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Basic problems of the strong interaction theory (the confinement, spoil- 

taneous brealung of chiral symmetry, hadron spectroscopy and the dual-re- 
sonallce amplitudes) are now attempkd to be solved by considering QC'D 
in tne framework of a strictly defined mathematical method. Main elements 
of the method are the Dirac quantization and the formula of asymptotical 
freedom. At the same time, one ignores that at  long distances this formula 
becomes a phenomenological hypothesis, and the Dirac method cannot sol- 
ve the problem of relativistic description df bound states even in QED ' ' .  

If a hadron is a bound state of quarks 'and gluons, then t o  solve the 
above problems we have to consider the following questions: 

I.  What is the perturbation theory for bound states? 
11. How can the relativisticcovariant perturbation theory be constructed? 

111. How must one modify this perturbation theory to reproduce the basic 
features of hadronic physics? 

I. PERTURBATION TFIEORY FOR BOUND STATES 

In QED, bound states are described by means of the expansion not 
in the coupling constant but in the spatial components of gauge fields aro- 

i 
und an exact solution defined by their temporal component (i.e. by the Cou- 
lomb field). This perturbation theory wd1 be called the "physical" one (PPT). 
PPT with an exact solution to  the classical equation for the temponl compo- 
nent of the fields corresponds not t o  the Dirac quantization method (where 
all degrees of freedom are considered as quantum ones) but t o  the "minimal" 
method I2/(where only physical degrees of freedom are quantized). 

On the classical level (after the exact solution of the Gauss equation) 
the gauge-invariant quantities like the Hamiltonian of Belinfante 

depend on the classical variables ( A T  and qT), that are the functionals of 
the initial fields ( A ,  and q ), in the lowest order of the perturbation theory 
these functionals have the form"' 

A T I A ]  = V[AI(A,  + di  )VIA]- '  , 
,. 

1 v[Al = exp I d l  A i  I , 
d 

. The difference between the functionals (2) and the transversal variables 
( d ,  A i = 0 1 in the Dirac method consists in their transformation proper- 
ties under Lorentz-iransformations of the initial fields ' e .  3/ .  

11. RELATIVIZATION 

There exists the opinion that t o  restore the relativistic-covariance of 
bound states, one should set all field components ( Ao, Ai  )in the same con- 
ditions. There are two ways: either t o  use the relativistic gauge or  to calcu- 
late all orders of the perturbation theory exactly. However, in practice, any 
relativistic gauge mixes up the nonperturbative bound effects with the effects 
induced by radiative corrections, and as a result, the theory becomes noncal- 
culable '4'. The correct statement of the question is that how one gets the 
relativisticcovariant wave functions of the bound states in every order of 
the pertyrbation theory. As yet there is no  solution of this problem even in 

1 QED . 
Calculations show that the covariant description of bound states by 

means of PPT is possible if one chooses the quantization time vector ( qP. 
71,; - 1) so that tne Coulomb field ( A ('I . A)) moves together with 
particles, the bound states of which it forms. 

For the lowest order of PPT A 1 - q (A .  7) f 0 and A, I, z A - P 
- A , , we have the following system o r  the DysonSchwinger and Bethe- 
Salpeter equations, respectively, 

and 

where 



(dk) = i 

Yp is the 4-momentum of the bound state X ,  q l ,  are the parameters de- 
pending on the particle masses m and m 2  ( + q  = 1, see ' ') . The po- 
tential V is defined by the exact solution of the equation of motion for the 
tempor& component of the field, A i  I ( A, =- 0)  . 

Relativistjc,covariance (as a transformation property) of the Green func- 
tions <$$ ... $$>, ,in particular, solutions to  eqs.(3) and (4), is achieved by 
including additional diagrams associated with the nonlocal Lorentz-transfor- 
mations of the field into the "minimal" quantization scheme ' 2  '. 

111. QCD AND PPT 

The nonlocal functionals (2) may provide a new physical information 
which is absent when quantizing the theory by the Dirac method, for examp- 
le, in QCD where stationary gauge transformations (as the mapping of a 3di-  
mensional space R 3  into SU(3)-group) have nontrivial topological properti- 
es, the functionals (2) are defined up to phase factors degenerated in the 
topological mapping numbers ' 2 1 6  ' .  As a result of that degeneration, the 
physical fields (as factors of the field sources in the generating functional) 
differ from the "bare" fields used in the diagrams of the perturbation theory. 
Removal of the degeneration leads to vanishing of all the colour Green func- 
tions and the colour particle creation amplitudes, due to destructive inter- 
ference of the phase factors of the degeneration. Consequently, we shall 
consider only the "bare" propagators of the perturbation theory and colour- 
less bound states. 

