ОБ bЕАИНЕННЫЙ ИНСТИТУТ
 คAEPHЫX ИССАЕАОВАНИЙ

$$
A Y Б H A
$$

S-66

N.B.Skachkov

ASYMPTOTIC BEHAVIOUR

OF FORM FACTOR
AND INVARIANT DESCRIPTION
OF PARTICLE SPATIAL DISTRIBUTION

E2 • 8857

N.B.Skachkov

ASYMPTOTIC BEHAVIOUR
OF FORM FACTOR
AND INVARIANT DESCRIPTION
OF PARTICLE SPATIAL DISTRIBUTION

Submitted to TM

SUMMARY

It is shown that transition from the standard parametrization of electormagnetic current to the parametrization by the relativistic spin vector allows one to make a physical interpretation of a form factor in the rest frame of a particle (and not necessarily in the Breit frame!). A spatial distribution of particles is described in the configurational representation to which one goes over using e:pansions over unitary representations of the Lorentz group. For the proton form factor we have found a formula which gives the correct "almost dipole" asymptotical behaviour for its form factor.

Intrcauction

The authors or paper /1/ have proposed a new relativistic generalization of relative coordinate which allows one to go over to the three-dimensional description of the relativistic two-body problem $/ 2 /$. An analogous mathematical technique has been used in $/ 3 /$ to describe the particle form factor, however, the meaning of a parameter $N a s$ a coordinate has not been found out. This has not allowed the author or $/ 3 /$ to obtain the physical consequences irom this approach. In paper /4/ the relativistic coordinate characterizing the proton diatribution has been related to a rather important proton characteristic: its mean-square radius. It has been shown also that a new coordinate introduced in /1/ describes the proton diatribution only at diatancea larger than ita Compton wave leneth.
besides, in /4/ it has been eatablished that since the relativistic coordinate modulus is a relativistic invariant there is no nead to so over to the ireit frame ror threedimenaional apatial description of a particle distribution.

The present paper is a sequel to paper / 4/ . In the firat part we show that the Breit irame is not necesear:: to find out
the pnysical meaning of the Sachs form lactors. A transition to the parametrization of electromagnetic current by the relativiatic apin vector $/ 5,6 /$ (the Pauli-Lubansii, or Bargmann-Sh1rokov vector) allows their direct interpretation in the rest frame oi a particle itseli.

In the second part we introduce the description or particle distrioution in the relativiatic coordinate apace and present a new invariant deiinition oi the particle mean-equare radius. In the
third sect. a new coordinate ρ is introduced which describes dislances smaller thar the Compton wave length of a particle. A simple mosel is proposed based on the vector dominance mosel with alloWind For a contribution from the particle central part. this node fives the correct "almost dipole" behaviour for the nucleon form factor.

2. Transition rom the standard Slectromagnetic=current

 Parametrization to that by the Relativistic Spin_ Vector.The nucleon electromagnetic current, in quantum lied theory, is ;ivan by the expression

$$
\begin{gather*}
\int_{55^{\prime}}^{\mu}(\vec{p}, \vec{k})=e \overrightarrow{u l}^{5}(\vec{p})\left\{\gamma^{\mu} F_{i}\left(q^{2}\right)+\frac{\left.\sigma^{\mu \nu} q^{\nu} F_{2}\left(q^{2}\right)\right\} u^{\sigma^{\prime}}(\vec{k})}{2 \mu^{\prime}}\right. \\
\sigma^{\mu \nu}=\frac{\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu} \gamma^{\mu}}{2}, \tag{1}
\end{gather*}
$$

where $\imath^{*}(\vec{\beta})$ are nucleon isispinors normalized by the condition $\bar{u}^{\sigma}(\vec{p}) u^{\sigma^{\prime}}(\vec{p})=2 M \delta_{\text {and }} F_{1}\left(q^{2}\right)$ and $F_{2}\left(q^{2}\right)$ are the Dirac and paLii form actors, resp., which depend on the 4 -momentum transfer squared $t=q^{2}=(p-k)^{2}$. The matrix S_{p} of bispinor transiornation Iron the rest frame $U^{\sigma}(\vec{\beta})=S_{p} U^{\sigma}(0)$ has the rom

$$
S_{p}=\frac{\sqrt{P_{0}+M}}{\overrightarrow{R M}}\left(1+\frac{\vec{\alpha} \vec{p}}{P_{0}+M}\right)=\operatorname{ch} x_{p / 2}+\vec{\alpha} \vec{n}_{p} \text { sh } x_{p / 2}
$$

were

$$
\begin{array}{ll}
p_{0}=M c^{\prime} \chi_{p} & \vec{h}_{p}=\frac{\vec{p}}{|\vec{p}|} \tag{2}\\
\vec{p}=\vec{h}_{p} M s h \gamma_{p} & \vec{\alpha}=\gamma_{0} \vec{\gamma}
\end{array}
$$

By analogy with procedure in $/ 4,8$ / in eq. (1) we go over to the bispinore defined in the rest frame*):

$$
\int_{\sigma \sigma^{\prime}}^{r}(\vec{p}, \vec{\kappa})=e \bar{u}^{\sigma}(0) S_{p}^{-1}\left\{\gamma^{\mu} F_{i}\left(q^{2}\right)+\frac{\sigma^{\mu^{\nu}}}{2 M} q_{\nu} F_{2}\left(q^{2}\right)\right\} .
$$

$$
\begin{equation*}
S_{p} S_{\Lambda_{p}^{-1} k} \cdot D^{1 / 2}\left\{V^{-1}\left(\Lambda_{p}, k\right)\right\} u^{\sigma^{\prime}}(0) \tag{4}
\end{equation*}
$$

