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S U M M A R Y 

It is shown that transition from the 
standard parametrization of electormagnetic 
current to the parametrization by the rela­
tivistic spin vector allows one to make a 
physical interpretation of a form factor in 
the rest frame of a particle (and not neces­
sarily in the Breit framel). A spatial dist­
ribution of particles is described in the 
configurational representation to which one 
goes over using e::pans ions over unitary rep­
resentations of the Lorentz group. For the 
proton form factor we have found a formula 
which gives the correct ''almost dipole'' 
asymptotical behaviour f~,o_: its form factor 

!.12!.!:~~~£!?:.2'1 

'Phe authors or paper /1/ have proposed a new relativistic 
beneralization of relative coordinate which allows one to co over 
to the three-dimensional description of the relativistic two-body 
problem /2/. An analogous mathematical technique has been used in /J/ 
to descrtbe the particle form f~ctor,however,the ~eantng of a 
para111t~ter Nasa coordinate has not been found out. This has not 
allowed the author or· /J/ to obtain the physical consequences l'rom 
this approach. In paper /4/ the relativistic coordinate characte­
rizinG the proton distribution has been related to a rather im­
portant proton characteristic: ita mean-square radius. It has been 
shown also that a new coordinate introduced in /1/ describes the 
proton distribution only at distances larger than ita Compton wave 
lenh:th. 

besides, in /4/ it has been established that since the relati-
vistic coordinate modulus is a relativistic invariant there is no 
need to ~o over to the Breit frame I'or three-dimensional spatial 
description of a particle distribution. 

The present paper ia a sequel to paper /4/ • In the first part 
we show that the Breit frame ie not neceesar·: to find out 
the pnysicaJ meaning of the !:)ache form rectors. A transition to 
the parametrization of electromap;netic current by the relati'tistic 
spin vector /5,6/(the Pauli-LuDansd, or Jargmann-Shirokov vector) 
allows their direct interpretation in the rest frame or a particle 
it self. 

In the second part we introduce the description of particle 
distri·oution in the relativ1atic coordinate apace and present a new 
invariar.t de:;:'inition ot' the particle mean-square radius. In the 

3 



ti1ird sect. a new coor;.!inate J is introduced which describes dis­
tances smaller than the Co1npton wave length of a particle. A simp­
le I.lo-.. el is proposed based on tne vector dominance mouel with allo­
,,~nt., i.'or 8 contribution tram the particle central part. ·this c.1odel 
!_;ives the correc~ "almost dipole" behaviour for the nucleon i'onn 
l'actor. 

2. !r~~~~!~~~-~!~~-1~~-~I~n~er~-~l~~trowsgn~ii~~~r~nt 
r~~~~~~r!~~~!£TI_!~_!h~!_2~_!0~-R~!~i!Y!~i!£_~£!g_Y~£12r~ 

'l'he nucleon electromae,-netic current, in quantwn field theory, 
:;_ s ;_;i ven uy tne expression ~ 

1 5=., (p,[) = e u'"(p) U' F; (fJ + G::(l J F21}'JJ t{ tt) 
,;~'"'= tr'- r't~', 

2. ( 1 ) 
wnere tl~qr) nre nucleon Uispinora normalized by the comlition 
tL"(p)v""'(f)::.2M~:,nct FdfJ an<lf:;(f) are the Dirac and Pa-
~li .• :onn ... actors, reap., which depend on the 4-momentu.m transfer 
squared f: ~l: (p-IC f 
mation tram the rest frame 

• 'l'he matrix $ r Of biapinor tranafor-
'U.0(pJ~ sr v"""(c) has the fonn 

,{----, ~ ~ ) S = V f:dH ( l t .:!:_£_ -r p 11- H P• + M - c1. 1P;j + ;;: hr .s h fr(z. 
( 2) 

.vllere 

po .:. f'.1 C'~ Jr 
F ~ itr ,.., &lyr 

...... 
it. = ..t.. 

I lfl 
....... ~ 

J-.~(·t· (3) 

4 

By analogy with procedure in /4,8/ in eq. (1) we go over to the 
b~jPinore defined in the reat frame*): fi.J J J.-.' (f,>r):: e ;u'{o) snri'Fdf) + ~M ~-~ ~{fJ 

To obtain SJL-' , .. 
~ <! y, r -!.r J ,, . ~-'r 0A~i k.. j) LV Ap)<) ~< ( o). w 

in (4) we have used the definition of the •Vigner 

rotation ! 1!1,.. -i J s; ,S"- = Sx,'/C.. j) {Y (Af,k.) 
(5) 

Now we employ the formula from /8/ J 
(6) 

