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S u m m a r y 

Theses are presented on the basis of whicr 
one should conclude that the gravitational 
radius of the test body can put principal 
restrictions on the measurability of coordi­
nates and time in quantum theory, there 

·ii K appear the bounds ?f the type A xi\T 2: 7 
or rather ArgrAT~ ~K , as a consequence of 

the relation AEAbn. The corresponding bounds 
arise for the measurability of the mean 

electrostatic field A!AT2 ·f\/;- and of the 
r C 

gravitational field (the cl~istoffel symbols 
1 . 

I a l ) ': A I 44 l ·AT > 1i' K 
µy - r 2 C 

gr 

Thus, the conceptual contradiction ari­
ses. between the modern concept of space­
time continuum, which serves as the basis of 
the modern field theories, and the real 
physical properties of the space-time conti­
nuum in small regions. 

/_.; 

1. Introduction 

Quantum mechanics of particle has preserved classical 
concepts of space and time because within the framework 
of concepts of this theory the four-dimensional coordinates 
of particle can be measured as precisely as one wants, 
if the problem is not posed to determine simultaneously 
the momentum and energy of the p~rticle. · 

The principal possibility of measuring measurable 
physical quantities, which are the basis of the physical 
theory, is one of the principal conditions for the self­
consistency of the theory. As is known, Bohr and Rosen­
feld, in their famous paper •I.'. put the task to prove 
that in this respect quantum electrodynamics is not con­
tradictory, because the m,ean value of the electromagnetic 
field can be measured with the help of the macroscopic 
test body .as precise as one ,wishes, in an arbitrarily 
small space-time volume. In other words, the concept 
of the electromagnetic field, according to Bohr and Rosen-

. feld, does not encounter conceptual difficulties in the 
whole space-time continuum. 

In this note the attention is called to the fact that the 
contradiction with such a concept of the fields and of the 
space-time continuum can emerge if one includes into 
consideration the gravitational field of the test body. 

In the past one of such contradictions of the conceptual 
type has been indicated by Wigner 121 and by Anderson i 31 . 

As Wigner noted the Heisenberg relation 

.AEAT-·fi (1) 
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leads to the conclusion that the precision of the functioning 
of a clock depends on the uncertainty of its mass 

2 
flE=c L'lm . (2) 

According to this remark the precise measurement of 
time corresponds to the infinite large fluctuation of its 
mass, and, consequently, of the gravitational field. Ho­
wever, if one proceeds with this analysis and pays atten­
tion to the fact that if the fluctuation of the mass fl m 

should correspond to the fluctuation of the gravitational 
radius 

fl r 
gr 

flm 
- ---K 

2 ' C 
(3) 

where K is the gravitational constant, then the Heisen-
berg relation can be rewritten in the following form 

flr fll' hK 
gr :::'.. -· 

c4 (4) 

If one assumes that the spatial dimensions fl R of the 
clock cannot be smaller than its gravitational radius 
fl R 1>fl r r , then fl R is the uncertainty of the position 

of the cfock, showing the time with uncertainty fl T , so 
that 

flRflT ~ h': . (5) 
C 

· If one assumes that the minimal uncertainty in measu­
rement of time * fl T . •> flR , then 

mm- c 

2 
{flR min ) 

-fiK 
'2: 7f". 

C 

(6) 

* fl Tmin is the propagation time of the signal of 
the clock localized somewhere in fl R . 
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So we arrive at the conclusion· about the possible exis-'- · 
tence of individual errors of measurement of coordinates· 
in an empty "Euclidean" space 

fl R . 
min 

,--t{K } -33 
·> v -3 - 0 cm. 

C 

(7) 

The corresponding relation could be obtained for the 
uncertainty of measuring of time. 

One cal recaU that in one of the papers of B.De Witt, , 
wh_ere the interaction of the gravitational field with the 
scalar particles has been taken into account, the propa­
gation function 

'.l 1 
Z(x) = -2 2 _ ,\2 + iO 

(2rr) X 

where 

,\ =.3.__"~ -33 
.1- v_--3 - 10 cm 
y .TT • C • . ' . - .. 

has been obtained. 

(8) 

(9) 

. Expressions _ (9) for A coincides. with expression 
(7). In fa.ct, this result has been obtained py De Witt in 
the approximation where o·nly tb:e so-called ladd~,ff ~ype: 
diagrams (the Bethe-Salpeter equation) in the special ga·uge 
of the gravitational.field (in the gauge of de Donder, i.e., 
harmonica! gauge 

a Gik 
I = Q) (10) 

.. a xk 

have b_een summed. However,. the previous general consi­
deration indicates that the emerging of A in the propa­
gation function obtamed by De Witt, apparently, is not 
accidental. 