To obtain $S_{\Lambda_{p}^{-1} k}$ in (4) we have used the definition of the Wigner rotation

$$
\begin{equation*}
S_{p}^{-1} S_{k}=S_{\Lambda_{p}^{-1} k} \cdot D^{1 / 2}\left\{V^{-1}\left(\Lambda_{p}, k\right)\right\} \tag{5}
\end{equation*}
$$

Now we employ the formula from /8/

$$
\begin{equation*}
S_{p}^{1-1} \gamma^{\mu} S_{p}=\frac{1}{M}\left\{p^{\mu}+2 \gamma^{5} W^{\mu}(\vec{p})\right\} \tag{6}
\end{equation*}
$$

where $W^{H}(\vec{p})$ is the relativistic spin vector $[5]$ (the Pauli--Lubanski or Bargran-Shirokov vector)**). As has been shown in /8/ eq. (6), with (2) considered, admits the part of current of (4) with $F_{1}\left(q^{2}\right)$ to be written as follows:
$\bar{u}^{\sigma}(\vec{p}) \gamma^{\mu} u^{\sigma^{\prime}}(\vec{k})=$

*) In the standard representation, where \(\gamma_{0}=\left($$
\begin{array}{ll}1 & 0 \\
0 & 1\end{array}
$$\right) ; \vec{\gamma}=\left(\begin{array}{ll}0 \& \overrightarrow{6}

-6 \& 0\end{array}\right) ;\)| 5 |
| :--- |\((0)=\sqrt{2 M}\left(\begin{array}{l}5

\xi^{5}

0\end{array}\right)\) in the elinor one, where $\gamma_{0}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) ; \vec{Y}=\left(\begin{array}{cc}0 & -\vec{F} \\ \vec{\sigma} & 0\end{array}\right) ; \mathcal{U}^{\sigma}(0)=\sqrt{M}\binom{\xi^{5}}{\xi^{5}}$. The two-component apinora obey the normalization condition
${ }^{* *)}$ In the rest frame $\xi^{*} \sigma^{\prime}=\delta \sigma \sigma^{\prime}$; we have

$$
W^{0}(0)=0 ; \vec{W}(0)=M \frac{\vec{\sigma}}{2}
$$

Therefore the relativistic spin vector defined as $W^{N}(\vec{p})=\left(\Omega_{p}\right)_{V}^{N} W^{\nu}(c)$ has the following components

$$
\begin{equation*}
W^{0}(\vec{p})=\frac{\overrightarrow{6} \vec{p}}{2} ; \vec{W}(\vec{p})=\frac{M \vec{\sigma}}{2}+\frac{\vec{p}\left(\frac{\vec{\sigma}}{2} \vec{p}\right)}{p_{0}+M} \tag{8}
\end{equation*}
$$

Making use of eq. (6) we also obtain

$$
S_{p}^{-1} \sigma^{\mu^{\nu}} S_{p}^{\prime}=\frac{2}{M^{2}}\left\{\gamma^{5}\left[p^{\mu} W^{\nu}(\vec{p})-W^{\mu}(\vec{p}) p^{\nu}\right]-2 \Sigma^{\mu^{\nu}}(\vec{p})\right\}
$$

$$
\begin{align*}
& \text { where the quantity } \\
& \sum^{\mu^{\nu}}(\vec{p})=\frac{\left.W^{\mu}(\vec{p}) W^{\nu}(\vec{p})-W W_{(\vec{p}}^{\hat{\nu}}\right) W^{\mu}(\vec{p})}{2} \tag{10}
\end{align*}
$$

is constructed by analogy with $\sigma^{\mu^{\nu}}$, but $W^{\mu}\left(\vec{p}^{-}\right)$are taken instead of γ-matrices. Note that in contrast to γ-matrices the vector $W^{\mu}(\vec{p})$ enters into an algebra of the poincaré group and is related to observables directly: ite square gives the particle apin by the formula $W^{2}=-M^{2} S(S+1)$. On substituting (6) and (9) into (1) and using the obtained in $/ 8 /$ expression

$$
\begin{equation*}
W^{\mu}(\vec{p}) W^{\nu}(\vec{\rho})=\frac{1}{4}\left(p^{\mu} p^{\nu}-M^{2} g^{\mu^{\nu}}\right)+\sum^{\mu}(\vec{p}) \tag{11}
\end{equation*}
$$

$$
\begin{aligned}
& \text { we arrive at the current (1) of the following form } \\
& \int_{\sigma \sigma^{\prime}}^{H}(\vec{p}, \vec{k})=\frac{e}{\sqrt{1-t / 4 M^{2}}} \cdot \sum_{\sigma_{p}=-1 / 2}^{\xi^{*}} \xi^{\sigma}\left\{(p+k)^{H} G_{E}(t)+\right. \\
& +\frac{4}{M^{2}} \sum^{\left.N(\vec{p}) q_{V} G_{M}(t)\right\} \xi \sigma_{p} D_{\sigma_{p} \sigma^{\prime}}^{1 / 2}\left\{V^{-1}\left(\Lambda_{p}, k\right)\right\} .}
\end{aligned}
$$

Then, the ariaing combinations $G_{E}(t)=F_{1}(t)+\frac{t}{4 M^{2}} F_{2}(t)$ and $G_{M}(t)=$
$=F_{1}(t)+F_{2}(t)$ are, resp., the Sachs olectric and magnotic form $=F_{1}(t)+F_{2}(t)$ are, resp., the Sache olectric and magnotic form factore. A general parametrization of the currents by the relativistic spin vector which is valid for particles of arbitrary apin hes been derived in paper /6/. The derivation of (12) can be regarded as a mothod for obtaining auch a parametrization from the current of form (1) standard in quantum field theory.