~;1(~1' =~ 1 p~ d'Q'Vf~(p) ' 
where Wfl{p) ie the relativistic spin vector [5] (the Pauli­
-Lubanski or Bargman-Shirokov vector)**). As baa been shown in /8/ 
eq. (6), with (2) coneidered 1 admits the part of current of (4) 
with Pi. ('}.1) to be written as follows: 

;;;"'m r~ 'IA·-r~)= ~ J ) ~ 2 f. i" { l{i- '4 11 ; _,. .2, v'(n WtrJ %' l 5'r;4,,{v/JtrrJ). -;·-Y· I M Vi.- t;!tM" :J p 

------------------------
~ ,; 

•) In tho etandard reproeentation, whore r,~(! ~hf~(,~~)jt~o)~-fiii(;} 
in the epinor one, where 1.~(~~); 7= (;.-:)j'\{{o)=·li1 rF). 
The two-component spinora obey the normalization condition s"r"~G"I ::: S"trt;f ' 

H)In the rest frame rr-= 0)~ have ~ 
· W{o) =M~ J .2 

V'(o) ~o 
(7) /( v 

a.wfr-J=(Ilr)• V;o) 
Therefore the relativistic spin vector defined 
hoe the following components 

0(. --. -- ~ (?--1 W tp)-= ~ . -vv-rf)-= H G + P ;;:- P J .;!... ) {I ,1.. M f" t (8) 
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Making use o.f eq. (6) we also obtain 

,;-1 ~·<! 9 f v'·l- rl' ~ Jl ) --J] n~"J~ J ,or " "r = M"· o r w~pl- v ff P J -J.L- tri , 
(9) 

where the quantity 

r::Ji(p-J '= v'rrrwrrJ - v/rrw~"crJ 
:l 

(lo) 
is constructed by analogy with fJfl.J ,but 'v/f;fJ are taken 
instead of y-matrices. Note that in contrast to ( -matrices 
the vector \NTft(pr) enters into an algebra of the Poincare group 
and is related to obeervablea directly: ita square gives the 
particle spin by the formula y; -H)t(,r+i.). On substituting (6) 
and (9) into (1) and using the obtained in /8/ expression 

,J v1vJw(?J=f (/'?v-Nj 11v) +F/'!T) 
(ll) 

we arrive at the current (ll) of the follow~g form 
'I r~ ~) e. ".-{ I' ( J.-<'lf'"' = ,~._ +t .. ,: · 5 { p+tc) G-e f)+ 6: __ ,, 

,- ,. If [ -.i I I 
+ _i Z:~Jb'")(f_,J c-,Jt)j J "r ;b6r '' V (J'Lp,>c.b. Ml r r (12) 

Then, the arieing combinations C-E{t):F,_ (f}j~,_~{f)and C-
11 

{-1::) ~ 
=F"J.{t-)+ F;..{f} are, reap., the Sachs electric and magnetic form 
factors. A general parametrization of the currents by the relati-
vistic spin vector which is valid for particles of arbitrary 
has been derived in paper 161. The derivation of (12) can be 

spin 

ro-
garded as a method for obtaining such a parametrization from the 
current of form (1) standard in quantum field theory. 

Now let us find out what is a form of the interaction of 
nucleon with an external field if the expression (12) is accepted 
for the current. If one takes into account the invariant gauge 
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. ,( ·~t 
condition ~~ /tj.

1 
lj)= {J, the energy of' interaction of a nucleon 

with an external field takes the form 

E = -J'f:, (;>-;ZJ1 rjJ= Vi .t~ ,};, f'{e.(p"'!j., tf)) fh It)~ 
~ '!JH op- VL J 

+ ~~ 'E.'(p~J{ lf-}f;().rt !IJ}Jb? $1-"6' {V/.Ah~<')j.<13l 
Here the following should be recalled1 In the Dirac equation, the 

' ,-.r'r­term describing the interaction with electromagnetic field~~ ·r' ;) ~.....,. ~~ .... 
is tranei'ormod to tho form r;:l' ~AI.,z H ·14 E by passing to tho 

...,.... -+-y ~ c_,_ three-dimensional vectors Z1 ":.-0<: 15 and ol.. =. a Q constructed 
of component• of tensor 6~J • We shall make an analogous procedu­-re in ( 1)). To this end, we construct two-component analogs of E ~ ~J and r:J. but now rrom components of the tensor LI (() : 

in (f) " ( 2:1 "((), I:i31f) > T!' {"f)) 

cr !P") ~ ( z:.oirrJ~ 6 'tr), z= 0~ (f)) 
(14) 

(15) 