In the construction of such bound states a main problem of QCD is 
the introduction of a dimensional parameter. Usually, one associates it with 
the asymptotical freedom formula which is connected with "small" pertur- 
bative components ( A ,  ) . The constructive idea is to connect the dimensio- 
nal transmutation, in the lowest order of PPT ( A = 0) , with the boundary 
conditions for the equation for a "big" field component ( Ao), i.e. to  use 
such unnormalized solutions ( Ao) to the classical equation which do not 
contradict the quantization principles for physical variables (2). For example, 

1 the expression ( -T J (,)in (1) can be redefined in the following form 
a 2  

yhere the second term vanishes when the Laplace operator acts on it, 
d2  ($2 J: ) (x) ; JOT (x) . Using the about expression we get the following 

, interaction Hamiltonian 

where 

and the last expression was obtained owing to  the symmetry under "x3y'  . 
The Hamiltonian (5) corresponds to redefinition of the Coulomb potential 
in an infinitesimal vicinity of the zero transfer momentum, 

4 nu8 3 4 nuB y (I;() = [  -------- vo ( 2 n) ( ----- a ) 2 s ( ; , ] ,  Em-----, 
P'O I;(z 

(6) 
I p'12 d p' 

The phenomenological parameters ( a , ,  V, ) of this potential can be fixed 
from the spectroscopy of quarkonia/'/ (which is an analogy of the Cou- 
lomb experiment in QED), which gives 

The potential (6) explains the mass spectrum of light (rnL<<~,"3) 
and heavy ( rn m vO1I3) quarkonia (where mL, are )'bare7' quark masses). 
Exactly calculated propagators of the quark and gluons describe the gene- 
ration of their dynamical (or constituent) masses: 

(see Appendix A). The dynamical mass of a gluon eliminates all infrared 
divergences, modifies the asymptotical freedom formula at small transfer 

, momenta ( Q 2, and leads to the finite coupling "constant" a ( Q  2, 5 0,2, 
I 



The deperrderrce o f  tlrt, strorrg c.orrplittg c.otrstarrt orr Q. C;i~icrr arc c.rperinrcrrta1 and tlrco- 
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for all g2 (see the Figure). The small coupling constant, in turn, allowed 
us to substantiate the nonrelativistic description of the hadron spectrum . 
Thus, we may consider PPT as a self-consistent approach which has allowed 
us, in the framework of QCD, to describe any hadronic process with a given 
accuracy. 

Equations (3) and (4) in their relativisticcovariant form, where the 
exchange-operator is 

describe not only the hadronic spectrum but their coherent interaction that 
in terms of the bilocal-meson fields 8 ' takes the following functional form 

00 

Sin ,  z i Tr[ Z ---- 
n = 3  n 

where Tr means summation over discrete indices and integration over con- 
tinuous variables, for e ~ a m p l e , T r [ ~ ~ 1 ~ [ d ~ ~ d ~ ~ t r [ ~ ( x , y ) , ~ ( y . ~ ) ]  ; 
R( x ,  y ) is the bilocal-meson field represented as the matrix 

N; - 1  

with the Lorentz and flavour indices, ( a ,  p )  and ( a ,  b )  , respectively. Noti- 
ce that the quark Green functions ( C Z )  and the bilocal field ( 8 )  satisfy the 
Dyson-Schwinger (3) and BetheSalpeter (4)  equations, respectively, 

and 

R = i K C  NC z Z' 
The bilocal field can be decomposed over the solutions, fL(q) , to  eq. (4) as 

9 

where 

X = ( x A y ) / 2 , z = x - y are the absolute and relative coordinates, h H  is 
the normalization factor, ) is the creation (annihilation) operator for 

F 
the hadronic state (other definitions have been introduced earlier). 

As has been shown in refs.'8.9/ , the perturbation theory in the bilo- 
cal fields, with the propagator D (x l . x 2  1x3.x4) = sfifx;i>-% x3, x 4 )  
containing an infinite number of resonances describes selfdual amplitudes. 
The lowenergy limit of these amplitudes for light quarks can be easily ob- 
tained from the expression (10). 



