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Introductioo 

In recent years the problem of summation of large 

perturbative QeD corrections that occur in hard hadron-hadron 

scattering cross sections has been stressed Ill. Important 

ingredients of the analysis of these processes 121 are the 

properties of parton distributions Ia/A(x). These functions admit 

a simple probabilistic interpretation . The distribution function 

Ia/A(x) may be thought of as the probability to find a parton a.in 

a hadron A with a specified fraction x of its longitudinal 

momentum. It has been shown 121 that the origin of large 

perturbative corrections is closely related to the properties of 

the parton distributions as x-~ and, in particular, to the 

behaviour of the evolution kernels Pab(z) of these functions as z 

1 13,4/. The evolution kernels govern the dependence of Ia/A(x) 

on the renormalization parameter I-' 15/. It is our goal in the 

present paper to determine the asymptotics of the evolution 

kernels Pab(z) as z ~ I. 

The paper is organized as follows. In section 2, the 

definitions of the parton distribution functions are given and 

their main properties are formulated. The a8ymptotics of the quark 

distribution function is studied in section 3. In this section, 

the factorized expression for the quark distribution is derived, 

whose properties established in section 4 play an important part 

in the further analysis. The asymptotics of the kernels governing 

the evolution of the quark distribution function is found in 

section 5. The gluon distributions and their evolution kernels are 

investigated in section 6. 

2 Definitions of the parton distribqtjon functions 

Let us consider a spin-averaged hadron A having a mass M and 

moving in the z-direction with a momentum PI-' = (P+,P_,PT ) "here 

P~= (PO! P3) /~ and PT=(P
1 

,P2 )=O, P+» P_= M2 /2 P+ . The quark 

distribution in the hadron A is defined as the follo"ing hadron 

-
t-J ~ , P' 
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(b) The moments of the parton distribution s , defined byexpectation value / 6 , 1 /: 

ixP y 1 H-l N 1 H - 1 
Iq / A(x) = 4;I dy e- + _ I1 (H) f dx x Iq/A(x) + (-1 ) f dx x Iq / A(x)q 

o 0 

<P!~(O,y _ ,OT)r+pexp(igfY-dS A:(O,S ,O T)ta)W(D) !P>. (1) • Ho M,, (H ) (l+(-l)N) f dx x - 11 / A(x), 
o g

where W(y+,y_ ' YT) is the renormalized field operator of a quark of 

a certain flavour, are genera tors of the fundamental are related to matrix elements of t he fam i l iar twist -two operators 

representation of 5U(3) and P denotes the path-ordering of t The that appear in the operato r product e xpansion of two currents: 

product of operators in this definition is singular and it • 
requires a subtraction of ultraviolet divergences /8/. In the 

following all the divergences are regularized by the dimensional 

regularization method combined with the minimal subtraction 

prescription (MS-scheme). 

The antiquark distribution in the hadron A is defined 

analogously to (1) /6,1/: 

II -ixP y1- A(x) = -- dy e +
q / 4rr -

Tr{ r+<p!W(O,y_'OT)pexp(-ig~Y-dS A:(O,S,DT)(ta)T)~(O) IP>} 

and for the gluon distribution we have / 6 /: 

1 I d -(xP y
Ig/A(x) 2rrxP y e + 

+ 
(Y- )b + a b<PIG+v(O,y_,OT)r Pexp igf ds A+(O,s,OT)oa Gv_(O) Ip >. (2 ) 

o 
a a a 

A
C

where G = iJ A - iJ A + gl b Ab and (o)b = areJ-IV I-l v v ~ Q C I-l v Q C 
-i/abc 

generators of the adjoint representation of 50(3). 

Parton distribution functions thus defined are gauge 

inv8riant. They are normalized so that for free quarks and gluons 

with A replaced by a parton state 

I a/b (x) 6 ab 6 (1 - x) . 

The following properties of the parton distributions will be 

important for us. 

(a) The parton distribution functions have the spectral 

properties /6,9/: 

Iq / A(x) : - Iq / A(-x) , Ig/ACx) = - Ig / A(-x), 

Ia/ACx) : 0 , if Ixl>l , a = q, q, g 

2 

1 - • { ~. ~2 . ~n }a ~1' . '~n = 2 WeD } r iD ... 1D TS W(O)q 

~ v ~ ~ v~ 
a ~1"'1-' G 1 (0) iD 2 .. iD n-1 G nCO)g n { }rS 

here TS denotes the traceless symmet ric part of the tensor ) by 

a simple e quation /6 /: 

11 (N) (p)-N (Pia + ... + IP >. a q, g . 
a + a 

(c) The dependence of the parton distributions on the unit of 

mass in the dimensional regularization I-' is governed by the 

Altarelli - Parisi-Lipatov (APL) equations /5/ : 

D Ia/A(x) I: /dy P ( X ) Ib/ A(Y) a,b q, q, g , (3 )
bx Y ab y 

6 6
where D= I-J 61-' + ~(g) 6g + (mass terms) . The APL equations may be 

rewritten in the form of equations for the moments of the parton 

distributions /10/: 

D M (H) I: r b(H) Mb(N) a,b q , g , 
a b a 

where the matrix of the anomalous dimensi ons 

H-1rab(H) = f dz z PabCZ) 
-1 

coincides, in accordance with the previous property (b), with the 

anomalous dimensions of the twist-two operators. 

