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I. Introduction ®

In describing the elementary particle dynamics in the
framework of the field theory, singular or degenerated Lag-
rangianﬂ1_4 are mainly used, Usually, the singularity of a
Lagrangian is caused by the invariance of the action with
respect to the transformations of field functions which depend
on an arbitrary function of the coordinates and time. Such
transformations defined in the tangent bundle are often called
the gaupe transformations; and the corresponding theories,
gauge theories.

A general method to obtain the llumiltonian dynewmics for
singular Lagrangians was described by Dirac 1 .

The equation of motion for an arbitrary dynamic variable

é; has the following form in Dirac's approach L H

g={g,H }; /¥T=H°+u.,:sok‘ L k=1 ..,m. (1)

Here f{c lo the canonlcal Hamlltonlan, LLk are arbitrary
multiplierns, ?k aro the primary conntraints of the 1ot
clapo. Summation runm over the repented I(ndloos here and
throughout the paper.

The function fﬁr lon cnlled the tolal Hamllvonlan. Nole
that In thie paper we are interemted In gaupe degreen of (ree=-
dom and In problems veluted to geuge ixation; so, we shall
anoume that there are only relatlions of the 1ut clann in tho
thoory. T™h o aspumption simplifies aome formilae but the in-

tarprotation remaing ponoral (smee Appendlx A),
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Primary connlraintn ol the Int olonn poduce prnpe Lrans-
formations in Llhe phase npnce. Secondnry conplbyninbn of  Lhe
18t class can also produce paupe translormabtlionn. bivac nonomed
that all consiraints of the 1st class produced paupe tranafor—
mations 1 and proposed gg replace *{T by the generalised

Hamiltonian: 4
ko Mk M ; k=1..m, )
HE=HT+ Lllk ?k ) mk=2’v-9 k; oAy ey )

my ) my,
where LLk are arbitrary factors, ?% are secondary .
constraints,jwkr-i is the maximum number of the secondary
constraints obtained under the requirement for the k.—th pri-
mary constraini being stationery.

Generally speaking, Dirac's assumption was wrong. There
are examples where secondary constraints of the 1st class do
not produce gauge transformations 39 .

Dirac's iteration procedure provides no reasons for
adding wesecondary constrainte to the total Hamiltonian. The
global and pgeometric peneralization of Dirac's approach thrown
no light on this problem, Being a result of these algorithma,
the total Hemiltonlan desoribes dynamice of the system but
it does not contain all gauge deprees of freedom. Therefore,
it im often more convenient to employ the peneralised Hamil-
tonian 3 in order to eliminate nonphysical degrees of free-
dom from the Llheory by using additional or gauge conditions.

A pencral method of applyling gauge conditions within

pingular theories wam propomed by Dlrac 6 « Lator on, thie

method was reproduced many times (o.p. noo Hnl'.(). New 1imituo

are imposed on the coordinates 7/ and momenta,p
X =1 .Z:IW =] | (3)
" ' } = e = (3)
3 (‘;)P)"“’o ;v > ,k=i k

and the function xt (?,P) must obey the following condi-

tions:

det [ {%;, ?;:nk}//# 0; k=1,..m; m=1,., My , )
(X, Xu}=0; L,V=1,.,1T. (5)

Note that for the functions ;ti these conditionas are
necessary but insufficient for beiny gauge conditions. This
ig due 1o the fact that constraints (3) together with equa-
tions of motion can lead to new relations of dynamic variables
and physical degrees of freedom will be lost. BSuch examples
are considered in Ref. 8 .