In the limit of Vo + b0 (i.e. at  low energies) the bound-state wave func- 
tional ( x ) ,  due to  the normalization condition, transforms to  the 8-func- 
tion, for example, by using the Gaussian successfully applied to  the spect- 
roscopy, we obtain 

f i 2  
lirn Xy ( Z  ) - lim Vo erp ( -  z 2  v ~ ~ ' ~ )  -. ( Z  ) . 

vo += vo +- 

.L a result, in this limit the bilocal field (m) behaves as the &function, i.e. 
fR( x,y ) - 6 (4) ( x  - y )  . . The same limit could be obtained ~y taking K (z) .. 
( .  It is well known that just this "potential" for four-quark inte- 
ractions has been used in the original formulation of the spontaneous brea- 
king of chiral symmetry / l o , ' .  Today we know that the bilocd Lagrangian 
(9) with the potential of -type is reducible to  the chiral Lagrangians /"! 

On the other hand, at high energies the Green functions of quarks and 
gluons turn into the "bare" propagators of the usual perturbation theory 
of QCD used to  describe the quark-hadronic pllenomenology of deep-inelas- 
tic processes. 

To summarize, the physical perturbation theory allows us, from a com- 
mon point of view i) to consider the light and heavy quarks and gluons; ii) 
to give the calculation method for radiative corrections, and to  substantiate 
the zero-norm of the colour states and the relativistic interactions of hadrons 
in accordance with the conventional phenomenological models. 
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Appendix A 
The Green functions for a light quark and a gluon in the oscillator poten- 

tial have calculated in refs. I3l7 . For the quark Green function we have 
the expression 

I dl 
where 4 ( p )  satisfies the equation of the sine-Gordon type, 

The gluon Green function is given by /" ' 

Here ( q )  is the single-particle energy defined as a solution to the following 
equation 

which after substitution of (A2) and (5) takes the form 

where 

-1 !3 
in the dimensionless variables 2 = ( N c V o )  W .  To solve equation (A5). 

the boundary conditions w ( p = O )  = p (  p  = 0 )  > p o  4 0 are needed. 
2  2 

In the limit p  + the equation turns into the algebraic one m2 - p  = bc ( P 1 = 

- 
1 - -, 0. The value of has been estimated from the massive loop 

- P  that defines the modified freedom formula: 
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where d(p) satisfies the equation of the sine-Gordon type, 

The gluon Green function is given by l3 ' 

Here o, ( q )  is the single-particle energy defined as a solution to the following 
equation 
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The  dependence of this parameter is shown in the Figure. In the limit 
of Q~ ,> (A6) gives the usual asymptotical freedom formula, n (Q 2, = 
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Hosb~ii ~ T ~ ~ T Y P ~ ~ T w B H ~ I ~ ~  lTOAXOH B KXa 

&R OlTHCaHHR CBR3iWIblX C O C T O R H H ~ ~  B K3a ki KXa @OPMY- 

JIkipyeTCFi @ H ~ H Y € ? C K ~ H  TeOpHR ~03MyLUe~nfi no lTpOCTpllHCTBeH- 
HbIM KOMnOHeHTaM BeKTOPHOrO nOnR BOKPYr TOqHOrO PemeHUR, 
OlTpenenReMOrO B ~ ~ M ~ H H O G  K O M ~ O H ~ H T O U .  n0~a3aH0, 'fT0 3Ta 
TeOpHR B O ~ M ~ U ~ H H G  B KXa MOXeT 6b1~b nOOlTpeAeneHa TaK, q T 0  

OHa BOClTPOU3BOnMT BCe OCHOBHbIe qePTbI ~ A ~ O H H O ~ ~  @ H ~ W K I I :  KOH- 

@&HM~HT, CneKTpOCKOlIUIo JIerKHX ki THXenbIX KBapKOHHeB, 
nyWIbH0-pe30HWCHbIe aMlTnHTynb1, KHpaJIbHble narpaHXHaHb1 H 

napTOHHyl0 MOAenb. 

Pa6o~a  BbIlTOnHeHa B JIabopa~opnn T ~ O ~ ~ T H W ? C K O ~ ~  @ W ~ W K W  

OMRki. 
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A New Perturbative Approach to  QCD 

For the description of bound states in QED and QCD the 
physical perturbation theory on the spatial components of the 
gauge field over the exact solution, defined by the time one, is 
proposed. It is shown this perturbation theory in QCD can be re- 
defined so that it reproduces the main elements of hadron physics: 
confinement, spectroscopy of light and heavy quarkonia, dual- 
resonance amplitudes, chiral Lagrangians and the parton model. 
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