It follows from the APL equations ( 3) that the 

renormalization properties of the parton distribution fun ct ions 

Ia/A(X) as x are controlled by the behaviour of the 

evolution kernels Pab(z) as z or. equivalently, by the 

asymptotics of the anomalous dimensions rab(N) at large N. Our 

further consideration is based on the investigation of the parton 

:l 



distributions as x -~ 1. Their knowledge will enable us to find 

the asymptotics of the evolution kernels Pab(z) as z --> 1 with the 

use of the APL equation . 

The properties of the ano malous dimensions at large numbers 

have been studied early in QED / 3 / in conne c tion with calculations 

of the Sudakov effects. It has been established that the anomalous 

dimension yeN) of the twist-two operator obtained from 0 q ~1" '~n 
by a mere redefinition of the fields has a single-logarithmic 

asymptoticE at large N to all orders of perturbation theory (PT) 

!3/: 
yeN) ~ log N + 0 (No). (4 ) 

Nowadays in QCD, the results of calculation of the evolution 

kernels and the matrix of the anomalous dimensions are known to 

the lowest orders of PT /7,11/. Using them we may conclude that up 

to the two-loop order when z -~ 1 /12/: 

(z) 2 A (1- 1 -) - 2 B 6(I-z) + 0 «I-z) ° • P - )qq q -z + q 

1 2 B 6(1-z) + 0 «(1-z)o)Pgg(z) 2 Ag (l-z)+ g 

P (z) 0 «I-z)o) P (z) 0 «1-z)0),gq qg 

1 • 
where f dx ~(x) (I-x) f dx (~(x)- ~(O» (1: X ) and 

o + ° 
Ol 

_sC + ( as ) 2 { (67Aq fl F 11 CF CA 36 ~;) - ~ TF } 

CAA -A (5a) 
g C q

F 

3 as 2)( as ) 2 { (17 11 2 3 ) 1 1B - - - C + 11 CA -96 - ~ + ~(3) + TF ( 24 + IS"q 4 fl F CF 

(3123CF 
J}+ -32 + an - ~(3) 

as ( 11 1) + II}B 11 -WA + 3TF (:s )2{_c~(~ + ~(3») + §-CATF + ~FTFg 

Hereafter O«I-z)O) denotes terms those moments 

f dz zN-I 0 «I_z)0) tend to zero as N --> 00. 

° 

4 

to 
1(n) I: k- n 

TF 2" for n quark f lavours and the Casil1 irn F F
lc= l 

N
e 
2 _1 

4ope rators of SO( Ne ) group equal to C 3' = He= 3 atF ~ CA e 

N =3. For the matrix of the anomalous dimens ions for N >> \Ie e 

have in the same approximation 

yqq(N) = -2 10g(N eQ:) Aq - 2 B 
q 

+ o(N°) 

ygg (N) = -2 logiN e{; ) Ag - 2 B g + o (N° ) (5b) 

o 
y ( N) = o( No ) y qg (N ) 0 ( N ),gq 

where I[: is the Euler constant. ThuB, we observe the important 

property: the two-loop corrections do not change the o ne-loop 

a s ymptot ics of the evolution kern els Paetz) as z 1 and the 

anomalous dimensions yab( N) fo r N » 1 /12/ . It is just natural to 

sup pose, following the analogy with QED - relation ( 4 ) , that t h is 

property is retained in QCD to a ll orders of PT . The s upposition 

is quite untrivial since Borne individual d i a g rams contribut ing to 

the two-loop Pab (z) and Yab( N ) possess more power f ul term, vi z . 
2 

(~~») d 1I - x + an og3N , that, however, cancel out exactly in the 

sum of all diagrams. 

3 The q uark distribution as x __ 1 

The evolution ke rnels Pab(z) are ga.uge i n v a r ian t and do not 

depend on a particular form of the state entering into the 

defini tions (1) and (2), Therefore, let us replace for simplicity 

A by a spin-averaged s tate of a quark with a mass m and momentum 
2 

p~ ( PT= 0, p + » p _= ., /2p+) . Then we fix the axial gauge of the 

gluon field ( nA~ (x»=O where n T=O, n_ » n+ and introduce the 

followi ng function: 

1 f -i xp Y - +¢( x)= 4n dy_ e + - <PI~(O .y_.OT) Y ~( O) Ip> (6) 

differing from the definition of f q/q( X) by the absence of the 

path-order ed e xpo nent i al . ¢(x ) is gaug e va r iant and depe nds on the 

aauge fi x ing vec t or n~ . It ma y be e asi l y n o ticed that in a specia l 

case of the l ight-like a x ial gauge A: Cx ) = 0, i.e . , n T = n+ = 0 : 

5 



¢(x) I q / q (x). (7 ) 

Our strategy will be to investigate the properties of fq/q(X) 

by studying the behaviour of ¢(x) as x ~ 1 and performing the 

limit to the axial gauge A:(x) = O. 

