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1. Introduction 

In the first part of this paper/1 / we dealt with the 
canonical realizations in the Weyl algebra of the Lie al
gebra g1 ( n, R) n ~ 2, ,i.e., with polynomials in a certain 
number of quantum mechanical canonical pairs p1 , q1 which 
commute as the generators of gl ( n, R) . The defined 
realizations form a set uniquely classified by sequences of 
real numbers (signatures) ( d; 0, ... , a 0 _ d , ... , an ) 
with d~ 1, 2, ... ,n- 1. Variouspropertiesofthese reali
zations were derived, and particularly we proved that all 
Casimir operators are realized by multiples of the iden
tity element (we call these realizations by Schur-reali
zations). Now we are interested in their eigenvalues. 

We give simple formulas for calculation of eigenva
lues of the generating Casimir operators in our realiza
tions. We show that these eigenvalues are certain symmet-
ric polynomials in variables y ~n-d) ... , y ~·--dd) 

· · h (n-d). an-d (n-d+ 1 '·) 
1 a d 1 .... , Ia , w ere y k ~ 1 • ---d + 2 -

n- + n n-

(theorem 1). Due to symmetry property there is only a 
finite number of realizations in our set with the same 
eigenvalues of any Casimir operator (theorem 2). 

In conclusion we discuss the question of independence 
of eigenvalues of generating Casimir operators as func
tions of signatures in subsets of realizations with signa
tures with fixed d . 

2. Preliminaries 

A. If F f'V , f', v ~ 1, 2, ... , n - 1 denote the canonical 
realization of generators of the Lie algebra gl (n- 1, R) in 
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the Weyl algebra \\2m ( m - the number of canonical pairs), 
then the following formulae 

1 
E pv= qpPv + F JLV + 2/)JLV 1, 

E =-p,, np r 

Epn= q/L( qvPv + ~ - ia) + qv FJLV 
(1) 

n -1 
7 E =-qp ---+ia· nn 1.1 v 2 ' a,; R 

(summation over v ) * 

define a canonical realization of generatorsof gl(n, R) in 
\\2(n-l+m) 
The generators Ell satisfy the commutation relations of 
gl(n, R) 

[ E ii , E kl I . = 8 Jk E 11 - Ill! E kJ , 

and the subalgebra with generators 

1 
A ii = E iJ - - 8 li E kk n 

(2) 

(3) 

is sl(n, R). In the first part ofthispaperwe used for
mulae (1) in an iterative way to obmin a set of canonical 
realizations of gl ( n, H) for n ;;: 2. Every reallza
tion from this set is characterized uniquely by a signa
ture. The realization with signature ( d; 0, ... , 0 , an-d, ... , an> 

*In what follows the greek indices will run always from 
1 to n - 1 latin from 1 to n and twice occuring indices 
mean summation. 
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is defined recurrently by formulae (1) in such a way that 
( l;O, ... ,O,a

0 
_ 1 ,a nl denotes the realization (1) with 

. 81'" 7 . F 
11
.v = 1 a

0 
_ 

1 
• u-:-1 • , , a = a n and ( d, 0 , ... , 0 , 

a d , ... , a ) denotes the realization (1) 
w~tii a = a0

0 
, where the realization of gl ( n- 1, R) has 

the signature (d-l;O, ... O,an-d , ... ,a0 _ 1 ) · 

B. The center of the enveloping algebra U[gl ( n, R)J 
contains n generating Casimir operators which we cho-
ose as follows.Let ( D ii ) be the formal matrix with 
the matrix elements 

( D)u = Ell. (4) 

The Casimir operator 
power of D 

cP 
n 

is the trace of the p -th 

CP=TrDP (5) 
n 

or explicitly written 

C 
p 0 

= E i i Ei .... E. i ' C = n. 
n 1 2 2 1 3 1

p 1 n 

(6) 

The operators C! , C~, ... , C ~ generate the center 
of U [ gl ( n, R) J and the commutation relations for 
matrix elements of D P with E il have the form 

[Eil'(DI)kll =ll;k(DP) 11 - 811 (DP)ki, p=O,l, ... (7) 

3. a P 
n 

-Polynomials 

Let us introduce now the set of polynomials 
the eigenvalues of C g will be expressed' . 