Now let us find out what is a form of the interaotion of nucleon with an external field if the expreseion (12) is accopted for the current. If one takes into account the invariant gauge
condition $\left.q^{\prime \prime} A_{\mu}^{\text {ext }} / q\right)=0$, the energy of interaction of a nucleon With an external field takes the form
$E=-j_{\sigma \sigma^{\prime}}^{\mu}(\vec{p}, \vec{K}) A_{\mu}^{\text {ext }}(q)=\frac{2}{\sqrt{1-t / 4 M^{2}}} \sum_{\sigma_{\rho}=-1 / 2}^{t_{2}} \xi^{*}\left\{e\left(p^{\mu} A_{\mu}(q)\right) G_{E}(t)+\right.$
$+2 e \sum^{\mu}(\vec{p}) A$ (q) $\left.\left.\left.G M(t)\right\} V^{-1}(1) k\right)\right\}(13)$ $\left.+\frac{2 e}{M^{2}} \sum(\vec{p}) A_{v}(q) q_{\mu} G_{M}(t)\right\} \xi_{\sigma_{p}} \not \overbrace{p}^{\sigma_{\sigma_{p}} \sigma^{\prime}}\left\{V^{-1} / A_{p}, k\right)\}$ (13)
Hore the following should be recalled: In the Dirac equation, the term debcribing the interaction with electromagnetic field $\frac{1}{2} \sigma^{\mu^{\nu}} F_{\mu}$ is transformed to the form $\sigma^{\mu \nu} F_{\mu \lambda}=\vec{\Sigma} \vec{H}+i \vec{\alpha} \vec{E}$ by paseing to the three-dimensional vectors $\vec{\sum}=-\vec{\alpha} Y_{5}$ and $\vec{\alpha}=\gamma^{\circ} \vec{\gamma} \quad$ constructed of componente of tensor $\sigma^{\mu \nu}$. We shall make an analogous procedure \ln (13). To this end, we construct two-component analoge of $\vec{\Sigma}$ and $\vec{\alpha}$ but now from componente of the tensor $\sum^{\mu \nu}(\vec{p})$:

$$
\begin{align*}
& \vec{\partial}(\vec{p})=\left(\sum^{32}(\vec{p}), \sum^{13}(\vec{p}), \sum^{21}(\vec{p})\right) \\
& \vec{a}(\vec{p})=\left(\sum^{01}(\vec{p}), \sum^{02}(\vec{p}), \sum^{03}(\vec{p})\right) \tag{14}
\end{align*}
$$

Then, by ueing the definition of the field strength vectors
$\vec{H}=\left(F_{32}, F_{13}, F_{21}\right) ; \vec{E}=\left(F_{01}, F_{02}, F_{03}\right)$,
where following $\begin{aligned} & F_{\mu \nu}(q) \\ F_{\mu} & =q_{\mu} A_{\lambda}(q)-q_{\nu} A_{\mu}(q),\end{aligned}$
the expression $\sum^{\mu \nu}(\vec{p}) A_{\mu} q_{\nu}=\frac{1}{2} \sum^{\mu}(\vec{p}) F_{\mu \nu}$
ontering into (13) can be roduced to the conventional form with soparated electric and magnetic field interactions

$$
\begin{equation*}
\frac{e}{2} \sum^{\mu}(\vec{p}) F_{\mu \nu}=e(\vec{D}(\vec{p}) \vec{H})+e(\vec{a}(\vec{p}) \vec{E}) \tag{16}
\end{equation*}
$$

Ag a robult, (13) can be represented if the form

Thiegeneral expresuion now will be considered for various cases.
Int the external field be of the pure magnetic nature, i.e., $A_{0}^{\text {ext }}=\hat{L}=0$. Then from (37) we have

$$
\begin{align*}
& E=\int_{\sigma k}^{\mu}(\vec{p}, \vec{A}) A_{\mu}(q)=\frac{2}{\sqrt{1-t / 4 \mu^{2}}} \sum_{q_{p}=-\frac{1}{2}}^{\frac{1}{2}} \xi^{*} q-e\left(\vec{\rho} \vec{A}^{+x t}(q)\right) G_{E}(t)+ \\
& \left.+\frac{e}{M^{2}}\left(\overrightarrow{M_{i}}(\vec{P}) \vec{H}\right) C_{M}(t)\right\}_{\xi_{\bar{p}}} D_{\tilde{F}_{p} \sigma^{1}}^{1 / 2},\left(V^{-1}\left(\mu_{p}, c\right)\right\} . \tag{18}
\end{align*}
$$

Ac was roted in $/ 9 /$, the first term of (18) witin the external potential does not relate to the matinetic monent oi" a particle. Thereiore the vector $\frac{e}{N^{2}} \overrightarrow{X n}(\vec{\rho})$ constructed oy formula (14) o. the relativistic spin vectors $\left.W^{-\mu / / \rho}\right)$ can be treated as the
 Whe iunction: $D^{1 / 2}\left\{V^{-1} /(\beta, \kappa)\right\}$ including the digner rotation $V /(b p, \kappa)$ uscrives the Ponas precession of spin resulting trom the particle nomentun change when interacting with the external rield.

$$
\text { Due to the } \text {;llowine rrory (14), (15) equalities }
$$

$$
\vec{M}(c)=M^{2} \frac{\vec{b}}{2} ; \quad \vec{a}(0)=0
$$

expression ($1 /$) takes the nost simple iorm

$$
\begin{aligned}
& E=-\dot{f}(\vec{P}, \vec{k}) A_{\mu}(q) / \vec{\rho}=0= \\
& \left.=\frac{2 M}{V \overrightarrow{i-Z} / 4 M^{2}}\left\{e \Phi \cdot G_{E}(t)+\frac{e}{2 M} / \vec{\sigma}(\vec{H}) G_{M} / t\right)\right\} \text { (1y) } \\
& \text { in the system where the nucleon was at rest beiore interaction, }
\end{aligned}
$$ $\left.\vec{\rho}=0, \chi^{1 / 2} / V / l_{p}, x\right)_{i \vec{p}=0}^{\}}=1$. Equation (1y) demonstrates the fact that in tne system, where the particle was at rest betiore interaction, the Sachs iom ractors $G_{E}(t)$ and $\left.G_{M} / t\right)$ really describe "the charge density" and "magnetic moment distribution" of the nucleon. Sote that such an interpretation is achieved without using the usual ireit irame.