The only SOurce of the dependence of ¢(x) on the unit mass ~ 
2 as n ... CI is the renormalization of the quark fields in (6). 

Therefore ¢(x) obeys in that case the renormalization group 

equation: 

D ¢(x) 2 i"q(g) ¢(x). (8 ) 

where Y q is the anomalous dimension of the quark field in the 

axial gauge. However , if we put n 2 = 0, the additional ultraviolet 

divergences appear in ¢(x) /6, 7 / thus violating equation (8) and 

leading with the relation (7) in hand to the APL equation (3). 

Let us study the dependence of ¢(x) as x -4 1 on the vector 
~ 

n~ and then examine the limi t n~-4 (). The general form of the 

Feynman diagrams arising in the perturbative expansi on of ¢(x) 

when x o is pictured in fig.1(a) / 2 / where the dashed line 

represents the unitary cuto ff transfo rming the virtual cut lines 

into the real ones. 

The one - loop calculation of ¢(x) for n2~ 0 gives the result: 

3 "'s m') 1 "'s ( 4(pn)' ) ° ¢(x)=o(l-x) ( 1-4 ~ CFlog- , +~ ~ CF 10g---2--2 -2 + O((l-x) ) ( 9) 

~ + m n 

satisfying equation (8) bllt at n 2 = (l we get. the expression f or 

¢(x) : ,
3« 1 ex , 

¢(x) o( I -x) 1-- _sC( 4 TT F log'!'.2) + (l_X)+~sCF(log:, - 1) 
I-' ., 

_ 2 ::'sC (log( 1- X) ) + O((l -X) o) ( 10 ) 
TT F (l-x) + 

which obeys the APL equation (3). 

The analysis of the multiloop properties of the diagrams of 

fig.l(a) has shown /2, 13,14/ that the leading contr ibution to the 

function ¢( x) as x 1 and n 2~ 0 (that is, the singular one 1S-4 

not suppressed by powers of (l- x» comes only from diagrams with 

the structure shown in fig.1(b). Thp.se diagrams contain thrp.e 

subgraphs, i.e .. hard, collinear and soft onp.s. The mo menta 11-' of 

particles (quarks and gluons) belonging to the 6ubgraphs are the 

6 

o y o !:I o y 

I 
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I 
p p p p p p 

Fig.l(a) The general structure of the Feynman diagrams 

arising in the perturbative expasion of ¢(x), defined in (6). The 

dashed line represents the uni tart cutoff. The blob dp.notes an 

arbitrary subgraph;(b) Thp. diagrams dp.tp.rmining the Ip.ading 

contribution to ¢(x):(c) The diagrams of fig.1(b) after summing 

over the soft gluons . 

o ':I 
I 
I 

p -p 

Fig.2 . The diagrams arising in the expansion of the contour 

functional. The dbuble line denotes the contour C in the Minkowski 

space. 
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2 

following /14/: 

(a) hard subgraph H: 1+, 1_, IT 1 = O(Q) 

(b) collinear subgraph ,J: 1+= O(Q), 1 O( M
2 
/Q), IT O( M) ( 11) 

(c) 	soft subgraph S : 1+, IT I O(M) 


2 2 2
where Q = (pn) /n , M = (l-x)p+ . 

It follows from the definition (6) that the integration 

regions over momenta of all the particles in fig . 1(b ) are 

restricted by the only condition: the total + component of momenta 

of all real particles equals to (l-x)p+ and vanishes as x -~ 1 . 

Among quarks and gluons with momenta (11) only gluons belonging to 

a soft subgraplo havE: a sma ll + component of momenta, (Contribution 

of the quarks with s mal l mo menta to ¢(x) is suppressed by powers 

of (I-x». That is why all the real particles of the diagrams in 

fig . 1Ib) are sofL gluo ns . 

A subsequent transformation of the diagrams, fig,l(b), is 

associated with the factorization of an individual graph, 

fig, l(b), into a hard part and a collinear part , The presence of 

the soft gluon subgraph in fig. 1 (b) upsets the desired 

factorization , Nevertheless, the factorization is restored in the 

sum of the diagrams . If we sum over attachments of the soft gluons 

to the collinear subgraphs in fig , l(b) , two factors accumUlating 

all the soft gluon effects are factorized from the contribution of 

J / 14 , 15/. These factors are denoted by double lines in fig,l(c) 

and they will be defined below in (15), The diagrams of fig,l(b) 

after summing over the soft gluonB are pictured in fig,l(c), 

There is no interaction between the Bubgraphs of the diagram 

fig.1(c), and its contribution to the function ¢(x) may be 

expressed as f o llo ws : 