Let S
0

= Sn(x 1,x 2 , ... ,xn), n> I, be the 
matrix with elements 

(Sn)kl = (..!l~_l + xk) 0ki- 1\kl • 

by which 

n xn 

(8) 

-------------------------
*Such polynomials were defined in / 2

/ , see also /31, 

-
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where 

~ 
I for k < I , 

L\ kl ~ 
0 for k 2: I. 

We define polynomials aP, p:::::O,l, ... , n 

p - P ( ) - +s p a = a x 
1

, x 
2

, ... , x - e e n n n nnn 

as 

(9) 

where C: ~ ( I, 1, ... , 1) is the n -dimensional row and e 0 denotes its transposed. 
These polynomials have the following five main properties. 

Property 1. uP( x 
1

, x ~, ... , x ) is a symmetric 
poly

0
nOm!al ill the ~ariableS X I' X 2• ... , X n • The proof of this assertion is given essentially in /3 I where it is shown that et S~ en is a symmetric polynomial in the matrix elements lk on the main diagonal 

n - 1 of S " . Since x k ~ I k - 2-- and n- 1 -2- does not 

depend on k e +sPc n n n is also symmetric in the 
variables x 11 x

2 , ... ,xn. 

Property 2.Thesetof polynomials a~(c l'"''cn-k• 
x 1, ... , x k ) p .,;, k with fixed constants 
c i ~ C is a generating system 
in the algebra of symmetric polynomials 
in the variables x 1 , x 2, ... , x k· For the proof it is sufficient to show that the Newton sums 

s, 

can be 

k r 
L xJ, r = 1,2, ... ,k, 

j =I 

polynomially expressed by the k independent 
a~(rl, ... ,cn-k'xl, ... ,xk), P=1,2, ... ,k, since 

' as is well-known /4/, the Newton sums are a generating system in the algebra of symmetric polynomials in x
1 , x

2 , ... , x k' Now, S" is the sum of the matrix 
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0 

X= 

0 

·o 
'I 

0 

xk 

and a constant upper triangular matrix 
C . The diffe-

renee 
+s p 

en n en 
- e:xP en = e:( X+ C)P en 

- e + Xp e 
n n 

is therefore a symmetric polynomial in x 1 , x2, ... , x k with powers smaller than p . However, e ~X P en = sP 
and property 2 follows by induction. Property 3. Let c

1, c
2

, ... , c
0 >; C begiven. Then any solution ( x 1 , x 2 , ... , x kl , k S. n , of 

the system of k equations 

<7: ( C I, c
2

, ... , C ,) = <7 :( C 1, ... ,c n -k ,X f"', X k) (10) 
p = 1, 2, ... ,k 

differs from ( Cn _ k + 1 , ... , c n) by permu
tation of the components only. 

In order to show property 3 we consider another generating system in the set of symmetric polynomials in k variables, the system of the so-called fundamental poly-
nomials 

··• Xi 
p (11) C( k)( ) - ::£ X. X sp xl' ... ,xk - . . 11 iz ( t 1 , •2 , ,,, ,1P) 

p=1,2, ... ,k, 
where the summation runs over all sequences ( i 1, i 2 , ... , i ) with 1 ->. 1

1 
< i 

2 
< ... < i P >:. k . As any polynomiaf a f ( c 

1
, ... , c n _ k , x 1, ... , x k) , p = 1, 2, ... ,k can be expressed in terms of ,;

1
, ... , ,; P and vice versa, (Property 2), the system (10) is equivalent to the system 

,; p( C n - k + 1 • "· ' C n) = ,; p ( X 1' ... , X k) , p ~ J, 2, ... ,k. (10' ) 
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Due to the 
( X 1' ... ' X k) 
if x 1 , ... , xk 
order equation 

well-known Vieta formula the sequence 
solves the system (10 ) if and only 

will be the set of all roots of the k -th 

k k - 1 0 x + a 1 x + ... + ak = , (12) 

where aP~ ~P(cn-k+ I' ... , en). As coefficients aP are 
the values of the polynomials ~ p at the point ( cn-k+ 1 , ... , 
en) <;: C k the set of all roots consists just of 
c 

0 _ k , 1 , ... , c n. Therefore we obtain all solutions 
( x1, ... , 'k) of the system (10') by permutations of 
the components of the solution (en_ k + 1 , ... , c nl . 