3. Description_of the Particle D istribution in_the

Relativistic Configurational Space.

The nucleon current parametrization (12) is used usually to interprete the form ractors $G_{\underline{E}}(t)$ and $G_{\mu}(t)$ as charge and masnetic moment distributions, resp., ol a particle by means of the transition to the coordinate space in the Breit frame.

In this irame $\vec{p}=-\vec{k}$ and because or that the tine component of 4-vector of the momentum transier $q=\rho-\kappa$ turns into zero $q_{v}=p_{c}-\mu_{u}=0 \quad$ and, consequently, $\left.F(c)=F /-\vec{q}^{2}\right)$. ihus the 4-dimensional Fourier transiormation reduces to the 3-dimersional one /10/

$$
\begin{equation*}
f(r)=\frac{1}{(2 \pi)^{3}} \int d \vec{q} e^{-i \vec{q} \vec{r}} F\left(-\vec{q}^{2}\right) \tag{20}
\end{equation*}
$$

However, as is well known, such a form oi the spatial description of the nucleon distribution is not satisiactory since in the Breit irame the nucleon itseli is noving, i.e.,its internal motion anis translational motion as a whole are not separated.

In paper/4/it has been shown that this ${ }^{\text {didisiculty disappe- }}$ ars if the nucleon spatial distribution is described in a nev relativiatic coordinate representation introduced in/1, 2/. A preliminary remark should be made that in the nomenum space the three-dimensional description can ve introduced in any coorinate I'rame il the lanicuage oi the Lobachevsky space is used. Incieed, ir. (1) and (12) tine monenta \vec{p} and \vec{k} are on the mass siell

$$
\begin{equation*}
p_{c}^{2}-\vec{p}^{2}=M^{2} \tag{21}
\end{equation*}
$$

Equation (21) is the equation or hyperivoloid on the upper sheet of which the Lovachevsky space is just realized.
Ine vector $\vec{\Delta}=\vec{p}(-) \vec{k}$-the difference in the Lobachevsky space

$$
\begin{align*}
\vec{D} \equiv \vec{F}-\mathcal{K}=\left(\Lambda_{k}^{-1} p\right)=\vec{p}-\frac{\vec{K}}{M}\left(p_{0}-\frac{\vec{P} k}{K_{u}+M}\right) \\
\Delta_{0} \equiv(p-\mathcal{M})_{c}=\left(\Lambda_{k}^{-1} p\right)^{c}=\sqrt{M^{2}+\overrightarrow{M^{2}}}=\frac{p_{u} K_{u}-\overrightarrow{M K}}{M} \tag{22}
\end{align*}
$$ sional vector oj the nonrelativisiic monentum iransier $\vec{q}=\vec{\rho}-\vec{k}$. In the nonrelativisiic linit, when the curvature or the Looachevsky space tends to zero and it turns into the ilat 3-dimensional

Buclidean space, the vector $\vec{\Delta}=\vec{p}-\vec{k} \vec{k} \rightarrow \vec{q}=\vec{p}-\vec{k}$. The four dimensional momentum transfer vector aquared, as one can easily verify with the aid of (22), in any coordinate aystem can be expreased through $\vec{\Delta}^{-2}$ by the formula / //

$$
\begin{equation*}
t=(p-K)^{2}=2 M^{2}-2 M \sqrt{M^{2}+\vec{A}^{2}} \tag{23}
\end{equation*}
$$

Consequently, in any reference prame a form factor $f(t)$ can be parametrized by the square of the three-dimenaional momentum tranafer $\vec{J}^{2}=(\vec{p}-, \vec{k})^{2}$ of the Lobachevaky apace: $\left.F(t)=F\left(J^{-2}\right)^{*}\right)$.

The relativistic coordinate upace is introduced as canonically conjugate to the momentum space which goometry 1 i the Lobachevaky geometry. The group of motion of the Lobachevaky apace is the Lorentz group. Therefore, for transition to the relativiatic coordinate representation the expansion over the principal series of unitary irreducible representations of the Lorentz group /1/, /2/ is used instead of the ugual fourier transformation. The mathematical aspect of the expansion procedure over the Lorentz group 1s woll known /11/, /12/, /15/. In papers /1/, /2/ this apparatue has beon employed in the form developed in $/ 13 /$. Due to the sphorical aymmetry of a form factor $F(t)$ such a transformation has the form / 12

$$
\begin{equation*}
F(\mu)=\frac{1}{2 \pi^{2}} \int_{0}^{\infty} \frac{\sin \mu H x}{r H \operatorname{sh} x} F\left(\vec{\Delta}^{2}\right) \operatorname{sh}^{2} y d x \tag{24}
\end{equation*}
$$

The hyperbolic angle χ parametrizing the vector $\vec{\Delta} \vec{p} \vec{p} \sim \vec{k}$ in the
apherical coordinate aphorical coordinatee

[^0]$$
\Delta_{0}=M c h y \quad ; \quad \vec{\Delta}=\vec{n}_{A} M S h y ; \overrightarrow{n_{A}}=\frac{\vec{\Delta}}{|\vec{\Delta}|}
$$
is called "rapidity". The inverse to (24) transtormation
\[

$$
\begin{equation*}
F(t)=4 \pi \int_{0}^{\infty} \frac{\sin M M A^{\prime}}{r M S r} F(r) r^{2} d r \tag{25}
\end{equation*}
$$