¢(x) (HJ)2 ;~ f dy e iy
_ p+(l- x ) S + O«l-x)o). ( 12 ) 

where H, J and 5 denote the contributions of the corresponding 

Bubgraphs, A hard subgraph H describes interactions of quarks and 

gluons at short (aB compared with (pn)2/n2) distances, and 

therefore H does not depend on the q uark mass m and its behaviour 

8 

as x 	 -~ 1 is regular, The one-loop value of H is 2 . 

ex 2 2 

H 1 + ~ C [- l 10g2[!.i.E!!l J + 10g[4(pn) JJ ' 113 )
4" F 2 2 2 2 2H~;:(] n ,., n I-' 

The collinear subgraph J describes the propagation of the 

Jet-like particles in the direction of the quark momentum P,.,' Its 

contribution to ¢(x) depends in general on the variables m , ,.,2 

and (pn) 2/n2 , However, a more detailed study of the colI inear 

subgraph allows us to state that J does not really depend on 

(pn)2/n 2 /16/, Performing a one-loop calculation we get: 

• 	
Ot 

1 
2 2 

J J [ m: ] + 4~ CF [ 
2' 10g2 + l log~ J'II!.-. ( 14) 

1-1 
,., 2 2 2 

1-1 

The soft subgraph takes into account all the effects caused 

by soft gluons, Its contribution to the function ¢(x) as x -~ 1 

may be represented as /15/: 

s 	 <01 E (y,OO) (E (0,00» )+1 0> , y :(O,y ,OT) ( 15) 
, -p -p 1-1

with 	the following notation for the path-ordered exponentials : 

00 	 -£5 
pl-l A"(-ps+y) £ -- o ·E 

-p 
(y,OO) = P exp [- ig

°
f dse 	 t oJ,

1-1 

The path-ordered exponentials entering into the relati on (15) 

are pictured by double lines in fig,l(c), All the diagrams arising 

in the perturbative expansion of (15) possess infrared divergences 

that cancel out exactly in the r,h,s, of (15) /6,14/, 5 depends on 

the dimensionless product (y ,.,) and on the directions in 
n+ 

Mink owski space indicated by the vectors nl-l and PI-I' i. e. I on 
n 

and 	
p
-2. , The invariance of S under the boosts in the z-direction 
p 

uniquely fixes th~ 	functional dependence of S : 

p p n 2 2 

S s[.l 2 2 -2. ~J S[( )2~ 4(pn) J.2Y- 1-1 p' p n y_P+ 2 ' 2 2 
- -+ m mn 

The one -loop calculation gives: 

Hereafter the dependence of H,J and S on the renormalized 

coup ling constant g g(l-I) is implied , 

') 



S 1 
(.."'\ . 2 

+ 2. C ( 1 log2(4(pn) )
2" F 2 2 2 

2 2 

- IOg~- y2)IOg(4Cpn) )
2 2 2 m n m n 

2 2 

+ 2 log r1::2y2) - log (4(;n~ )). (16 ) 
~ m n 

where Y = CP Y - iO)e~.+ -
To verify relation (12), we substitute obtained one-loop 

values of the subgraphs into (12) and reproduce expression (9). 

The function ¢(x) thus determined has the spectral property: 

¢(x) = 0 , as x > 1. (17 ) 

To prove it, we rewrite equation (15) as follows : 

iN y
S 	 I: <01 E_p(O,oo) IN ' <NI ( E_pCO,oo))+IO > e- + _ . 

N 

where N~ is the mo mentum of a state IN >. Substituting this 

relation into (12 ) we find that ¢( x ) differs from zero at 

N+ = p+(l - x ) ~ 0 As a consequence of the spectral property (17) 

and (12), S being a function of y has poles only in the upper 

half-plane of the complex y 

2 2 
S = 	 s(( _iO)2~ 4(pn)).

y -p + 2 I 2 2 
m m n 

Using the explicit form of relation ( 12) we will demonstrate 

in the next section that ¢(x) satisfies the evolution equation . 

4 The eyo ]\1tioD equation 

We differentiate both the sides of (12) with respect to ~: 

iy
D ¢( x ) ~~ f dy e _ 

p +(l-x) (HJ)2 S D logeS) 

+ D log(JH)2 ¢( x ) + O(l-x)o) 

and 	perform the identical transformation o f the last relation' 

+00 	 2 

D ¢(x) f dz ¢(z) P(X-Z+1, m2 , 
( pn ) 2) + 0 ( ( 1 - x ) ° ). ( 18)

2 2 
-00 ~ n ~ 

where the f o ll o wing notation is used: 

10 

2 2 
(pn) ) 6( 1-z) D log(JH)2

2 2P (Z' :2' 
n ~ 

p+ e iy
f dy _p +(l-z) D log s(y P _iO ) 2 ~ 2, 4(pn)2). ( 19)+ 2n -	 -+ 7 22 

m m n 

In the integral in the second term of (19 ) HIe r;onto tlr c an be 

closed with out enclosing a pole unless z ~ 1 . Henc e 

2 2)
!!!.-	 ~ 0, as z , 1Pz. 2' 22( 
~ 	 n ~ 

Taking into account this property and spectral property (17) we 

derive from (18) the following equation 
2 21dz (X m (pn)) + O((l _ X )O) (20 )D ¢( x ) f -- ¢(z) P -, 
2 ' 	 2 2x z z 