Property 4. The following reccurrent relations ( n 2. 2) : 

P 1'. P I p-u u a ( x1 , ... , x ) ~ 2; ( )(-) ·a 1x1, ... ,x '-n n u::.:O u 2 n-:l' n-f 

p-I p-l-u p-1-u v 1 -l-uit 4) -;J v~O ( v )·an-l(xl, ... ,xn-1)(2f x 

X y" + yP n n ' 
h n-1 I'd w ere y 

0 
= X0 + ---v-, are va 1 . 

The proof follows immediately from the recurrent 
relation for the p -th power of the matrix Sn 

sp - ( n -

(S +li)P 
n- I 2 

0 

P-1 1 u p-1-u ) r (Sn-1+ 21) Yn ·en-1 u-0 

yP 
n 

Here I denotes the ( n - 1) x( n- 1) unit matrix. 
Property 5. Let ,8 J •>~ ~ - j , j ~ 1, 2, ... , n. Then 

p("(n) {3(n) ,(n) ) _ p a 
0 

,._. 1 + x, 2 + x, ... , ,._.. 
0 

+ x - n x , (15) 

for all p ~ 0 , 1, 2,... and any x <;;. C 

8 

~~ 

l. 

Proof: For n ~ 1 and all p we prove (15) directly from 
definition (9) because af ( x 

1
) ~ ( x ~ P and {3~ 1> ~ 0 

Assume now the validity of relation (15) for n and all p . 
It means that 

a'(f3(1n+l)+X, .... ,8<n+t4. x) =aP (,8(1n)+( X+-1...) , ... , n n n 2 

(16) 
... ,,8~0 )+( X+ ~)) ~n( X+ ~)P, 

(n+1) (n) 1 because ,Bk ~ f3 k + 2 for k s: n • • Substitu-

tion into the recurrent relation (14) gives immediately 
the desired result, i.e., the validity of relation (15) for 
n + 1 and any p • 

4. Eigenvalues of the Casimir Operators 

Lemma 1. Let c: _ 1 , n ;:: 2 , , be the Casimir 
operators in the canonical realiza-
tion of gl(n -1,R) (with generators F1,v ). 
Then the Casimir operators c: of the Lie 
algebra gl ( n, R) in the realization (1) are 
connected with C ~ _ 1 by the following 
relations 

CP~ ~ (p) C u l~)p-u _P-fPi-tl(p-1-u )(~).,C.I-u-v C v y" +Y p' n U=O u n-1 2 u=O v=O v 2 n-1 n n 

(17) 
n- 1 where Yn ~ ia + - 2-

and p ~ 0 , 1, 2, ... 

Proof: In the first part of this paper /I/ we have proved 
that in realization (1) the Casimir operators do not depend 
on the canonical pairs q1 ,p1 ; ... ;qn- 1+m ,p0 _ 1+m (proof 
of theorem 1). It is very economical to use this fact in 
the present proof in the following manner. Any element 
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x from the enveloping algebra U [ gl( n, R) l written in realization (1) in the form 
"' u v X = .:.. auv q p , 

u,v 

where 

v ul ~-1 vl vn-1 q"p ~ q1 ··· qn-1 P1 ···Pn-1 

can be 

auv ~a uv ( F pv ) , and we define the "projection" II x II ~a o o . From this definition there immediately follow some simple rules: 