Similar propagation functions, shifted from cone to 
hyperboloid, have .been previously considered ad hoc 
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without connection with gravitational field. They were 
introduced with the aim to overcome the known' diffi­
culties with ultraviolet divergences in the field theory / 5~ 

In the Lehmann representation the corresponding propaga­
tion function D (s' ) can be written as follows * 

2 
. 2 2 A 2 

D(s')=..l.. Jft..(sK )cos(K µ - ..--)d/3dK , (11) 
rr 4/3 

where s' = s - A
2 

, s = x 
2 

, t..(sK
2

) satisfies the Klein­
Gordon equation with mass K. Therefore the Lehmann 
function p ( ~) has the following form 

00 A2 
p(K2) = J cos( K2/3 - - )d/3. 

o 4(3 
(12) 

In this theory the Lehmann function p(K2 ) is sign-alter­
nating. In the contemporary field theory p ( K 2 ) > 0 
In other words, one considers a regularization function 
p (K 2 ) of the Pauli-Villars type / 6 /, i.e., the so-called 
realistic regularization. However, one should note that 
in this theory with such a ·propagation function introduced 
in the theory ad hoc, as in very nonlocal theory, the vio­
lation of the principle of causality occurs: the signal 
spreads through the domain A with velocity larger than 
the velocity of light: the corresponding commutators of 
the physical quantities on the spacelike surface do not 
become equal to zero. De Witt interpretes his result 
as arising of the rigid sphere of diameter A around the 
scalar particle. Such an interpretation corresponds to 
the obtained by De Witt mathematical form of the propa­
gation function. However, one could present arguments 
in favour of the fact that in the final form of the propaga­
tion function obtained by De Witt the physical meaning of 
the quantity A has been lost. As follows from the 

-------------------------* In this paper the signature is 1-1-1-11,i.e., in contrast 
to the result . of De Witt, the displacement from the cone 
to the hyperboloid takes place in the timelike region. 
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previous analysis of the quantity A this possibly is not 
a diameter of the rigid sphere, but rather a diameter of 
the corresponding Schwarzschild sphere. The gravitational 
radius of this Schwarzschild sphere corresponds to the 
mass 

m - .1 •tic 
p V --

K 

(13) 

It is essential that the same mass can be obtained 
from the considerations based on the Heisenberg uncer­
tainty relation. Let us assume that for the mass m the 
nonrelativistic movement is considered inside the do-
main A= t..R • 

For the kinetic energy of the mass m inside the 
domain A on the basis of the relation t.. p t.. R - h one 
obtains the expression 

~r _ .±:._ - -tic 
2m - A2m -K-

c2 
2m=Mc

2 

In this case for the external observer the total mass 
of the object is equal to . 

tc 'mp 
M- --=m ---, 

Km P m 
~;-

where m = v --
P K 

is the Planck mass. 

If m < m P , then M > V "lie . 
K 

In this case we arrive at the contradiction; the radius 
of the Schwarzschild sphere is larger· than A • The 
agreement with the uncertainty relation arises only in 

,-:rc-
the case when m = m P = . \I -K- • Moreover, the case 

M ·> m P testifies that the, assumption m < ~ ~c con-

tradicts the nonrelativistic expression for the kinetical 
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energy of the,particle. The case m,- mp does not lead to 
contradictions of any kind. -In, the relativistic case for. 
the mass m one has pc tl T ·~11' . If c tl T·-:- tl R-~ , then· 

-t( 
p - A= me. From here also 

1i 1tc m= -=v--. 
,\ C K 

In other words, there is no contradiction between the 
Heisenberg uncertainty relation . and the interpretation of 
,\ as a dimension of a sphere in which the particle of 

the mass · m is contained, in that case if this mass equals · 
- .rc 

the Planck mass · m = V -- . On the other hand, just 
p K . 

to this mass corresponds the Schwarzschild sphere with 
dimensions ,\ . 

2. Electrodynamics 

The error in measuring the mean electric field is 
expressed, according to Bohr and Rosenfeld, in the fol­
lowing form 

tl!-- ,ti ----
ftlxtlT 

I(R)= f !. (x)d 4x 
R 

(14) 

where -ti' is the Planck constant, 1; is electric charge 
of the test body, tl x are dimensions of the test body, 
tl T is duration of experiment. This inaccuracy of 
measuring of field can be arbitrarily small for small 
tl T and tl x, because the electric charge in the classical 
test body with dimension tl x can be arbitrarily large: 
in classical physics, as the authors stress, the atomism 
of charge does not exist. · 

However, in. this classical consideration the classical 
gravitational field, its mass or rather its gravitational 
radius has not been taken into account. As is known, Bohr 

8 

! 