~ 	 n ~ 

similar to the APL equation (3) 

Let us now examine the properties of the kernel P( ). We 

notice that contribution ( 15) of the soft subgraph to ¢(x) 

entering into the expression (19) may be rewritten as a contour 

functional / 15,16/: 

S < 0 I Pexp Cig f dz Aa ( z)t ) 10 > • 
C 	 ~ ~ a 

where the c ontour C i6 pi c tured by a dOloble line in fig . 2. Both 

the rays in fig. 2 are directed in the Hinkowski sp~ce along the 

vector p~. 0 is the endpoint of one of them and the beginning of 

the other is placed at point y~=(O, y_, 0T)' 

It is well kn o wn that a contour functional possesses 

ultraviolet divergen c es /17/ which are renorm a lized 

multiplicatively in the case of the contour C (fig.2) involved in 

the expression for S . As a result, the dependence of S on the mass 

unit ~ is described by the f o llowing equation / 15 /: 

D S - 2 rend(g) S , 	 (21 ) 

where rend(g) is the end anomalous dimension of the contour 

functionals. rend(g) is gauge dependent and in the axial gauge it 

equals / 18/: 

rend(g) rcusp(y,g), 	 (22 ) 

where r cusp (y, g) is the cusp anomalous d imens ion of the contour 

II 



functionals 	 and 1" is the angle in the Mink owski space formed by 

the vectors 	n~ and p~ 

p+n_2 2 2 2 1 4( n)2
cosh 1" (pn) /n m »1, 1" -2 log--P- ~ log p_n+2 2 

n ro 

The properties of the cusp anoroalous diroension are well known 

/ 17,19/. It is essential for us that in the limit o f large 1" 

rcusp has the following asyroptotics / 19/: 

r (1" g ) 1:. 10g4(pn ) 
• 

r (g) + o( logO (pn) 
2 

) , (23 ) 
cusp' 	 2 n2m2 cusp n 2 m.Z 

where to the two-loop o r der in the M5 -scheme we have: 

o s ( s ((670)2 2) :,)rcusp(g) = rr + rr 36 - ~2 - gTF + 0(OS3).CF CF 	 CA 

After substituting eqs . (21),(22) into (19) we find: 

2 2 

(pn)) 6( 1-z) ( D 10g(JH)2 - 2 rcusp(r,g))
2 2p(z , :2' 

n ~ 

whi ch in its turn leads to the f ollowing equation f or ¢(x): 

D ¢( x ) ¢(x ) ( D 10g(JH )2 - 2 r (r,g ) ) . c usp 

The comparison of this relation with equation (8) Yields : 

D 10g(JH) 
2 

- 2 rcusp(r,g) 2rq(g)· 

5ince the r.h.s. of this equality does not depend o n variables 

~2/m2 and (pn)2/n2~2, we conclude that /16/: 

d D 10g(J) +!r (g)=- d D 10g( H) + !r (g)=O, (24)
d log m2 c usp d log n2 cusp 

where the asymptotics (23 ) has been used. We are conv inced that 

the one- l oop values of Hand J and (eqs.(13) and (14)) are in 

agreement with (24 ). 

S The evolution kernels 

50, we have in detail studied the properties of the function 

¢(x) defined in (6) as x ~ 1 in the axial gauge with n2~ O. Now 
2 

we turn to equation (20) and take the 1 imi t n ---> O. In this limit 

]2 

the fun ction ¢( x ) and kernel P( .. 1 coincide accordi ng to (7) with 

the quark di stribution in a quark Iq / q(x) and evolution kernel 

Pqq(z), respectively. Froro equation (20) we get: 

ldz x 0 
D Iq / q( XI 	 f Z Iq/q(z) Pqq(zl + O«l-xl ). (2S) 

x 

However , this limit is not quite obvious . The funct i on ¢- ( x) 

and contributions of the s o ft and hard subgraphs to it 
2(eqs. (9) , (13 ) and (16)) contain terms 10g(n ) so that the limit 

2 2 n ---> 0 does n o t exist . If we put n = 0 from the beginning , these 

dangerous terms are replaced by the ultraviolet poles in the 

diroensional regularization parameter and after subtraction they 

are revealed as an additional dependence of ¢(x), 5 and H on ~ . 
2

For example, at n =0 expression (9) is repla c ed by (10), and the 

one-loop calculation of the soft subgraph gives , instead of (16): 

co 	 2 
s ( 2 25 4rr CF 	 log (~2 y2) 2 10g(~2 y2 )). y= (p+y -iO )e'[ (26) 

m m 

It may be n o ticed that expression (26) does not obey equation 

(21 ) since the cusp anomalous d imens ion ( 23) entering into thi6 

equation becomes divergent at n 
2 = O. It means that in the 

light-like axial gauge both the multiplicative renormalizability 

of the contour functional and as a consequence equation (21) are 

Violated. Nevertheless, using relati on s (21)-(23) we derive 

d 
2 D log 5 	 r () (27 )

d log m cusp g . 