It is easy to establish a relation between the functions
XL((;,P) ond Lagrange factore. The required ntationarity

of pauge conditions (3) ylelds

9.(1={}XL,H¢;} + LL,:" {XL , ?‘T"}w 0. (0)

Uwing to condition (4), eq.(6) allown determination of multi-
My

pliern u, .
k

In the given paper we show how Lo conmbtruct the generators

of pauge tranoformatlons at piven wingular Lagranglan and

!
thoreaftor we Cind infinitesimal gauge trannformationn ) .
Further, using the conatruction mo thod of the quanigroup fini-

10

Lo olemente for singular ayptems wo obtaln the Hamilbtonian

vquations of motion which pontain the whole gauge recdom,




We establishi  the new limitation on the funobtion ;¥i which
together with the relation (4) were the necoosnry and suffi-
cient conditions for elimination of the paupge freedom.

2. Construction of gauge transformations for a given

singuler Lagrangian

For finding the gauge-transformation generators for a
given singular Lagrangian we shall use the minimal action
principle for mechanical systems. The first-class constraints
must remain to be first-class quantities under the gauge trans-
formations. Then the operator engendering the infinitesimal
gauge transformations must itself be a quantity of the first
class, the gencral form of which is given in the following

way :

m
_9p* 9 58':“ ?km", } (7)

llere 91 and Ib’- are coordinates and momenta, 8:“ are ir-
finitesimal arbitrary funotions, and SDk h are first-class
constrainte ,moreover 9Dk aro primary oconetraints; and if
mk> 'i y mecondary constrainte. The M -{ is the maxi-
mum number of secondary constraints obtained from the requi-
rement of stationarity of ?k .

Let us now proceed in the following wayi ueing the opera=
tors (7) we can construct infinitesimal transformations of

coordinates and momentat

Sq,(‘t)=q36;('t) , 5‘p(t)=qbp(t) (8)

and require that under such transformations the action remains

invariant:

§8[g.put]=[dt8(pgi-Hr)=0. )

The relation (9) gives the restrictions on the functions 5::‘.

In view of this, infinitesimal transformations (8) will

corregpond to such changes of the coordinates and momenta,

at which the physicel state of the syetem remains unchanged.
The assumption that all constraints are first-cless con-

gtraints leads to the equations:

alee
(?k’ J(kjk’ Svk' 4 k’J_i""’m” (10)
' i ) gt l - ,
{Hc,?k}—-gij Py = , i=1,..,M; £=1,...,Mj.

r4 \
i . :
Here tho coefficiente .;k'k' and ?k' may be functions of 9

and fJ . Inperting (8) and (7) into (9) we findy

5= [dt [qLS"PL—FLS'c;H%(Ib(S'g, )-8H,
~Suppy — 1, 89/ ]
-fdt[a —8,,“{Hc,%} Pl u,
-ty & (?h'?h' )"51 Pt“k M" e f“)]

(1)




Up to this step our consideration was of a general character.
Now we make one suggestion, namely, we require that the Poisson
bracket of the primary constraints with the first-class const-
raints be equal to a linear combination of the primary const-

*)

raints

1 ' img,d 1
(o, 9" }=f 0t 90 - ()

The requirement 8'S=O means that the sum of the coefficients
of the primary and secondary constraints each turns into zero
in a strong sense. Collecting the coefficients of secondary

constraints and taking into account (12), from (11) we get

m i ,im
kk - gkl 9k’kk =0 . mk> 1 . (13)

&

From this equation It is seen that because of the presence of
m, ’nb

9‘9”3 in It, in the peneral case sk is also a function

of 9 and Ib . The relation (13) pives sufficient limitations

m
on the functionn Ek kin order that the operators (7) give
nuch chonges of coordinaton and momenta, at which the physlical

ptate of the aystem In nol chanpged. For each value of the
Index k, in (13) we choose n maximum valuo Mkzm{mk}
and conslder skMk an an arbitrary function of time 8.2-('&).
Then all other 8':“ wlll depend on &ﬁ(‘t). q, and Ib . The

form of this dependence Is determined by formula (13),

*) We do not know any oxample when (12) 1m not fulfilled,

O

Now we rewrite formula (8) in a form more guitable for

el frae)Fse-vits A= 520. o

Then, we find the following expression for the operator @

from formulae (7) and (14) with allowance for notation (10):
X ’ M—m, ) /
@=(—1)M * '"’if&ﬂ,;,(t'){'q{j"k, 3o, FEG-Ddtdt. )

We substitute this operator into formulae (8) and find in-

crements of coordinates and momenté:

8= [53,) Qutt) —@dtdt'c'h(t) -[o endt,

syt SJ\«k(t')R,,(t',t'QS%Edtdt b (D=[R, § .