·~ 

I 
I 

.. l 
! 

considered it necessary to take into account the gravitatio­
nal· field in situations discussed by .him when int~rpreting 
other Gedanken experiments. · 

We call attention to the fact that the gravitational 
radius of the charged test body grows with growing' charge 

( 

Really, mass of the electrostatic energy of the test 
charge ( equals 

'm -
( 2 

tlx C 
2 

The gravitational radius of this mass is 

K 
r 

gr 
Km 

c2 
- K K

2 

tlx c4 

;(15) 

(16) 

where K . is· 'the· gravitational constant. If one assumes 
that the dimensions of the test body cannot be smaller than 
its gravitation radius then one has 

tlx 
( 

~ r 
gr 

I' ( •./ K 

c2 
(17) 

Hence, though the error of measurement of the field 
really decreases with growing charge of the test body, but 
the region over which one averages the field unlimitedly 
grows Wlth 'increasing charge of the test body ' . 

t, 

tl ! -
-tr. y;_ 

(r 1; )
2 tl T c 2 

gr 

In other words, if there exists the gravitational radius 
of the test body, then the minimal dimensions of the test 
body · are bounded due to the value of its charge 1; • · If 

1; is equal to 'electron charge e ilien 
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I). X . 
mm 

e 
- r gr 

and from here 

A i _ -11c 

e VK 
c2 

1 

-33 
- 10 cm 

e rp c l'!,.T 
gr 

(18) 

(19) 

This relation shows that for example the electrostatic 
field of electron can be measured as precisely as one 
wants during the time I'!,. T ➔ oo • However, this measure­
ment, in principle, cannot be carried out in regions 

e,J; -33 . 
I'!,. x < --- - 10 cm. Large charge 1s useless for mea-

c2 

suring the mean field in a small region. The above dis­
cussion is given within the framework of classical theory 
of the. gravitational field. However, quantum considera­
tions of the possible fluctuations of the metrics itself, 
according to the above discussion, can enlarge the errors 

of the minimal dimensions of the test body (Ax -v--ffc VK-) 
c2 

by an order of magnitude. 

3. GravitationqJ Fiel.d 

As is known, according to refs/2
•
31 the measurability 

of the gravitational field (we have in mind the Christoffel 
expressions l a l ) is given by the expression 

1 
I). l 44 

µy 

•> 
-ii' (20) 

ml'!,. x l'!,.T 

where m is the mass of the test body. Inaccuracy in the 
measurements of the gravitational field is the smaller the 
larger the mass m of the test body. 
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However, the region where the gravitational field is 
measured cannot be smaller than the dimensions of the 
test body and the dimensions of the test body for the ex­
ternal observer cannot be smaller than its gravitational 
radius 

r ~ ~ ~ I). X . (21) 
gr 2 

C 

Therefore 

1 41 K 

I). I 44 12 
r 2 I). Tc 2 

(22) 

gr 

Wigner and Anderson 1:•31 have stressed from a different 
point of view that the large mass of the clock does not 
provide high accuracy of the measurement of the field 
in the small space-time region. Namely, the large mass 
of the clock ca4.ses the large gravitational field, which, due 
to the nonlinearity ,of the equations, cannot be separated 
from the measuring field. 

In our consideration, if the initial statement about 
the role of the gravitational radius of the test body is 
valid, then the quantitative estimates of the principal 
inaccuracies arise. 

Let us consider critically our initial theses. 

1. Our analysis of the problem assumes that measu­
rements are carried out in the system of coordinates in 
which one has singularity on the Schwarzschild sphere. 
However, one can conceive the falling reference frames, 
in which there is no singularity on the Schwarzschild 
sphere. One could answer this objection in the following 
way. A real observer is an external observer with respect 
to the apparatus. The observer cannot make use of the 
falling (into the clock!) reference frame to interpret the 
functioning of clock because when such a reference frame 
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intersects the Schwarzschild sphere the connection bet­
ween the external observer and the reading .of the clock 
ceases;, 

2. It is possible that there exist objects having pro­
perties of the bare singularities which are not covered 
by the Schwarzschild sphere. In this case, our considera­
tion is not applicable. However, one can make a statement 
that such an object, even if it exists, must disappear by 
means of an explosion, due to the creation of pairs of 
a different nature round this singularity. 

The point is that with the discovery of neutral_current 
of weak interactions the neutral matter is charged with 
charge-source of the neutrino-antineutrino fields. This 
field is of a relatively long range ( - _l _) if there is no · '·· . ,s 
intermediate boson and is analogous to the Coulomb 

fi~ld; (.+), if. in weak interaction th_ere exists an inter­
mediat~ boson. with _a mass smaller than the Planck .mass 

,.J ~~ '· --: ,I 0.-5 
~r , ;One can eve~ make an assumption that 

K . . . . 

weak neutral, currents of. the neutrino-antineutrino field 
are able to. stop at some distanc'es, relatively large in 
comp:irispri with the quantmn ,length (. -10 .-33 cm), the 
c~llapse of large electrically neutral masses. Such a pos­
sibility for Coulomb forces has been indicated by Novi.:. 
kov /s/. 