II q .x!l ~ o 
I ' 

llxp
1ll ~o, 

!lax+ ,By!! ~ allxll + ,BIIYII for a, (3 G \\ Zm' i = 1, 2, ... ,n-1, 

(18) 

and any x , y 
I!P; xi! ;lO 

We have 

(; W
2
rn-l+ml however, h.generalllx q1 !110 

(e. g. liP 1qtll ~ llqtPt + Ill~ 1) · 

c"n~iiC~II 

as was mentioned above, however calculations with ! I C ~ ! I are much more simple than those with C ~ alone. We can easily see that the lemma is true for p ~ 0 therefore we assume p ?. 1. 
Let us denote the first n - 1 terms of C ~ ~ II D ft II by AP, 

A" ~ ! I D ~ll II (19) 

and the last term by ll 0 

B" ~ !ID~nll· (20) 
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Then 
D" E o"- 1 

ij ~ tk kj 
bolds by definition of 
as 

DIJ . Therefore A" can be written 

p p-1 p-I A ~ II E 11v D v11 II + II Ell n D n ll II • (21) 

from which, using eqs. (1) and (18), we obtain: 

p 1 p-1 A ~ ( F 11 v + 21l11v) liD I'll II • 

which simply leads to 

AP ~ £ (P) (J.)p-v 
v~o v 2 

. c v , p = o.j t,. .. . n-1 (22) 

We now consider 

p p p -1 p-1 ll ~ llDnn II~ 11En11 D11n II+ IIEnn D nn II· (23) 

The second term in the r.h.s. equals (ia- ";1 liiD~~ 111· 
p-1 

Since II D1m En11 II ~ 0 the first term can be expressed by the commutation relations (7) 

' llp-l ' 1 '\[!' Jlp-l ' 1' ' l'l'p-l., ' 1 '!) 0-1, 1 •l'.ntJ' Jm i~=t :np.' fLO 1\l~.oO/IJI .I 'nn !!- 0 nn il flflll· (24) 

Thus the equation 
p . n-1 p-1 p-1 ll ~ ( 1a + -

2
--) B - A 

holds which can be solved iteratively. 
The solution is 

p l, 2, ... 

p p-I p-2 p-2 \ p-1 \c p Il ~ - A - Yn A - ... - y n ' - Y n • ·I· Y n ' 
h ( . n-1) w ere v = Ja+ -- . • n 2 

(25) 

(26) 

II 



Due to 

c• ~ A"+ B" n 

we get the relation (17) using (22) and (26) 

L em m a 2: Assume that 
(I p 

C !=" l(xl,x2, ... ,x ,) n- n- n- for some 
x 1 , ... , x "_ 1<;: C and all p = 1, 2, ... , then 
( . p p ( . . ) =1."1 x

1
,x

2
, ... ,x 

1
,1a. n n n- n 

This lemma follows immediately from lemma 1 and pro
perty 4 of the polynomials a 1~. 

We are now ready to formulate our main theorem. 

Theorem 1: Let C :; be the Casimir operator defined 
by (6) of the realization gl ( n, R) , 
11 _ 2 . , with signature ( d : 0 , ... , 0 , 
" 

1 
•.... a ) , then n- r n 

. p p ( ( n-;1) ( IHI) . , ) 
( n=rJn Y l •···•Yn-d ,lo.n-d+l , ... ,lan 

for p = 0 , 1, 2, ... , wh-ere 
\ 1 n -dL i an -ll + ( ~i..::._!_ _ k) . 
·k 11-d 2 

Proof: For no 2 there is only one type of signature, 
namely ( l:a 1 , a 2 ) The realization with this signature 
is given by formulae (1) for F11 = ia 17 and a= a 2 . 
1'11 can be considered as realization of gl( I,H). We 
have ( r- n f( ia ,) =(in 1) P. Lemma 1 and proper-
ty 4 yield C J' -- ,, ~ ( ia 1 • i« 2 ). For induction from 
n - I to n we must distinguish betwPen the two cases 
d - I and d : I. For d- I the theorem follows imme
diately from lemma 2. Let us consider the case d = 1. The 
realization with signature ( 1:0 ..... 0 ·"n-l, "n) is the 

realization (I) with 
v . /) 

JLI '""""" I a r I I" )- ------
11 -

and ll"" a n. 