Then, by ueing the definition of the field strength vectors 

H~ (F,~, F.,> F..) j f ~ (F.i, F.,-' r-._,) ) 
where following 197 we put A A } 

rt<,(})='Vr ,{'j-) -cy~ ri'J.- / 
th• •xpro .. ion L'/'orr) fir 1 -~ =} LJ"(p-) !=""" 
entering into (13) can be reduced to the conventional form with 
separated electric and magnetic field interactions 

i z;;(J~J = e_ (ihfn H") + ~ rcn-n "E)· 
(16) 

As a re.BUlt, (1)) can be repreeente~n ~he;orm,. J) 
11 £:-J/.,1;;?)~ If) =r/~- tA J·L: s.-te(/'1JJ-J/;c (1-;'" /,_.. ._... Ci'H o:. -Ji _..f {6 _;; 1 + ..t. r mn;i)0;, ttl,~ /tlip;"ff"J·t;v !1)/.r.-. ,<J~p·fviAp.wy. Thie general expxweaion n~ will be coneidere~for various cases. 

Let the external field be of the pure magnetic nature, i.e., 
/l

0
"'f=J= 0 • Then from (17) we have 
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o/.z "" - ~ 
E=j{;.;p;;;-;~lj)-= 2 

_ L, S'l'-e(;:;ll'/;;)e-_!t)+ 
VL-'4n'o:--< ( c r.zj . "' _/ -J ,; 

+ ffi./miJ'/Ji} c-fr;;; f~.-2)~~'~ v;q.,//1· (10) 

Ac was noted in /9 I , the r'irst term of ( 18) with the external 

potential does not relate to the rnat_;netic raoment o.~: a particle. 
~ 

l'here.(ore -:;he vector g._ m lj') constructed oy formula ( 14) 
1'1' . ~ 

o_ the relativistic spin vectors h/ 7} can be treated as tne 

~ r:~a,;netic r:1oment of a spinor particle l;!OVin,:~ >"ti th momentwn p. 

- ""/ --f; ;J -/. 1'he .r\mctior: :iJ V("}/ ~<:) ir:cludinr; the ./ic;r1er rotation V /./lp~ !e) 
..:escriues tbe '.Pornas precession a.~-· spin resulti!l;; frotH the partie-

le rJor:teJ!ttu.1 chan.~~e when interactin£; with the external .(ield. 

D:Je ·~o the .._·allowinG r'rora (14), (15) equalities 
~ ,,... -/ 

1n f c) = N :;_ ; a r <') "'t' 
expression ( 1'() takes the most simple .i'orrn 

F- f/~ ->-) ll /•I I- -- -- j (j'//C/ '/-' !/;/' ""'? - ..... 
= _.,yz__ (.e ;P · ~- (r)r-!':- /?ll)()fr /I)'} '1:0 VL f4N'. <= .2fr 

in the system where the nucleon was at rest be1'ore interaction, 

p-=tJ r~JYV1/!n,t.:)l-Ij• Equation (1~) demonstrates the fact that in 
/ r -~•v 

tne system, where the particle was at rest bei'ore interaction, the 

Sachs form :.:·actors CE /f) and {;
11 

/t) really describe 11 the 

charge density 11 and "macnetic moment distribution11 of the nucleon. 

!\ate that such an interpretation is achieved without uainv, the 

usual .Jreit frame. 

J. Q~§£~iE~i2~_£f_!Q~.~~~!1£l~_Q1~!r!2~i12n_!~_!Q~ 

!! ~1~ t! !.!l ~ 1~-~Q !l!.igY.t~!.!.£ !ll!!. -~~£!! .:._ 

'l'he nucleon current parametrization 

interprete the forn factors C:.E (I} 
(12) is used usually to 

and~ /1) as charge 

and mabnetic moment distributions, reap., of a particle by means 

o!' the transition to the coordinate space in the Breit frame. 

8 

~ ~ 
In this frame p=-x:.. and because o1· that the time C011tponent 

oi' 4-vector of the momentum transfer j= ,P-te.. turns into 

j•"/'• -J<" =0 and, consequently, /=/t'):r/-.f~. 
zero 

".t'hus the 

4-dimensional l>'ourier trans1.'ormation reduces to the )-dimensional 

one /lo/ 

f (v) 
i 

= (1-li)' 
I ,~ -•V~- r _,) 
)''} e - -'i-

(20) 

However, as is well known, such a form o·l tile epatial description 

of the nucleon distribution is not satia~·actory since in the Breit 

l'rame the nucleon itself is moving,i.e.,ite; internalt11otiou an<~ 

translational motion as a whole are not separated • 

• In paper I 4/ it has been shown that this di.1·~iculty ciioappe-

are ii' the nucleon spatial distribution is described in a new l'C­

lativiatic coordinate representation introduced il1 /1, 2/ . A pre­

liminary remark should be made that in the Jaomen~wn space ;;he 

three-dimensional descriptiou can ue introduced in <:my coor<iJ,ate 

:t'rome il~ the la1.;~uace Ol. the Lobachevsky space 1s use<t, IrHieed, ir. 
~ ~ 

( 1) and ( 12) the mo1aenta p and k are on the naoo Silell 

r:- - r- , Ml. (21) 