• l 

True, that the last possibility is an interesting but 
purely abstract example, because, in fact, one speaks 
about the collapse of electrically n·eutral nucle.cm matter. 
But a. similar matter inevitably is charged with the huge 
charge source of the neutrino field of weak neutral 
currents: . . 

,, ,' 

One can also object in such a way that according. to 
Bohr the test body is a body of classical physics-,and the~ 
creatiqn of pair~ is purely quantum effect. Suchaq,objec- . 
ti<?ri is. a .. misunderstanding. , 1'he uncertainty. relation, 
for. the. macroscopic. test :t,ody (quantum. effects) .· -is 
taken into account by Bohr in all his considerations 
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of the problem of measurements, but they are SQppres­
sed either by a large mass or by a large charge of the 
classical body. 

The .appearance of the parameter A in the propaga­
tion function of the type of the ·ne Witt function attracts 
the attention from many points of view. First of all, this 
'function leads to the direct conflict with the causality 
principle in the same way as every "rigid" .universal 
length in nonlocal theories. 

True, if one considers the Schwarzschild metrics 
in isotropic reference frame 

d~ 2 = <I> -I dt 2c 2 - <I> [ dR 2+R 2(sin 2ed¢ 2+ de 2)) , 

where <I> = ( ~) 
2 

, then for the spreading of light one 
R+ro 

obtains the expression 

AIL = ( R le 
d t R + ro 

and for R ... o, i.e., when.light reaches the Schwarzschild 
surface its velocity in the Schwarzschild reference Jrarne 
tends to zero. Jiowever, •such ,an interpretation by no 
means does follow from the pr~pagation !unction obtained 
by De'Witt. 

Moreover, the provagation .function allowjng :the .inter­
pretation resulting from :our consideration, must be of 
a completely ,different sort, it is not simply .a d~pslace­
ment of jhe propagation Junction :from a cone onto a hy­
perboloid, but is ·rather someUi,ing in •.thespiritof.intl,litive 
considerations of :Pauli /7 I -a_pout the ])OSsibility of :soIJ1e 
kind of diffusion of the light.cone iJl the .case of-gravita­
tion . .In the spirit of,our analysis ,this ch~nged propagation 
function should arise also ,in the case~ofJhe free ,sprea~ing 
of fields with account of gravitation caused by them * . 

:* I;>e Witt function l / s ' 2 itself is pivatiant with 
r~spect to ijle translation Jra.nsfo~~ation: 

2 2 , 2 ( ')2 ( ')2 \2; s' = (x
1
-x1) + (x

2 
-x

2
) + x

3 
-x3 - x 4 -x 4 -/\ • 
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llowever, in the whole above consideration we did not 
stress the fundamental characteristics of the quantity A • 
Namely, one connects with the quantity A th~ quantum 
fluctuation of metrics, this follows aI,sQ from our previous 
a~alysjs' within the framework of uncertainty principle. 
,\ is essentially connected with the violation of the concept 
of the spatial distances in small. Previous considerations 
of the Schwarzschild metrics are too classical in this 
region and, strictly speaking, are not applicable in this 
situation. 

In the end we approach the basic question which is of 
a conceptual nature. It is possible, without intrinsic 
contradictions, to combine the general theory of relativity, 
with its rigorous concept of continuum, with the formalism 
of quantum field theories, which contradicts the concept 
of field in the sm~ll region and even the existence of 
the small region itself in the space-time continuum? 
One should stress that the last statement is equivalent 
by no means to the statement that the space is quantized 
and discrete. 

Nevertheless, the known Zenon ,paradox about Ahille 
an~ tortoise at small ,distances gains a different meaning. 
The assumption cannot be excluded that in future theory 
the propagation function at small distances, more exactly 
the stringent fulfilment" of the special principle of relati-1 
vity, wiU loos~ the meaning because there. will• loose the 
mean,ing the concept of distance itself. It, cannot be 
excluded · that the De Witt propagation function is 'just 
the peculiar expression of the conceptual contradiation 
disc_u~sed above. Perhaps,. one shou.Id accept it as a fact 
wh~ch corresponds to the Nature. Perhaps,. this .fact 
requires only the corresponding interpretation and that 
more rigorous derivation of the propagation function in 
the. ,unified field the.ory, including gravitation, is unable, 
to lead to essentially different expression. fQr the propa­
gation function (we mean it conflicts with causality 
principle). 

It is clear to the author that the la~t phras_es- contain 
more questions than 'answers._ ' . . . . . 
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