2This relation 	is fulfilled at arbitrary values of n and it is not 
2

changed at n = O. Thus, in the light-like axial gauge the 

contribution o f the soft subgraph 5 satisfies equation (27) 

although its renormalization properties are drastically changed as 

compared with the case n2~0. 

Using the explicit expression (19) for the evoluti on kernel 
2 

qq 

we get at n = 0: 

2 

Pqq(Z) P(z, m 
2 

, (0) 6(1-z) D 10g(JH )' 
~ 

+ ;~ f dy e _ +(l-z)ly p
D log 5(Y _ P+-iU) 2~:,oo} (28) 

m 

The evolution kernel P (z) d oes not depend on m2/~2 since after 

l:l 



differentiating both the sides of the last equality we have: 

d d 
2 P (z) 26( 1-z) 2 D 10g(J) 

m qq d log md log 

+ :+ J dy e iy _ p +(l-z) d D log s[CY P _iO)2~2,oo)
2

T! d log 111 - + Ill' 

- r (g)6(1-z) + r (g)6(1-z) 0, 
cusp cusp 

2
where the relations (24) and (27) valid at n 0 are substituted. 

The evolution kernel Pqq(z) as z satisfies, as it 

follows from (28), the following equation: 

i J i Y P (1- z) d [. 2 ~2 )(l-z)P (z) -- dy e - + --- D log S (y p -10) -- 00 
qq 2fT 	 dy -+ m2 ' 

i J d
y	 

. e iy _ p +(l-z) d D log S[Cy P _iO)2~',00)
2 

T! Y -10 d log m' - + m

. dy i Y P (1 - z) r Cg ) 
1 J --- e - + CUSp
T! Y -iO 

2 r 
cusp

(g)8(1-z). 

Solving this equation we determine the asymptotic behaviour of 

Pqq(z) as z -~ 1: 

°1Pqq(z) 2 rcusp(g) TT=ZT + Cq(g) 6(1-z) + OC(l-z) ). (29a) 
+ 

The one-loop value of C = ~ ~ is obtained after 
q 2 fT F 

substituting (10) into (25). 

As a consequence of (29a), the anomalous dimension rqq(N) has 

the following asymptotics at large N: 

r (N) 	 =-2 r (g) 10g(N eeL) + C (g) + o(N°). (29b) 
qq cusp 	 q 

Comparing equations (3) and (25) we conclude that the quark 

distribution function I q/q (x) when x does not mix under 

renormalization with gluon and antiquark distributions in a quark, 

and therefore: 

P (z) O((l-z)o), r qg ( N) 0 ( N°) . (29c) 
qg 

Moreover, the spectral properties (a) of the parton distributions 
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stated 	in section 2 imply that 

P-- (z) P (z) 	 (29d)qq qq 

All the relat ions (29) are in agreeme n t with the two-loop 

calculations (5). To determine the remaining evolution kprnels and 

anomalous dimensions, we have to consider t.he properties of the 

gluon distribution in a gluon. 

6 The 	 g]UOD distrjbutjoD as x ~ 

Our study of the gluon distribution in a gluon I g/g(x) for 

x -.... 	 is analogous in many respects to the previous analysis of 

Iq/q(x). We again introduce a new function in the axial gauge 

( nA a ( X )) = 0: 

ixp +y
~(x) 	 ---- f dy e- _ 

2fTxp+ 

b Y - a b 
<pIF+v(O,y_,OT)Pexp(ig f dsA+(O,s,OT)aa)Fv_(O) Ip> (30 ) 

o 

where F:v= iJ~A:-iJvA: and Ip> is a spin-averaged state of a gluon 

with a momentum P~. In the special case of the light-lik~ axial 

gauge A:(x) = 0 the function ~(x) coincides with the gluon 

distribution in a gluon (2). Since the quark function ¢(x), as it 

follows from (9) and (10), has the logarithmic dependence on the 

quark mass m, it is natural to expect for the gluon function ~(x) 

to possess the divergences caused by the zero g luon mass. To 

regularize the divergences, we introduce "by hand" a fictitious 

gluon mass ~ and work in the frame where p =~2/2p+« p+. 

The Feynman diagrams contributing to ~(x) as x differ 

from the diagrams, fig.1(a),(b), only by the replacement of the 

external quark lines by the gluon ones /6,14/. They as before 

contain three types of subgraphs: hard, collinear and soft ones. 