Tho following notation is introduced here

m —
QD60 13%’&" oM 544,

t (1)

9
(m ) )
PE-CD %%’L S -t).

Actually, the operators CQkL nnd }il are the genera-

tors of gauge tranoformatlonns, Uning theme penerators on the
10
basia of the results obtained in ref. for quaslpgroupn, one
onn (in many wayn) rooonstruct finlte gauge transformations.
1



These transformations may formally be written as

10-6Gq,®; pFO=Gp®,

—exp{ [2,@)[Q,, (1) E—
G=exp{ 2, gm W
+‘F/):L(t:t”)'é”Pi—(-[;")-]d’tdt} :

Actually, this solves the problem of construction of fi-

(18)

nite gauge transformations at a given singuler Lagrangian.

Further, knowing the explicit form of coordinate trans-
formations (16,17) in the tangent bundle we can construct
Noether identities in the following form:

&S ’ t'=0: i

=~2—Q,. =0; i=1,..,n; k=4,..,m

59,0 QiDL =0 Lol =ty
where

8§88 9% _d 9%

6‘%(‘1:) 9?@ dt 9%@

3, EBlimination of pgauge freedom

To simplify further prementation, we shall stick to the
i
following notation (ae in formula (1,2)h ?k L= ?k ’
m .
?kb =P k= 4,,m; mk-zr"'y-M-k; J--{:"'pn
- (M -k); upma&, , u™
-1 k ’ k k> "k g
Let up consider the time evolution of the mymtem using
the generalized Hamlltonien (2). We shall take an arbitrary

dynamic variable g and pee how it ip expressed at the moment

t’*‘S—t apguming, thal g(t) has a definite value,.

According to Dirac 1 , we have

gt+8 =g+ §®)St-gD+{g. Hg} 6t
=g@®+{g.He}+4, (3.9} +; D DL

Let us take some other values for the coefficients ’Ck
and PJ s €a8e oC;e and Pj, ., This results in another value
of g(f+8‘t). We denote the difference of these two values
by Ag(t'f'g't) and write in the following way:

A dar(t+8' =8 t[ﬁﬁk'oﬂ;:)@,?b}i'@j"f}){g, 431}] . (20)

On the other hand, we can choose a definite trajectory
of the dynamical variable (t+8't) and act on 1t by the
operator C—;— from the expression (18). This will mean that
the dynamioc variable goes from one gaupe to anolher (arbit-
rary ). Subtracting the variable 3 from G-g , we obtain the

gauge variation of tho dynamic varlaeble
Ag@+8D= ggt+ot)-g(t+8D). (1)

on the basis of (20) and (21) we obtaln the equation

G-Dg (t+8 D)= 8t[eer(5 P )+ B -BG B o

Now let ue discuss how one can use eq.(22) in the gene-
ral cama. Then, we mhall give the gorresponding exsmplen.
Naturnlly, wo oan alwaye take the generallzed coordinate 7/

an 9, « Uince the conmtralntn Y)k nnd d).j nre linearly and



functionally independent, we can always find a situation when
?k will contain at least one momentum variable, e.g.)Pt .
which does not enter into Qi, . Then, the term {73, @f in
(22) reduces to zero for the variable ?l . So we find the
functinnal interdependence between gauge transformation para-
meters entering into formulae (18) and functions oﬁk—dé .
Eq. (22) for the coordinate whose conjugate momentum is in ®J
will connect the parameters 'ﬂ'k« from (18) with functions