Equation (21) is tne equation of hyperiJolo::d on bw ;_tpper sheet o .. : 

which the Lobachevsky space is just realizeu. 
-.. ~ ~ 

1't1e vector L1 -= f 1-J;::. -the difference in the Lobaohevsk,y sp:lce 

--~ -TI- --iF'/ - .L3-) if= r HI<:= (.!L.p) - f' l'f /I'• K,rl'-f 

A _ / (.'A -i h 1"- (,.w> 7~ '_ /',K,- p-K (22) 
LJc =rf>t<-lK)c= tL~'<;:'.I- /'1'-r.t.J - 1'1 

con ue co1osidered as a relativisdc .;e;:.eralization ol' the J-UhJer~­_._-­oional vector oJ tne nonrelativis~ic I.IOJ,tentw:l ~ra1-.o:a.er J =/ -;c 

In the nonrelativistic littit, when tl-te curvature o:.C the LoOachevsky 

apace tenUs to zero sud it turns into the {lat )-dimensional 
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_., ~ - _. __ _ 
Euclidean space, the vector A = ,P 1'-Jk ~ f=/' -.t • The :four dimen­c.._, 
aional momentum trana:fer vector squared, as one can easily veri:fy 
with the aid of (22), in any coordinate system can be expressed 

-~ through L1 by the formula /1/ 

f =II' -kf = .:llf'- ,e.tt j/r(i +-A~~ . 
(23) 

Consequently, in any re:ference frame a :form :faetor~;lt,/can be 
parametrized by the square of the three-dimensional momentum 
transferJ'"~/J~;;.f- of the Loba.chevsky epace;J'//-)-:,.CfZJ•l. 

The relativistic coordinate upace is introduce4 as canonically 
conjugate to the momentum space which geometry is the Lobachevsky 
geometry. The group of motion of the Lobachevsky space is the 
Lorentz group. Therefore, for transition to the relativistic coor­
dinate representation the expansion over the principal series of 
unitary irreducible representations of the Lorentz group /1/, /2/ 
is used instead o:f the usual Pourier transformation. The mathe­
matical aspect of the expansion procedure over the Lorentz group 
is ••ll known /11/, /12/, /15/ • In papers /1/, /2/ this appa­
ratus has been employed in the form developed in /1)/. Due to 
the spherical symmetry of a form factor ,C /f) such a transfor­
mation has the .form IW 

p /r) = ~~ f.r'ti.- ,. IU ,.C /.J-'J S' /j / y . 
~17 • rfi ,( l;t / (24) 

-r...--Tha hyperbolic angle .J parametrizing the vectorLI=f't-J/C in the 
spherical coordinataj 

•) For the first time £arm factors ware parametrized by using the Lobacheveky space in paper /17/• The auther of /17/ like those of /J/ and /lJ/ have also used the expansion of the form (24) but they have not given the parameter in /24/ the sense of relative coordinate. 
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-
A. =Ne-fy 

' 
jJ - L1 l .. = h:; Ns'll }"; n" =!if/ 

is called "rapidity". The inverse to (24) transformation 

F/1) = Ia j-:;titrfi;Y ,.C;'r)r•ar • rNilfy 
has the property ~- 1 F /o) = Jq r(r) r~trr 
due to the equality tl.t-!~0 resulting from (23). 

In the Lorentz group there is the invariant 

(25) 

A 

Casimir operatorC 

( __ iN. ;V/! ;Y~N~ _.t. Q.t _ .zcllr !2 _ LJu . - !J. :1'' - tY" 1'1)'' N~ fl J' N~J.J Y ( 2o l 
Its eigenvalues on the 1·unctions (,S/nr~L) , which are elemen­r.HS'.J' 
tary spherical :functions of the principal series ot· unitary irre-
ducible representations of the Lorentz eroup, are detennined throu,::,h 
the squared relativistic relative coorUinate r in the lOllowin;:; way C /st'nrNY) = f:' .,. r~) ;s/nrNY)· (1-.H.sh_l: N~ r;Vs/.y (27) 