The definitions of the subgraphs distinguish from (11) only by 

substitution of the gluon mass ~ for the quark mass m. Specific 

features of the function ~(x) are revealed when one factorizes the 

contribution of the soft subgraph into the diagram fig.1(b). In 

case of the quark distribution all the effects caused by the 

attachments of soft gluons to the quark collinear subgraphs are 

accumulated by the path-ordered exponentials E_p(y,oo) defined in 
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(15) / 14 , 15/ . In t he diagrams f or the ~(x) soft gluons are 

attached to the g l uon collinear subgraphs. Nevertheless, the 

factorizat ion of t he s o ft subgraph is valid as be fore /14,15/ but 

~1th the factors E_p( Y,ro) being replaced by the factors £_p(y,OO) 

in expression (15). They equal: 

00 

£ (y,ro) = P e xp(-ig f ds e-esp~ AQ(y-ps) 0 ), e ~ 0 
-p ° ~ Q 

and differ from E_p(Y,OO) only by substitut ion of the generators 0Q 

of the adjoint representation for the ge nerators t of the 

fundau,ental repr esentation of 5U (3) group . Hence the resulting 

expression for _ ( x) as x _ 1 with factor ize d subgraphs has the 

sa me form as expre ss ion (12). The contribution of the soft 

subgraph 5 to ~(x) differ s from (15) on ly by the replacement of 

the representation of the color matrices. Tha t is why all the 

propert1es (21) and ( 27) of the soft subgraph are prese rved for 

~ (x) with r cusp being replaced by Y cusp " here Y cusp is the cusp 

anomalous dime nsion of contour funct i onals in the adjoint 

representation of 5U(3) group. There is s imple relation between 

rcusp and Y To the lowest orders of PT the expression for cusp 
rcusp has the followi ng structure /1 9/: 

~n C C n-1-k kr (g) = E as FATE' nkcusp n> k 

where a are numerical coefficients. The above-mentioned
nk 

replacement of the representation may be reduced to the 

transformation of Casimir operators: C in the lastCF A 
equation, that is t o the l owest orders of PT: 

c 
~ r (g)- (31 )Ycusp(g) C cusp

F 

The con tributions to _(x ) of the c o llinear a nd hard subgraphs 

possess property ( 24), with rcusp be ing changed by Y but theircusp 
particular va lues differ ing from the anal ogous ones in the quark 

dist r ibution case. 

When n 2~ 0 the function _(x ) satisfies the equation s imi lar 

to (8): 

D _( x) 2 Yg(g) ~(x ). 

where Yg is the anomal oua d i mension of a gl uon field in the axial 

gauge. 
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Taking the limit n2~O and taking into account the equality 

~(x)=fg/g(x) we find with all intermediate steps reproducing 

equatioJls (25) and (29) that the gluon distribution in a gluon 

satisfies the evolution equation: 

D f / (x) f'dY f (y) P (~) + O«l-x)o) . 
g g x y gig gg y 

The involved evolution kernels have the following asymptotics 

as z -- 1: 

1 ° Pgg(Z) 2 Y (g)-----(l) + C (g)6(1-z) + O«l-z) )cusp -z + g 

P (z) O«I-z)o) (32a)gq 

and the behaviour of the anomalous dimensioJls at large N is 

Y (N) =-2 Y (g) log(N eeC) + C (g) + a(N°)gg cusp g 

Y (N) a( N°) . (32b)gq 

The derived relations (32) are in agreement with the two-loop 

calculation (5 ) . The constant C in equation (32) depends on theg 
contributions of the collinear and hard subgraphs and it is not 

identical with the analogous con"stant in (29) . 

Comparing relations (29) and (32) with the two-loop 

calculation (5) we obtain: Ca = -2Ba , a = q , g. In the first terms 

of the perturbative expansion of C and e we easily recognize theq g 
one-loop values of the anomalous dimensions Yq and Yg of quark and 

gluon fields in the nonlight-like axial gauge. (The anomalous 

dimension of a gluon field in the axial gauge is proportional to 

the beta function of QCD: Y g= (I( g) /g). The coincidence is not 

accidental and we prove now that there is a deep connection 

between Ca ' Yq and Y ' g 
Let us represent equations (21) and (22) and relation derived 

at the end of section 4 as follows : 

2 r c usp(y,g) - D log S D log(JH) 
2 
- 2y (g),q 

where 5 , J and H denote the contributio n6 of the corresponding 

subgraph6 to the quark function ¢ (x ) as n2~ O. An analogous 
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relation may be written for t he g luon function ~(x) with the same 

notations: 

2 ycusp ( y , g) - D log S D 10g(.JH )
2 

- 2Y (S).g 

Both the equations are valid when n2~ 0 since in the limit n 
2 

--+ 0 

the cusp anomalous dimens ion defined in ( 2 3) possesses 

divergences. The l,h.s, of these equations differ from each other 

only by replacement of the r e pres entat i on of the gauge group and 

to the lowest orders of PT t hey are related by the equation 

similar to (31) /15/ : cArcusp(y,g) = CFYcusp Cr ,g). Its use allows 

us to derive: 

o = C D logS - C D logS = CA (D log(.JH>2- 2Y )-CF [D log(JH )i -2rq) ' A F 	 g 

Since the 1. h. s. of the equa lity does not depend on n 
2 

, >fe get 

from (28) that in the limit n'-+ 0 to the lowest orders of PT: 