Fj _FJI ¥ dck—oc,; can also be included. Finally, we obtain
that in the general case arbitrary fixation of the factors

ock andﬁj in the generalized {lamiltonian may fail to cor-
regspond to any gauge. In other words, when choosing gauge con-
setrainta and using eq.(6) for fixation of the factors LI,,Z"' 5
we must not break the relations between these factors as estab-
lished in eq.(22). This is the only case when conditionsg for
Xi, are the gaupge constraints which, on one hand, fix the
whole pgaupe freedom and, on the other hand, do not lead -
together with the wotlon equation — to new constraints (rela-
tiona). Thus, we have found Lhoe sufficient condition which
allows functions XL obeying conditions (4) and (%) to be

reparded as gaupe lunctiono,

4. Examplen

To make it all cloar, Job ue connlder pome mimple examplen.

The first example lo Lhe oharpelean elootrodynamlon.

10

The electrodynamics Lagrangian has the form:

»

__1 /i = -
XL By s Buo=%A=9 Ay .
This theory has one primary constraint ?E 55043 O and

12
one secondary constraint q)sgiﬂf“Oof the 18t class. The ge-

neralized Hamiltonian is defined by the following expregssion:

He=H, + [d’z (a2 +p 8y 2t)
where Hc is the canonical Hamiltonian.

Formula (7) in the field theory is generalized in the

standard way

- §Px &
s A )=[d e efr@ ] SAf.k(:‘c’, D So*®,D

cope & A
“Sar@ED 5‘7{,‘(5,75] As(E2) -
Inserting the constrainte ?:g? and ?12'- @ , we obtain
§A, = &, (Z,1), o)
&AL= 9,_ Ef(ﬁ':,t)

1 22 2
From (13) we tind ££==81 « Parametirizing 81 by an arbitrary

(23)

function G(Y,t) , we finaltly obtain Ltho well=known transfor=

§A, @1 =8, e, v.

Now we conmtruct the operator Q dofined by the relation (V7)1

qbuqynz>==€as‘8<%f*‘ga.



Then, we find the operator G:

(;=emlo{—fdg, dza(#)s}f&(#—@?%:@j} ’

and finite gaupe transformations

Ay )= G AL @)= A+ 8, A ()

Replacing é; in (22) by /\o and then by /&t , we find the

following relations :

N A@ St =[a@-£@)]8T,
3 QA ) 8t =8 [0~ p] &t

Finally

9, [p/@)-p@] = -2 (-

Now let us consider the model Lagrangian proposed in

1,10,

2~ {[(%-y D3] -V,

r-(33) . =(2)

@* @ the general ivod
A two=dimeunlonnl vector & and y are tho pencra 3

Ref

coordinaten here. Thin wodel han one primary ('.unul,x'ulntP,zO
and one nccondouy x-nnnl.rnlul,FTE”O. It in eany to find the

operator ol i te poupe Lrannformationg

Geap{[dtdt AL S ) (L) gfm - s(ttt”)x,&’)gfm

)

Using this operator, we find gauge transformations

(D=2, B eos )~ 2, DsinAD),

x, () =00, sin A B +a,(t) cosA (D),
y,’(t) =y ®+ad).

Formula (22) connecting the coefficients in the generali-

zed Hamiltonian has the following form in this model:

d%r[wimﬂ- 2, 5inR -2, = (B-pz,,
A =d"dk.

Thepe formulee allow determination of relations between

the coefficients o and.P .

In conclusion the authors express their gratitude to
AN,Tavkhelidze for the pupport and useful discussions. Wo
are also thenkful to V.V.Nesteronko, end N.B.Skachkov for

discunsions.

