementary spherical Jlcetion or the complenentary serieg

She M -
Tivh e:c '3_;}; Thy (winich remairsduz 0 the vorm iactor I—/t)
. S' )
spnerical symimetry ) tiie equality '—L%ﬁ/.,_; =1 noldg.
LM ISPYS

he latter sives P.(f): 1 (unlike eq., {32) ror nucleon). Such a

‘orz sactor correspords to a point=like pariicle.

i6

Thus, the pion vorm factor in the coowiinate space can be
described in terms of representations of the complementary
series only,i.e., in term of the coordinates P and for it
orne camnot separate the ceutral part contribution.

For proton the transition to the coor.inate space ig reali-
zed with the use or the principal peries oo unitary representati-
ons the proton spatial distribution ip descrited in terms ou tne
coordinate ¥* . In thie case the equared distance irom che particle
centre }Cz=ﬁ%1 +r¥ is linited rrom below by the radius o. tie
central sphere )fo R%: Mic? to which, accoriing vo (32, there
corresponds the contrioution f/,s’ﬁ}’ .

This diastinction or deseription or proten and pion in the
new coordinate space suggested an idea that an additional cont-
ribution from the proton central part should be taken inte account
when using the VDM for proton. Since in the nonrelativistic 1liwmit
Just the Fourier transiorms of usual Yukawa potentials correspond
to the vector meson propa{:ators/ﬁ—{r - /'“Tv'é'?ﬁ——_z—y_)then it
should be conmidered that they coutribute orly to the roru factor
part heving a nonrelativigtic analog, viz. to the "externzl" form

)

*
rfactor ‘. Thus, it we want to map, in the momentwn space, the

whole proton spatial distribution conceivable in the new coordi-

nate repregentation then it ig neceggary to add also a contribution

~ Qv TeAirshpe — R eBarsATr
[}C) FAT=F are of the rorm F(vr)s %%ﬁ;h—nﬁ,—rln accordance
with (24a), and in the nonrelativigtic limit reduce toc the Yu-
—-—uw
kawa potentials Ff) » €717 |
4

*
) zgatial distributions correaponding to, the "external”iorm ractor

17



ol the central rerion with R = MC y that just results in the

Jorula
_ ]’_‘ . v .
b (t) = [S_ﬁf)v?;'u,s:.. st (37)

This expression rer the proton torm Yactor, in accordance with

{32), has the correct "almost dipole" asymptotic behaviour at

| t!
large - 1 gMz eh» FI_I

P(’r),

——b—.— 2
p tl M2 t (38)

It is interesting to notice that the VDU provides gocd results

o description of the reactions with pions but for the nucleon form
ivactore it aescribes satisfactorily only tha data at small -tcic%y}
2

. It is just the region -f‘--{(%y) where the central
part centribution does not dirter, in practice, from unity, i.e.,
Lé );;1 . Yhen 1t varies in the whole experimentally availlable
Slon DL~ t L25gey ¥
region UV & = (?E— the ractor ("F') rung through the interval

P ShX

i}[‘m %02 tnie result can be interpreted as rollows: At small
nomentum translers a re_ion of the "external" form ractor wag
corisidered and with ;rowins momeutwn transier the repions are
reached where the central part {with Q'ZEIE ) contribution beco-

mes signiticant.,

4. Conclusion,

Let us swumarize our consideration. As has been ghown, the
use o1’ the Chesxov-Shirokov invariant parametrization ol currents
allows one to make physical interpretation o. the nucleon electro-
magnetic sorm lactor in the system where the nucleon isg at rest
belore 1ts interactiorn with a photon, whereas 1or thisg purpose,
as 8 rule, the Breit rererence crame is used. This has Lecome

possivle since in the Cheskov-Shirokov parametrization a "removing"

both of all spin indices and of spila variables 1s done on te one
and the same momentum /6/ « It ip clear, as well that the above
congideration of interaction of a particle with an external electro-
magnetic rield and the torm iactor interpretation remain valid

algo I'or particles with an arbitrary spin. Really, interpreting
form factors C&; and C;( we preceed rrom the current parametrization
oi a type of (12) which does not change its iorm ror particles with
an arbitrary spin. In this case, according to / 6/ , it is only
neceagary to conagider 'LVPCZE? as a relativistic spin vector ou

GM vy setj’ ol approp-
§n('9(h’(p’)%)%/.

Transition to the relativistic comrigurational representation

an arbitrary value 3 and to replace G-E ag)
X

riate form factors by the iormula: gyvﬁ*
h

allowg one to introduce the invariant deseription of particle gpa-
tial distribution. An important reature of the relativigtic conti-
gurational representation is that it introduces the new scale:
particle Compton wave iength. Che harmonic analysis on the Lorentz
sroup hes more possibilitles them the expansion on the Zuclide group,
i.e.,the Fourier-Bessel transformation. As has been shown above,
ineluding into consideration, besides the principie series, also

the complementary one makes it possible to describe the whole in-
terval from the origin up to infinity. In this approach, the partic-
le distribution at distances larger than its Compton wave length

is described in terms of representations oi the principle series

and that at digtances smaller than the corresponding Compton wave
length - on the basis of the complementary geries. Thé use of thia
language leads to concept of a contribution or the proton central
part with radius R'zé?é. « The consideration or this contribution
and the upe of the VDI deseribing the proton distribution outside

the aphere with R, equal to its Compton wave length give rige to



the rew Jornula ror the proton iorm factor (37). This formula
provides the correct "aluost dipole’” agympiotic behavicur of the
sucleon oru lactor (38), A detailed compariscn of theoretical
depenuence ol the proton rorm ractor at gpace-like momentun trang-
<ers lven oy {37) with experimental data will be made in a sub-
sequent paper.

e aulhor tha:iks y.G.ﬁadyshevsky, 5.B.Gerasinov, Y.A.liatveev,
St inreey, fvAulecheheryakov, R.iiliir-Kasinov, A+l Bfremov,
I.L.dclovigov and H.i.PFaustov lor interest in the work and ugeiul

remwarks,
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