CA(Pqq(Z) - 2rq (g)6(1-Z» ) CF(Pgg(Z) - 2y (g)6(1-Z)}'g 

Substituting (29) and (32) into this relation we find: 

CA(Cq(g) - 2rq(g») cF(cg(g ) - 2rg(g» ) . (33 ) 

To the one-loop order, as it £ollows from (5), both the sides 

of (33) equal zero , We cannot verify (33) to the two-loop order 

since the two-loop value of Yq is unknown . Neve rtheless, the 

validity of this relation may be checked : after substituting 

(2 ) _( "'S) 2(17 2 5 1) ,Yg (g) - n- ~A - ~ATF - ~FfF lnto the r , h.s. of (33) the 

forbidden color weight C2 
F TF appears but its numerical coefficient 

turns out equal to zero. 

7 Cooclusion 

Summarizing the investigation of the parton dist ributions we 

state that for z -. 1 and N » 1: 

,a> 1 	 ) 0
6 b 2 r (g) -(1) + C (g)6(1-z) + 0«1-z) )Pab(z ) (a cusp -z + a 

'a) I!: } 0Y bIN) =-6 b 2 r (g) logIN e ) - C (g) + o(N ).a a ( cusp 	 a 
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where r'a) (g) is the cusp anomalous dimension of the contourcusp 
functionals in the ' fundamental (a="quark") and adjoint (a="gluon") 

representations of SU(3) group, respectively , and to the lowest 

orders are r elated to the anomalous dimension of a quark fieldCa 
in the axial gauge and the beta function of QCD by a simple 
equati on (33), 

Let us substitute the obtained asymptotics of the e volution 

kernels into the APL equation and determine the evolution of the 

parton distributions fa/A(x) in a hadron A when x --+ l. It is 

supposed that the behavour of the parton distributions as x --+ 1 
is: 

CG 

f a / A(x) (1_X)N '>(iJ) 

where the constant N"I}(iJ) cannot be calculated within 
perturbative QCD. Solving the APL equation with this ansatz we 
derive the evolution law: 

D N'm ( ) = 2 r' a)
/-I cusp 

Since r,a) is a positive definite function /16/, N,m(iJ) is an cusp 
increasing function of the renormalization parameter iJ. Thus, when 

x --+ 1, the parton distributions tend to zero faster with 

increasing /-I. 

In conclusion we notice that the above conside ration may be 

easily generalized to the investigation of the asymptotics of the 

kernels governing the evolution of the decay (or fragmentation) 

functions. 
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Kop4eMcKHH f.Il. E2-88-717 
ACHMrrTOTHKa Hp,ep 3BOnlOU;HH A..TJTapeJlnH 
IlapH3H - llHrraTOBa p,nH rrapTOHHhlX 
pacrrpeAeneHMH 

HccneAyeTcH aCHMrrTOTHKa Hp,ep 3BOnlOU;HH Pab(z), a = q, 
q, g tPYHKU;Hi1 pacrrpep,eneHHH rrapTOHOB B ap,pOHe rrpH Z -. I. 
~oKa3aHo, 41'0 BO Bcex rropHp,Kax rrepTyp6aTHBHOH Kxa HApa 
3BomoU;HH HMelOT op,HorreTneBYIO aCHMrrTOTHKY, orrpeAenHeMYIO yr-
nOBOH aHOManbHOH pa3MepHOCTblO KOHTYPHblX tPYHKU;HOHanOB 
B tPYHAaMeHTanbHOM H rrpHcoeAHHeHHOM rrpep,CTaBneHHHX KanH6po-' 
B04HOH rpyrrrrbl. IlonyqeHo ypaBHeHHe, CBH3bmalOm,ee aCHMrrTOTH
KY Hp,ep 3BonlOU;HH B HH3llHX rropHp,Kax TeopHH B03Mym,eHHH. 

Pa60Ta BbmOIlHeHa B lla60paTopHH TeopeTH4eCKOH tPH3HKH 
mum. 

npenpHHT 06'be.o;HHeHHoro HHCTHTYTa JI.ll;epHblX Hccne.o;OBIlHHH. ny6Ha 1988 

Korchemsky G.P. E2-88-717 
ASJ1l1ptotics of the Altarelli - Parisi 
Lipatov Evolution Kernels of Parton 
Distributions 

The asymptotics of the evolution kernels Pab(z) of par
ton distributions is investi gated as z -. I. It is proved 
that to all orders of perturbative QeD the evolution ker
nels have one-loop aSJ1l1ptotics determined by the cusp ana 
malous dimensions of the contour functionals in the funda 
mental and abjoint representations of gauge group. A simp 
le equation is found connecting the aSJ1l1ptotics of the 
evolution kernels. 

The irrvestigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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