' As the operator C is rela:livietic invariant, the modulus of the 
relativistic coordinate ,.. is a relativisti-c invariant too. In this 
way the function J:(r} in (24) Lives the invariant description 
of the nucleon spatial distribution in any reference frame (oud 
not only in the Breit one). Hence, the new description with the 
use otF(r) is applicable also in the rest frrune of a nucleon. 'i'o 
ascertain the physical meaninc of the new coorriinate we relate it 
to the icportant characteristic o1· a particle: ita mean-square 
radius. It should be remarked beforehand that its definition b7 (20) 
in the Breit frame which has the nonrelatiTiatio form 
1.r.•;

8 
= -sa;yp/(io= (fh'fJ~F(-('J};p"= 

.f Flv) Fit>} Jr• j( .. J.Ir 

(28) 

J f(r) r!r J 
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.. :rom tile c;roup~theoretical point or view has the r:teaninG 01' 

expectatim1 value 
11
of the eigenvalue of the Casimir operator ol' 

tlte Euclide croupCE-= (~~-f, the group or motion o:.: the l'lat 

;~uclidean. sp~ce. 'l'!.1e eic;envalues of the operator {h.~jm .the ::unc-
,Tr r ·· c. ions e r. (or on the zero-ol.'der !jesse! ·~·unctions ~;t­ry:-

wnich renlize the unitary representations or' the Euclide t;roup, are 

r" the square o1' the nonrelativistic coordinate 

( •'tr}r e ·r? =- 1'" 2 e ip--
.Jy usir:.g (26) it can be checked easily that the usual formal 

invariant definition of the mean-square radius (r,/): 6 ~;C 
p/o) 

also has a 1!,roup meaning: the meanin6 of expectation value o:..~ an 

ei;~envalue 01' the Cas.i,mir operator of the Lorentz group /4/ · ·roF(t-!1. ;· ' /cJ} zr/> = 6 mr /'t'=o = C' Fr· fl=O . (2,) 
FlO/ FI<'J 

By virtue of (2:J) and (28) this definition can be written in the 

.<.ana 
()F /l'/1f= o 6' t? t' /l -= ,C/o) 

(I'OJ/ 
§. t?F//-1 

-M" ~ff=P 
F/e<) (30) 

of direct geometrical generalization oi' the nonrelativistic det'i­

Jddon of the mean-square radiue (28), obtained by changing the 

nodulus of vector or the momentum transfer j by the correa-

A , 1.2./'12-tj pond in;:; rapidity ( = 'l oil(· .,2 /'l.t • 

In terms of the invariant i'unction P /r} the mean-square 

radius, accordi';)' ~(t} 27 l, has the I'ollowing form *) 
r; - 6 ,./ fz';t-'_ l' + J;.2,C;/.)cli!'_ At 2 

( •/- Flo) "N'c" j Pf>-)cl? /lr'c' +.( r / • (31) 
In the nonrelativistic limit the Casimir operator of the Lorentx 

~) riere we ae;aiu write 'fl and C for more clear presentation, 
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I 
\ 

I 

' 

.A _,....:t -.z. 
0roup C=#-N reduces to the Casimir operator ol· the sroup or 

A A 
motion o:i:' the Buclidean space Cc~ ~ =~:;;..~) .t. and exp. ( )l) turn!; 

into {28). '.rhus, it can be said that ill the relativistic .~eneru­

lization the group-theiretial meaning of the mean-square rudius of 

a particle is conserved. 

From expression (Jl) it follows that for particleS for which 

the Compton wave len~th squared is small as compared with the 

experimentally measured value of the mean-square radius (.I';~) the 

quantity 1.. r 2> should be positive. An example 01' such particles 

is a. proton. For a proton, as 

and the functionP(r) describe 

i'ollowa from (Jl), ti1e new coordinate 

not the whole size but only the 

region outside a sphere of' the radius equal to the COL1pton wave 

length of a nucleon. This result is consistent with 1he Newton-./iV1er 

conclusion that the relativistic particle cannot be localized in 

the space with accuracy better thnn its Compton wave length /14/ . 

Besides, in our approach there is a rather der'ini te prediction on 

a magnitude of the contribution to the form i·actor from the central 

part which is not described by the coordinate r 
Indeed, to the sphere withll:::.£. there corresponds r::: 0 

or P(r} = dJ"(~J . Substituting ";~ia function into (25) cive: !Tr 
the following form factor: •• .:t" /L-L ~ L j/1/r-JN.iJ') 

(f)- ,1/nrr'l,r _f.Y)-= lll.f" .:w'JIV' '/ ~.Jc - rN .1hy/r.o- /,Sly, - Vt/t -£;'-!~;' _fJ2 l 
correspor.>ding to the contribution oi' the central sphere .R. -·­