\]

has the property

$$
F(0)=4 \pi \int_{0}^{\infty} F(r) r^{2} d r
$$

due to the equality $t_{/ \rightarrow \frac{1}{2}=0}=0$ resulting from (23).
In the Lorentz group there is the invariant Casimir operator $C^{\prime \prime}$ $\hat{C}=-\frac{1}{4} M_{\mu}, M^{\mu \nu}=\vec{N}^{2}-\vec{M}^{2}=-\frac{1}{N^{2} \partial \gamma^{2}}-\frac{\partial^{2}}{\mu^{2}} \frac{\partial \operatorname{H}^{2} \gamma}{\partial \gamma}-\frac{\Delta e, \frac{\partial}{M^{2} \operatorname{sh}^{2} \gamma}}{}$. Its eigenvalues on the iunctions $\left(\frac{\sin \mu M X}{r M S h}\right)$, which are elementary spherical functions of the principal series of unitary irreducible representations of the Lorentz group, are determined throuch the squared relativistic relative coordinate r in the iollowin: way

$$
\begin{equation*}
\hat{C}\left(\frac{\sin r M x}{r M \operatorname{sh} x_{n}}\right)=\left(\frac{1}{\mu^{2}}+\mu^{2}\right)\left(\frac{\sin r M x}{\mu M \operatorname{sh} x}\right) \tag{27}
\end{equation*}
$$

As the operator \hat{C} is relativistic invariant, the modulus of the relativistic coordinate μ is a relativistic invariant too. In this way the iunction $F(r)$ in (24) Eives the invariant description of the nucleon spatial distribution in any reierence irane (and not only in the Breit one). Hence, the new deacription with the use or $F(r)$ is applicable also in the rest irame of a nucleon. 'to agcertain the physical meaning of the new coorrinate we relate it to the important characteristic of a particle: its mean-square
radius. It ahould be remarked beforehand that its definition by (20)

$$
\begin{aligned}
& \text { in the Breit irame whioh has the nonrelativistic form } \\
& \left\langle r_{0}^{2}\right\rangle_{B . f}=\frac{-6 \frac{\partial F\left(-\dot{q}^{2}\right)}{\partial q^{2}} / \vec{q}^{2} 0}{F(0)}=\frac{\left(\left(\frac{\partial}{\partial \dot{q}^{2}}\right)^{2} F\left(-\vec{q}^{2}\right)\right) /\left(\dot{q}^{2}=0\right.}{F(0)}= \\
& =\frac{\int r^{2} f(r) d \vec{r}}{\int f(r) d \vec{r}},
\end{aligned}
$$

(28)

Son the crouputheoretical point or view has the meaning oi expectation value oi the eigenvalue of the Casimir operator oi the Euclide Group $\hat{C}_{E}=\left(\frac{\partial}{\partial \vec{g}}\right)^{2}$, the group of motion o_{i} the ilat :uclidean space. Tile eigenvalues or the operator ($\left.\frac{\partial}{\vec{q}}\right)^{2}$ on the :unctions $e^{i \overrightarrow{4}}$ (or on the zero-order bessel iunctions $\frac{\sin \mu}{4} 4$) which realize the unitary representations or the Euclide group, are the square oi the nonrelativistic coordinate r^{2}

$$
\left(i \frac{A}{\pi}\right)^{2} e^{i \vec{r}}=r^{2} e^{i \overrightarrow{4} \vec{r}}
$$

ωy using (26) it can be checked easily that the usual iormal invariant deinition of the mean-square radius $\left\langle r_{0}^{2}\right\rangle=\frac{6 \frac{\partial F(t)}{\left.\partial \frac{t}{t} / 0\right)}}{\sigma}=0$ also has a group meaning: the meaning of expectation value $0 i^{\circ}$ an

$$
\begin{align*}
& \text { eitrenvalue oi the Casinir operator or the Lorentz group } / 4 / \\
& \left.\qquad r_{v}^{2}\right\rangle=\frac{6 \cdot \frac{\partial t}{\partial t} / t=0}{F(0)}=\frac{(t) /(t=0}{F / c)} . \tag{2ら}
\end{align*}
$$

By virtue of (29) and (28) this definition can be written in the torm

$$
\begin{equation*}
\left\langle r_{0}^{2}\right\rangle=\frac{6 \frac{\partial F / t /}{\partial t} / t=0}{F(0)}=\frac{-\frac{6}{M} \cdot \frac{\partial F / t /}{\partial x^{2}} / y^{2}=0}{F(0)} \tag{30}
\end{equation*}
$$

of direct geometrical generalization oi the nonrelativistic detinivion of the mean-square radius (28), obtained by changing the modulus of vector of the momentum transter q by the corresponding; rapidity $x=A z c h\left(\frac{2 M^{2}-t}{2 N^{2}}\right)$.

In terms of the invariant frunction $P(r)$ the mean-square

$$
\begin{aligned}
& \text { radius, according to }(27) \text {, has the rollowing form }{ }^{*} \text {) } \\
& \qquad\left\langle r_{0}^{2}\right\rangle=\frac{\left.6 \frac{\partial F^{2}(t)}{\partial t^{2}}=\dot{F} / 0\right)}{F}=\frac{\hbar^{2}}{M^{2} c^{2}}+\frac{\left.\int r^{2} F / r\right) d \vec{r}}{\int F(r) d \vec{r}}=\frac{\hbar^{2}}{M^{2} c^{2}}+\left\langle r^{2}\right\rangle \text { (31) }
\end{aligned}
$$

In the nonrelativistic limit the Casimir operator of the Lorent
*) nere we again write \hbar and C for more clear presentation.
oroup $\hat{C}=\overrightarrow{N-2}_{-2} \vec{N}^{2}$ reduces to the Casimir operator oi the group of motion or the Euclidean space $\hat{C} \underset{c \rightarrow \infty}{ } \hat{C}_{\epsilon}=\left(\frac{0}{\hat{Q}}\right)^{2}$ and exp. (31) turns into (28). 'hus, it can be said that in the relativistic jererailzation the group-theiretial meaning of the mean-square rudius of a particle is conserved.