12 

p 
The Casimir operator Cn-1 , p = 0, 1, 2, ... , 
realization of gl( n- 1, R) with the generators 

c: _1= ( n - l) ( 
ian - 1 

n - I 
)p 

of the 
F I'V is 

U we show that c: _ 1 can be expressed as the value 
of polynomial "g _1 at the point ( y< p-1>, ..• , y<.•: P) then 
the theorem 1 follows from the lemma 2. But ,. 

p ( (n-1) (n-1)) -( _ 1)( lan-1 )P "n-1 Y1 ····•Yn-1 - n 
1 n-

holds due to Property 5 of the polynomials ": . 
Since different realizations may have the same eigen

values of any Casimir operator C ~, the question 
arises about the classes of realizations uniquely charac
terized by these eigenvalues. 

Theorem 2: Let [ d;O , ... ,an-d, ... , a 0 ] be the class 
of all realizations with signatures 

(d;0, ... ,(1-8dn-1lan-d + 

+ l)dn-larr(n-d)' a17(D-d+l) , ... ,aTT(D))' 

where " denotes a permutation of indices 
I, 2, ... , n or n - d + 1, ... , n respecti
vely. 
(i) Then the Casimir operator CP0 has 
the same eigenvalue for all realizations 
of the class [ d; 0 , ... , Q , a n _ d , ... , a n I 
(ii) Let c: and c: be the genera
ting Casimir operators for two different 
classes of realizations of gl( n, R) . Then 
th~re exists 1\,t least one Po such that 
C 0 o and C

0 
° have different eigen

values. 
Proof: Assertion (i) follows from theorem 1 and the 
symmetry property 1 of the polynomials aP • (ii) Assume P - P n C0 =c., i.e., 
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C p p( (n-d) (n-d). . ) n=an Yt , ... ,yn-d ,Ian-d+l'''' 11 an = 
_ P(-(n-d) -(n-d) .,- - .-) -C-P -a Y1 , ... ,y - 'an-d+ 1 .... ,lan -- n' n n- d 

for all p =I, 2, ... 
Due to_ Property 5 the sequences ( Y't"-<1), ... , i a nl and n< n -d >, •.• ' i; n ) may be different at most by per
mutation of their components. 
Thus: _ 
a) d = d , because the number of components with a 
nonzero real part must be the same. 
b) an-d= an- if d< n -I because the complex 
components ( y fn- d l, ... , y (n- d) 1 can be permutation 

I ~-d -(n-<1) -(n-d) of the complex components ( y 1 , .•. , y n _ d ) only. 
c) (a 0 , ... , an) , D = n - d + I- 8 n _ 1 d is a permu-
tation of (a 0 , ... , an ) because the purely imaginary 
components must be permuted separately. 

Therefore the realizations with the same eigenvalues 
of any Casimir operator lie in the same class and proof 
is completed. 

5. Concluding Remarks 

i. If we consider for d fixed the set of all signatures 
( d; 0, ... , 0, a d, ... , a ) then the corresponding 
realizations Save gene Fating Casimir operators C ~ who
se eigenvalues are polynomials in the d + I parameters 
an_ d , ... , a n , thus we cannot expect n indepen
dent polynomials for d < n - I. Actually, the Property 2 
implies that only the first d + I operators C ~ = u ~ , 
p = 1, 2, ... , d + 1 are independent and the remaining 
ones, C P = a P , p > d + I polynomia!ly depend on n n 
C 1

, ... , C d + 1 
, Only if d = n - I , the eigenvalues of 

alf genera'hng Casimir operators C ~ , p = 1, ... , n 
will be independent polynomials. 

ii. If we substitute pi , q i in the considered realiza
tions by some of their representations we obtain a repre
sentation of gl( n, H) or sl(n, I!), respectively. 
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It may happen that two realizations characterized by 
different signatures lead to equivalent representations. 
If, however, realizations have signatures from different 
classes [ d; ... ! the corresponding representations 
cannot be equivalent as they differ in an eigenvalue of at 
least one Casimir operator. This illustrates the useful
ness of Theorem 2. 
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