HC. 
Accordingly, the standard form !'actor can be represented in the 

form 

F'(f) = ( #-) :P /7/ J 

where the 11external" form factor~ (;1) obeying the 

tion P(o}= F/o)= .L 

(33) 

same normaliza-

corresponds to the nucleon distribution 
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outside the sphere with R.= ~ Me . Such a factoring of the 

st:mdard nucleon form :.'actor into the :(actors which correspond to 

contributions 1·rom the central and "external 11 regions is obtained 

accordill!~ to their contributions to the mean-square radius at' a 

particle. Indeed, usine (2~), (JO). one can easily see that 
I? f.s1_y~ t' . ~l=t>- ;-~.r/r)c/?- ( P' fT -- - J->- - / (J4) a t 'f=l' -liJcJ. ' !="{c) Frr)ar . I; 

It is important to note that the central region with ll :.hC. 

and the correapondinc contribution ;l;r~~) have no nonrelati­

vistic analccs since as c ~pQ J:! :: ~ ~ (} and(,.Jx)+-.:/. 
/'1C c.~...o ""'';.r-

lience, only the "external 11 fonn factor £(/)can be considered as 

a direct relativistic generalization of nonrelativistic form fac­

tors. It is interestine; that in terms of the "external" f'orm i'ac­

tor 1! (;1} tbc translorrnatione (24), (25) look like the usual 

traner·ormations with th§_Dessel functions o.:: zeroth order 
1 J . P(r) =--;::;: Stn.rliJ' p ~r) tr1c/-Y'. ~~~o.) .21r o r M ~ /"' .T r 

'I'he relativisttc coordinate here,however, in distinction with the 

nonrelativietic case, ts conjugated not to the modulus of the 
momentum transfer j but to the rapidity f' 

A question naturally arioes whether it is always possible tor 

a l'orru r·actor to be represented as a product ol' contribution from 

dilferent r'Bgions of n particle ( JJ). 'Ne here notice that such an 

interpretation of factors in (JJ) is baoed on the positivity o1' 

/.. t" 2~ resulting .from experiuental data on the proton radius. 

'L'hie positivity is possible l'or example when the :·:mction ~/r}is 
o::: constant si,:;n. 

It is oleo known r·rom experiment that a number of particles 

(e,q., ~ -meson) have m.s.radiua smaller than their Compton wave 

length, For them, obviously, the quantity .(!":,>should be 

14 

• 

• 

negative. Let us establish in which way it can be achieved in the 

vector dominance model (VDM) that well describes the pion form 

factor. In the VDLl ~he pion forru factor is described by the.}' -111e-

son poleF /f)= 1. _ "tu.• . It is known /2/ that the trans{orm 

of such a relativistic propagator in the relativistic con:tigurational 

representation essentially depends on the relation between the mass 

of a particle i ~elr' lJ and that of an exchanged particle /' ; 

;:: (r) _ !'lr s rMon) e>L = ""'c, coli ( ~ J 
{

..!. I•M<>J. .1'' <./tl"'~ ~-.2.M"' 

- ! co$ (rMa,) )''>IJ.M .1':.'-.:J.M") 
tlir · :1~ ( r H'li) a.,_= A-. 4. ( .2. N~ ,(JS) 

Fro11. ()5) it is seen that for pion the second inequality /l -,.4_ 11,; 
holds and1;/r} is an alternating function. For a nucleon in the 

:Z. I.AJ~ I VDM the relation _f-jJ~'fL..Sjl~}lholda for !.J tJ;f andY -meson, and 

the function fi /r) is of constant sign. By using Pfr) from (J5), 

we obtain from ( J4) the expression for < r..l )' t 

(r'> = i:M"- !'' 
I .J'' M'" f within the fDM. One can easily see that for pion {N=H,t{j'=..J:f)(r't 

is nsgative and for nucleon {N=I'f,v j /;:/fJ../'Wi/Y)<r';,.,. 
is positive. Thus, for pion<r,2;>w= ~-/<.r2)/ and it is impo­

ssible to interprete, as before, the coordinate r as describing 

the particle distribution at distances larger than its Compton 

wave length. Hence, for pion no analog of the central part exist.i' 

and the factorizing ())) makes no sense. 

However, the difference between the pion and nucleon mean-square 

radius bas more fundamental grounds fLam the viewpoint of applicabi­

lity of expansions over unitary representations of the Lorentz group. 

It will be shown that, in accordance with the general theorems pro­

ved in / ll,i5, 12 ~ these expansions differ essentially in form 

for pion and nucleon that is dub to the experimentally observed 
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oo;(!:~ptotic behaviour did~ereut for their :::arm ,;.·actors at larGe -t. 
J;.dec;d, the a·oove considered case of nucleon is distinct sin­

ce tl!e nucleon l'Ol"':J factor (as is ,en :.i."rom the 1·i tting experimen­
tal dota dipole .c·ormulaC_9., (t)::./J..-%,l!~ is a square-integrable 
"unction, i.e. ·J / F;,Jf)/2sf";f·{f <""'. By a theorem proven in /12/ 

such ··wJctlons are expanded over representations or the princi­
pal serier; Oill.Y (see also rel'./15/ ), i.e., 1·ormulae !'or transi­
tio~1 to the coordinate space are of the 1·orm (24), (25). 