From expression (31) it follows that for particles for which the Compton wave length squared is small as compared with the experimentally measured value of the mean-square radius $\left\langle r_{0}^{\hat{\prime}}\right\rangle$ the quantity $\left\langle r^{2}\right\rangle$ should be positive. An example oi such particles is a proton. For a proton, as rollows from (31), the new coordinate and the function $F(r)$ describe not the whole size but only the region outside a sphere of the radius equal to the Compton wave length of a nucleon. This regult is consistent with the Newton-/igner conclusion that the relativistic particle camot be localized in the space with accuracy better than its Compton wave length /14/. Besides, in our approach there is a rather derinite prediction on a magnitude or the contribution to the form factor from the central part which is not described by the coordinate r.

Indeed, to the sphere with $R=\frac{\hbar}{M C}$ there correaponds $r=0$, or $F(r)=\frac{\delta / r /}{4 \pi r^{2}}$. Substituting this function into (25) Eives the following form factor:
$F_{R}(t)=\left.\frac{\sin \mu M x}{H M \operatorname{sh} x}\right|_{r=0}=\left(\frac{x}{S h x}\right)=\frac{2 M^{2} \ln \left(1-\frac{t}{2 M^{2}}+\frac{1}{2 M^{2}} \sqrt{t\left(t-4 M^{2}\right)}\right)}{\left.\sqrt{t / t-K M^{2}}\right)}$
corresponding to the contribution oi the central sphere $R=\frac{\hbar}{M C}$ Accordingly, the standard form iactor can be represented in the form

$$
\begin{equation*}
F(t)=\left(\frac{x}{s h}\right) \Phi(x) \tag{33}
\end{equation*}
$$

where the "external" form ractor $\Phi(\chi)$ obeying the game normalization $\Phi(0)=F(0)=1$ corresponds to the nucleon distribution
outside the sphere with $R=\frac{\hbar}{M C}$. Such a factoring of the standard nucleon form actor into the ractore which correspond to contributions irom the central and "external" regions is obtained accordins to their contributions to the mean-square radius of a

$$
\begin{aligned}
& \text { particle. Indeed, using (2Y), (30) one can easily see that } \\
& \frac{C\left(\frac{x}{\operatorname{sh} x}\right)}{(c t} / t=0 \\
& \text { It is important to note that the central region with } R=\frac{\hbar^{2}}{M^{2} c^{2}} ; \frac{\partial(x) / t=0}{F(c)}=\frac{\left.\int_{M}^{2} F / r\right) d \vec{r}}{\left.\int F / r\right) d \vec{r}}=\left\langle r^{2}\right\rangle(34)
\end{aligned}
$$

and the correspondinc contribution ($\frac{y}{S h y}$) have no nonrelativistic analces aince as $c \rightarrow \infty \quad R=\frac{\hbar}{M c} \rightarrow \infty$ Hance, only the "external" form factor $\mathscr{\Phi}(X)$ can be considered as a direct relativistic feneralization of nonrelativistic form factors. It is interesting that in terms of the "extermal" form risctor $\Phi(x)$ the transiormations (24), (25) look like the usual transiormations with the ijeasel functions oi zeroth order

$$
\begin{equation*}
F(r)=\frac{1}{2 \pi^{2}} \int_{0} \frac{\sin M x}{r M x} \Phi(x)\left(x^{2} d x\right. \tag{24a}
\end{equation*}
$$

The relativistic coordinate here, however, in distinction with the nonrelativistic case, is conjugated not to the modulus of the monentum transier q but to the rapidity $\mathcal{\gamma}$.

A question naturally ariges whether it is always possible ror a form lactor to be represented as a product or contribution from dilferent regions of a particle (33). We here notice that such an interpretation of factors in (33) is based on the positivity of $\left\langle r^{2}\right\rangle_{P}$ resulting from experimental data on the proton radius. This positivity is possible ior example when the cumction $F(r)$ is oí constant sicn.

It is also known irom experiment that a numior or particles (e.q., /I/ -meson) have m.s.radius smaller than their Compton wave length. For them, obviously, the quantity $\left\langle\mu^{2}\right\rangle$ should be
negative. Let us establish in which way it can be achieved in the vector dominance model (VDM) that well describes the pion rom factor. In the VDL the pion form ractor is described by the ρ-neson pole $F(t)=\frac{1}{1-\frac{t}{\mu^{2}}}$. It is known $/ 2 /$ that the tranaiorm of such a relativistic propagator in the relativistic concigurational repreaentation easentially depends on the relation between the mass
 $F(r)= \begin{cases}\frac{1}{4 r} \frac{h\left(r M a_{1}\right)}{S h(r M T)} & \mu^{2}<4 M^{2} \\ \frac{1}{4 \pi r} \cdot \frac{\cos \left(r M a_{2}\right)}{S h(r M T)} & \mu^{2}>4 M^{2} \cos \left(\frac{\mu^{2}-2 M^{2}}{2 M^{2}}\right) \\ \frac{\mu_{2}}{\sin }=A r \operatorname{ch}\left(\frac{\mu^{2}-2 M^{2}}{2 M^{2}}\right),(35)\end{cases}$ From (35) it is seen that for pion the second inequality $\mu_{\rho}^{2}>4 M_{\pi}^{2}$ holds and $F_{\pi}^{7}(r)$ is an altermating function. For a nucleon in the VDul the relation $\mu_{\rho, \omega, \varphi}^{2}<4 M_{N}^{2}$ holds for ρ, w, ρ^{\prime} and φ-meson, and the function F_{N} / r) of constant sign. By using $F(r)$ fron (35), we obtain from (34) the expression for $\left\langle r^{2}\right\rangle$:

$$
\left\langle r^{2}\right\rangle=\frac{6 M^{2}-\mu^{2}}{\mu^{2} M^{2}}
$$

within the DM. One can eagily see that for pion $\left(M=M_{I} ; \mu=\mu_{\rho}\right)\left\langle r^{2}\right\rangle$ is negative and for nucleon $\left.\left(M=M_{N} ; \mu=\mu_{\rho}\right\rangle \mu \omega_{1}, \mu_{y}\right\rangle\left\langle r^{2}\right\rangle_{N}$ is positive. Thus, for pion $\left\langle r_{0}^{2}\right\rangle_{T}=\frac{1}{M^{2}}-/\left\langle r^{2}\right\rangle /$ and it is imposaible to interprete, as before, the coordinate f as describing the particle distribution at distances larger than its Compton wave length. Hence, for pion no analog of the central part exists and the factorizing (33) makes no sense.