Appendix A

Here we conmider the conntrﬂotlon of the {nfinitesimal
pauge transformations for epinor electrodynamiom,The spinor
degreem of freedom are premented in this model and the mecond
olass conmsirainte are ulmpo arising hére. Lagrangian has the

form

13



3C=—Zf-@pF’"’+i¢3},@,—ie,4/u)yr—m7_b"§b‘. (a1)

Here A}t"yf 3 'z'Lr are playing the role of the generalized
‘coordinates. The generalized momenta are determined in the

gtandard way:

o 3L . .
B9k, ~lo’ P ‘7"3‘“/’7 50

Prom (A2) we can find the set of the primary constraints

1

=T ; 50;=PY,-11'5F3’5; 9?31 =P7 (A3)

Canonical Hamiltonian has the form
Hc=2‘EJF,:J'f%%Lﬂfi'Fﬂ-L%LAO+i«eID1,Ao‘yr (A4)
HP Rt Ay +mF Y

Further we note, that in the presence of the spinor degreen
of freedom we can up¢ the Poipson brackets In the meaning of
R, Canalbuoni 1 o

Except the primary conntraints (A3), there is one

pecondary constraint in the theory

?)f{"’(al’rl"'e'%ﬁqfr‘ (AY)

For separation ot the conobraintn (A3) nnd (AY) Into the Ciret

and pecond clanps conptralntn, we must conptruct lLinear combi=-
antions from them, In Ulnal wo obtain, that the first claon

conpbtraints nre rollowing

?:=’Eo ’ S°f=‘at-‘”:i‘w(f’y'$"'+’§‘_f[3¢) ; (46)

Other two will determine by the multipliers of the Lagrangian

in the total Hamiltonian. Using (23) we find

§h=t!, 6A, =% e, Sy=iee Y, Sy =-iee,.

i =
Expression (13) gives 81=812 . At last, we obtain the well=-

known transformation rule:

6”A),=8),a , 6"'$lf=zlee'§lf, 6‘$=—ze877,

where by & we parametrized 51

Appendix B

Here we generalized the method of construction of infi-
nitesimal gauge transformations for Lagrangisnn with higher
derivatives. For simplicity we restrict ourselven to the caso

whon the Lagrangian consisto only of mecond-order derivativen
i . da(t)
?:(x,:c,m) y X= ’ x“(mfu";mn)- (81)

Canonical variables for such Lapgranginne are determined

an follown:

9“ -2, CI/ZL -y , | (B2)



The lagrangian (B1) is called singular if canonical va-

riables satisfy the reletions14

?If(%’%’loﬂf)z)=o’ k=1,...,m (B3)

or, which is the same, rank ”ﬁzj ”= n—m , where the matrix

& 8
M7 5s 5%

is determined by

(B4)

The canonical Hamiltonien of the theory is constructed by

the Ustrcmr-adsk:,"]) me thod

HC=P¢3'3+/D23'6—$C(:C,:§:,:E), (15)

which will be & function only of canonical variables. Poisson

Lrackets are determined in the standard way:

‘ =‘8‘[ og _9f ,?_g_ (86)
{f’g) 99k 9Ptk 9Ptk 97/ik .

Then the egnation of motion for dynamical variableo will take
n form completely similar to (1) with the canonical Hamiltonian

(15) wnd primary conastrainte (B33).
Ap bofore, necondary conpirainte are obtained by the Di-

rac iteration method. Am far as we domand that all constraintno

are of tho first order, the relations (10) hold valid.

he metion for Lagrangisns with second derivativen in

written In the forme

S=[dt[p#+p,%-He]. ()

Then following the considerations analogous to section 2 for
m
& €  coefficients entering into the definition of the opera-
& m m
tor q)(ﬁﬁ‘ 50&4) (7) we again obtain relation (13).
Thus, our method of the construction of gauge transforma-
tions can be applied to the Lagrangians depending on coordinates

and velocities, as well as to the Lagrangians with higher deri-

vatives.
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Iorumupae C.A. u 1p. E2-88-706
Pa3zoBoe NPOCTPAHCTBO B CHHTYJIAPHBIX TEOPHAX
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KanMuOpoBOouHbIX (yHKuMiA, IlonyueHHble pe3ynbTaThl aHAIU3UPY-
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rangian, These generators are used to impose necessary and suffi-
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