'l'he pion form .::actor is not a square-intei~rable function 
d. since it is knowi'l ~ror.l experiuent to decrease as /t/ . Dy a theo-

rez:l proved ii' /11/ such .t\tnctions are decomposed into a direct 
G:.Utl of represe1:tations of the principal a11d complementary series. 

Ei:~SllVDlues oJ.' 
~ ' the Casir.Jir operator 01' the Lorentz r.;roup 
(:X playi111, the role a~· square OJ.' a d.i.stance ~·rom the particle 1;_2 centre are not ':JOLlllded ~·ror.J i..Jelow 'uy the yuonti ty · M;zc..z. when takinL 
(lCCOWlt Ol. tile colr!p]el:mntary series, since iJy results Ol./ll, 12/ 
O!:C lluc 

A [ ' c =X,= 
~~ + r~ 

M"- - s'-

Df.'rL..oO 

_·or the pincipal series 
() " J' ,;, 'fN (JG) 

.;:or the complementary series 

1'i'.e parm.le·~er .f con be treated r:s 
. . . . D ~ ter1or 01 a re_;1on w:;..thr-.= Me 

o coordinate describir tile in-

a1:d ucr:sureti J ror:J ·G!JC spi1ere uonn-
Jary to :L ~s c.:entre, 

'fo u par-ticle localized llt the c:e::tcr, t.e., at X::: (1 
li ;;he volue o~· t~1e paruu1eter .f-= Me correspor,ds. 1n ti1in cnse, 

_·or en clene!:tarj' spiJericfll ~·tc::ctiOJ~ o.i' ~ne cm;llJleJ.lCntory scrier; n ~h p ~IJ. . . -( '/i.;;11 l :::C 1 f\( ~ (which remuirsdue ·~o tt1e .1·on:1 .:::acta,r ~ t) . s .~ J- . ;;n.ef!j spr:er1cal sy~:Ui!ctry) tl1e equohty .fl'-f J', ,I;·:::J. = i holdc, 
~he latter [;ives f: {f)-=. l (unlS.ke eq. (J2) for n-..1cl~n). ~uch a 
·on.J ~actor correopoi.ds to a pO.illt-like particle. 
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Thus, the pion :.:arm factor in the coord.inate space can be 
described in terms of representations of the complementary 
series only,t.e., in term of the coordinates p and for it 
or:e cannot separate the ce;~trnl par"C contribution. 

l•'or proton the transitiOJ: to ~he coor .. inate :;pace is real1-
zed with the use ot the principal series OJ.. wti tary representu ti­
ons the proton spatial distribution is descritJed in terms o .. : tne 
coordinate r . In this case the squared aistance l·rOin ~he particle 

X~ i "' centre -= M;1. + r is limited J.'rom below by the radluo o~· the 
central sphere X~::: R .t.::: M+CJ. to which, accor,linr-; 'CO ( 32 J, "there M .. 

corresponds the contribution 1fs~Y 
'!'his distinction m.' description or' proton and. pion in the 

new coordinate space suggested an idea that an additional cont­
ribution !'rom the proton central part should be taken into accou11t 
when using the VDW for proton. Since in the nonrelativistic limit 
just the Fourier transrorms of usual Yukawa potentials correepor:d 

J. l to the vector meson propar.;ators ~ .......... J,f' + r- -).1 then it )';;-r _, v p-IG ) 
should be considered that they contribute or:ly to the Iorl!l factor 
part having a nonrelativiatic analoe, viz. to the "external 10 forra 
r'actor *). Thus, 11' we want to map, in the momentul'l apace, the 
whole proton spatial distribution conceivable in the new coordi-
nate representation then it is necessary to add also a contribution 

*) ~atial distributions corresponding to the "external"i'orm !·actor 
(: ) a V { ) 'iit.liirSI.rt< -RtifllrsArr 1 ..... Jl't- -t are of the .t.'orru f: r ; trr.s.hi;;"s/na.' ir. accordance 

with (24a), and in the nonrelativiatic limit reduce to the Yu­
kawa potentials F={'t') +- e-r~ 

~'i7Y. 
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o! the central rer,ion with 
t;: 

fl. = MC.. that just resul"U in the 
.-oruula 

Cl-v 
~(f)'£ 

Shj v, S""' 1' ... ( 37) 
~ (t) )'~- t 

·rhis exprer;sior; 1"or tlte proton ror11l !"actor, in accordance with 

(J2), hs~ the correct "alrnost dipole" asymptotic behaviour at 

lar,:,e - t 

f='~ (f) )t/:YM' 

I tl 
2M 2 t11- MI 

t.z 
( 38) 

It is interestin~,; to notice that the VDJ.I provides t;ood results 

OJ.. description of the reactions with pions but !'or the nucleon form 
• !"actors it ·IescriUes satis1"actorily only the data at small -t.(.i(~~ . 