However, the difference between the pion and nucleon mean-square radius has more fundamental grounds from the viewpoint of applicability of expensions over unitary representations of the Lorentz group. It will be shown that, in accordance with the general theorems proved in / 11,15, 12/, these expansions differ essentially in form for pion and nucleon that is due to the experimentally observed
asmptotic benaviour different for their :om iactors at large - t.
I:decd, the above considered case of nucleon is distinct sinwe the nucleon lom lactor (as is seen \quad rom the 1 itting experimental data dipole ormula $C_{\neq}(t)=\frac{1}{\mid 1-t / C, x)}$) is a square-integrable uriction, i.e. $\int / F_{N^{\prime}}(t) / /^{2} \operatorname{sh}^{2} y^{\prime} d f<\infty$. By a theorem proven in $/ 12 /$ such iwnctions are expanded over representations oi the principal series only (see also rei. / 15/), i.e., formulae for trangition to the coordinate space are of the Iom (24), (25).

The pion lorm iactor is not a square-inteirrable runction since it is knowil ron experiment to decrease as $\frac{d}{/ t /}$. By a theoreth proved in/11/ such iunctions are decomposed into a direct suin of representations of the principal and complementary series.

Eif: envalues oi the Casimir operator oi the Lorentz sroup $\hat{C}=X^{2}$ playim; the role oi square or a aistance irom the particle centre are not bounded ron below wy the quantity $\frac{\hbar^{2}}{M^{2} C^{2}}$ when taking account of tife complementary series, since inv results oi $11,12 /$

$$
\hat{C}=X^{2}=\left\{\begin{array}{l}
\frac{1}{M^{2}}+r^{2} \\
\frac{1}{M^{2}}-g^{2}
\end{array}\right.
$$

$0 \leq r<\infty$
\therefore or the pincipal series
$0 \leqslant \rho \leqslant 1 / M$
zor the complementary series
life paralever ρ can betreated ns a coordinate describirs; tine interior or a re, ion with $R=\frac{\hbar}{M C}$ and heasured, ron the spiere voundary to its centre.

To a particle localized at the center, i.e., at $X=0$ whe value 0 : the partiveter $\rho=\frac{\hbar}{M C} \quad$ corresponds. In tisis case, or an elementary spilerical ituction oi the complementary series
$h=\mathrm{thp} M$ zitiz $l=0 \quad \frac{\delta h g M y}{\int M S h x} \quad$ (which remairsdue to the ioma iactor $F(t)$ $\begin{array}{ll}\text { spnerical symetry) } & \text { the equality } \frac{s h f M y}{f^{M} S h y} / f=\frac{1}{M}=1\end{array} \quad$ noldc. The latter ℓ ives $F(t)=1$ (unlike eq. (32) ror nucleon). such a orn actor correspoids to a point-like parificle.

Thus, the pion \boldsymbol{i} orm factor in the coordinate space can be described in terms of representations of the complementary series only,i.e., in term of the coordinates ρ and for it one camot separate the central part contribution.

For proton the transition to the cooruinate space is realjzed with the use or the principal series oi unitary represertations the proton spatial distribution is described in terms oi the coordinater. Ir this case the squared distance iron the particle centre $X^{2}=\frac{1}{M^{2}}+r^{2}$ is limited irom below by the radius o. the central sphere $X_{\text {mix }}^{2}=R^{2}=\frac{\hbar^{2}}{M^{2} c^{2}}$ to which, accorinif to (32), there corresponds the contribution $\mathcal{X} / \mathrm{S} h y$

This diatinction oi' description or' proton and pion in the new coordinate space suggested an idea that an additional contribution from the proton central part should be taken into account when using the VDLi for proton. Since in the nonrelativistic liait just the Fourier transiorms of usual Yukawa potentials correspord to the vector meson propagators $\frac{1}{\mu_{V}^{2}-t} \rightarrow \frac{1}{\mu_{v}^{2}+(\vec{p}-\vec{k})^{2}}$, then it should be considered that they contribute orily to the 1 orm factor part having a nonrelativistic analog, viz. to the "external" form ractor*). Thus, if we want to map, in the monentuin space, the whole proton spatial distribution conceivable in the new coordinate representation then it is necessary to add also a contribution
*) Spatial distributions corresponding to the "external" iorm iactor
 with (24a), and in the nonrelativistic limit reduce to the Yukawa potentials $F(r) \rightarrow \frac{e^{-\mu r}}{4 \pi r}$.
o. the central res,ion with $R=\frac{\hbar}{M C}$, that just results in the comma

$$
\begin{equation*}
F_{p}(t)=\left(\frac{\chi}{s h x}\right) \sum_{v=\rho, \omega, y_{1 . .}} \frac{a_{v}}{\mu_{v}^{n}-t} \tag{37}
\end{equation*}
$$

Chis expression for the proton lorm iactor, in accordance with (32), has the correct "almost dipole" asymptotic behaviour at larce - t

$$
\begin{equation*}
F_{p}(t) \underset{|t| \gg M^{2}}{ } \frac{2 M^{2} \ln \frac{|t|}{M^{2}}}{t^{2}} \tag{38}
\end{equation*}
$$

It is interesting to notice that the VDiN provides good results O_{i} description of the reactions with pions but for the nucleon form lactors it describes satisiactorily only tha data at small $-t<1\left(\frac{\cos)^{2}}{c}\right.$. - It is just the re;ion $-t<1\left(\frac{\text { Gev }}{C}\right)^{2}$ where the central part contribution does not dirfer, in practice, from unity, i.e., $\left(\frac{y}{S h} x\right) \approx 1$. When it varies in the whole experimentally available region $0 \leq-t \leq 25\left(\frac{G e v}{c}\right)^{2}$ the ractor $\left(\frac{x}{S h x}\right)$ runs through the interval $1 \geqslant\left(\frac{x}{S h x}\right) \geqslant 0.2$. This result can be interpreted as lollows: At small momentun translers a recion of the "external" form lactor was considered and with crowins momentum trangier the regions are reached where the central part (with $R=\frac{\hbar}{M C}$) contribution becomes siEnil'icant.

4. Conclugion.

Let us surimarize our consideration. As has been shown, the use or the Cheskov-Shirokov invariant paranetrization of currents allows one to make physical interpretation or the nucleon electromagnetic torn lactor in the system where the nucleon is at rest betore its interaction with a photon, whereas ror this purpose, as a rule, the Breit reierence irame is used. This has vecome possible since in the Cheskov-Shirokov parametrization a "removing"
voth of all spin indices and of spin variables is done on to one and the same momentum / $/$ /. It is clear, as well that the above consideration of interaction oi a particle with an exterral electrowagnetic rield and the form iactor interpretation remain valid also ror particles with an arbitrary apin. Keally, interpretine form factors G_{E} and G_{M} we preceed iron the current paranetrization oi a type of (12) which does not change its iorm ior particles with an arbitrary spin. In this case, according to /6/, it is only necessary to consider $\left.W^{N /(\vec{P}}\right)$ as a relativistic spin vector oi an arbitrary values s and to replace G_{E} and G_{M} oy sets or appropriate Rorm factors by the iormula: $\left.G_{E, M} \rightarrow \sum_{n=0}^{S} f_{n}(t)\left(W^{\mu} / \vec{\beta}\right) q_{\mu}\right)^{n / 6 / .}$

Transition to the relativistic coniligurational representation allows one to introduce the invariant deacription of particle spatial distribution. An important feature of the relativistic contigurational representation is that it introduces the new scale: particle Compton wave iength. 'the harmonic analysis on the Lorentz group has more possibilities then the expansion on the Euclide group, i.e., the Fourier-Bessel transiomation. As has been shown above, including into consideration, besides the principle series, also the complementary one makes it possible to describe the whole interval from the origin up to infinity. In this approach, the particle diatribution at distances larger than its Compton wave length is described in terta of representations oi the principle series and that at distances amaller than the corresponding Compton wave length - on the basis of the complementary series. The use of this language leada to concept of a contribution or the proton central part with radius $R=\frac{\hbar}{M C}$. The consideration oi this contribution and the use of the VDM describing the proton distribution outside the sphere with R equal to ita Compton wave length give rise to
the :.ew somaia for the proton iorm factor (37). Tnis fomula provides the correct "almost dipole" asymptotic behaviour of the :ucleon - or:i lactor (38). A detailed comparison of theoretical epentience of the proton iorm lactor at space-like momentun transern ifven (37) with experimental data will be made in a subsequent paper.

Lhe author thatiks V.G.Kadyshevsky, S. B. Gerasinov, V.A.hatveev, .. W.lateey, i,d.hechcherjakov, k.i.hir-Kasimov, A.f.Efremov, I. L. 30 lovisov and K.i.faustov zor interest in the work and useiul remarks.

1. V.G.Kadyehevsky, R.M.Mir-Kasimov, N. B.Skachkov. Nuovo Cim., 55A, 233 (1968); Particles and Nucleus, vol.2., N3, 635, Atomizdat, Moscow, 1972.
2. V.G.Kadybhevaky, R.M.Mir-Kagimov, N.B.Skachkov. Yadern.Fiz., 9. 219 (1969); Yaderm.Fiz., 9, 462 (1969).
3. M.I. Pavkovic. Phys.Rev., D4,1724 (1971).
4. N.B.Skachkov. JINR Communications E2-7890, Dubna, 1974; E2-8007, Dubna, E2-8424, Dubna, 1974.
5. Yu.M.Shirokov.JETP, 33, 861 (1957).
6. A.A.Cheshkov, Yu. M. Shirokov, JETP, 44, 1982 (1963).
7. V.R.Kozhernikov, V.E.Troitsky, S.V.Trubnikov, Yu.M. Shirokov. Teor. 1 Kat. Piz.,10, 47 (1972).
8. N.B.Skachkov.JINR Commutatione E2-7333, Dubina, 1974; E2-8285, Dubna 1974; Toor. i Mat. Fiz., 22, 213 (1975).
9. N.N. Bogolubov, D.V.Shirkov. Introduction to the Theory of Quantized Pields , Nauka, Moscow, 1973.
10. D.I. Blochintgev. Space and Time in Microworld, Nauka, Moscow, 1970.
11. I.M. Gelfand, M.A.Naimark. Izvestia Acad. Nauk SSSR, Ser. math., vol.11, 411 (1947).
12. M.A.Naimark. Linear Representations of the Lorentz Group. Pergamon, New-York, 1964.
13. J.S.Shapiro.DokI.Acad.Nauk SSSR, 106, 647 (1956); JETP 43, 1727 (1962); Phys.Lett., 5, 253 (1962) ;
A.Z.Dolginov. JETP, 30, 746 (1956);

[^0]: *) Por the first time form factors wore paramotrizod by using the Lobachevsky epace in paper /17/. The author of /17/ inke form (24) but they have not given the the expansion of the sense of relative coordinate.