. It is just the region-t L 1 ( C;iv):Z where the central 

part contribution does not 1lir"f'er, in practice, from unity, i.e ... 

(~ )~1 . '.'then 1t varies in the whole experimentally available 

r!cfon 0 b- t '= 25(,.;v f the I· actor { frx) runs throu,;h the interval 

l ~fk)7t0..2.'l'hia result can be interpreted as 1ollows: At small 

r.omentwn transfer~ o re,__;ion of the "external" form factor was 

cotisidered and with ~::rowi11;~ r:wmentwn trons..i."er 

R~ E:_ 
MC 

the rer;ions are 

re11ched where the centro! part (with contribution beco-

mea sienil'icant. 

4. Q'9.1:.!~l~~~2l2!. 

Let us sur;II:larize our consideration. As has been shown, the 

use or tile Chesi<ov-Shirokov invariant parametrization of currents 

allows one to make physical i11terpretation OJ.' the uucleon electro­

magnetic .~-·ann factor in the system where the nucleon i(l at rest 

before its interactior: with a photon, whereas for this purpose, 

as a rule, the l3reit reference .i'rame is used. '.Chis has become 

possible since in the Cheskov-Shirokov parametrization a "removint~" 
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Oath or' all spin indices and of spin variables is done on to one 

and the same momentwn /b/. It is clear, as well that the above 

consideration of interaction o!' a particle with an external electro­

waonetic r'ield and the form !"actor interpre~ation remain valid 

also r'or particles with an arbitrary spin. H.eolly, inte:rpretinrr 

f'onn factors G-E and C we preceed 1':rom the current parmnetrization M 
o1· a type o.t' (12) which does not chanee its l'orm lor particles with 

an arbitrary spin. In this case, according to I 6/ , it is only 

necessary to consider V1fi? as a relativistic spin vector OJ.. 

an arbitrary value ;3 and to replace G-8 a2$
3
C14 uy setfi: or' approp­

riate form factors by the formula: G,..,/1'-!.Jc t,.)f) ('..frpJ ~f) "fi, /, 
Transition to the relativistic com'igurational representation 

allows one to introduce the invariant description of particle spa­

tial distribution. An important r·eature o:f the relativistic confi­

gurational representation is that it introduces the new scale: 

particle Compton wave length. '!'he harmonic analysis on the Lorentz 

group has more possibilittes then the expan:<>ioo on the ~uclide group, 

i.e. ,the l!'ourier-Beaael transformation. As has been shown above, 

ir.cluding into consideration, besides the principle series, also 

the complementary one makes it possible to describe the whole in­

terval from the origin up to infinity. In this approach, the partic­

le distribution at distances larger than ita Compton wave len~th 

is described in tenna of representations o:..· the principle aeries 

and that at distances smaller than the corresponding Compton wave 

length - on the basis of the complementary series. 'fhe use of this 

language leads to concept of a contribution or· the proton central 

part with radius R.-::.!. , 'fhe consideration oi this contribution MC 
and the use of the VOid describing the proton distribution outside 

the sphere with R., equal to ita Compton wave length give rise to 
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'tllC ~-.ew .on,~:la 10r the proton l·orm factor (J'f), 'l'nis fort..'lula 

provider; tnc correct "nl!.wst d.ipole 11 as;rmptotic behaviour of the 

;:uclcOJ~ . or::1 l"actor (JB), A detailed comparison of theoreticnl 

. epen,ie!Jce ol· the pro:::on .i."ort:J {actor at space-li.r:e momentum trans­

"er·r, ,_·1ver: ,,,\- (J7) with exjJerh1ental data Will l.Je mode in a sub-
sequer;t paper. 

'L'.1e :hl~hor ttJO:.f:.s 'f.G.l"adysllevsk:.r, S.B.Gerasi!J.OV 1 l.A.Liatveev, 

: .• :.J.I.:utee·:, ;,:,.Lie::;llchcryukov, H.i.i,].iir-J~asiJaov, A.I.BfreJnov, 
I.L.:.iola·::sov 81iJ H.l:.Paustov :·or interest in the work and useful 
reJ>,arks. 
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