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1. Introduction

Generalization of (nonrelativietic) quantum mechanics of a par-
ticle to the general Riemannian space-time [/, with the metric ten-
sor(g%pﬁx/ seems to be interesting from different points of view.
Firstly, this theory is of applied interest for investigations of
quantum effects due to an external gravitational field and noniner-
tlality of motion, particularly, in astrophysics or gravitational

wave experiments. Methodical aspect of the problem is of interest too
because formulation of quantum mechanics on a wider geometrical basis
can contribute to a deeper insight to the theory and to finding out
its connections with theories of a higher level. However, such a
generalization could hardly be done immediately on the nonrelativis=-
tic level. It seems more reliable to extract the nonrelativistic
content of a general relativiastic (i.e. generally covariant and based
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3 ) structure which may conditionally be called the general
relativistic quantum mechenics (GRQM). The nonrelativietic quantum
mechanics (NRQM) with relativietic correctiomns will be obtalned here
as an asymptotics of the GRQM for a small parameter proportional to
¢t , v.g. the inverse Compton frequuncy(k%wl= b/&me” ¢ and

1 belng the velocity of light and the mass of the particle, res-
pectively. In fact, the maymptotical expansions will prove to be po-
worn of the ration of the energlies of slow motlions Iin the system to
the rest energy of the particle. Of courme, one may mpeak about the
nlownenn of motion only implying & frame of reference (FR) which ln
necesparily nonlnertial in the framework of General Helativity, mee
Sec, 2. Bo, the term "nonrelativiptic" 1ls uped here In the wsense of
plownesn of motlonw in an appropriamte FR.

The most Importent upme of the NRQM thus conptructed may turn out
tc be In quantum theory of the fleld @ in 1{, (with further "app=
lication" to particle creation procesmmes in the early Unlverme): the
one=particle wave functinnm of the NRQM point out the PFook represen=
tation of the cenonionl commutator relations of guantum floeld, see the
dinousnion of this problem In/1/, pp. 104<187. Ho the notion of n
partiole will depend on the ocholce of It, whioh corresponds Lo the

point of view widely adopted now 1243/
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The problem of general construction of the NRQM in t{; has re-
ceived little attention. The most complete results and references may
be found in the book by A.C.Gorbatzevich/4/ where the NRQM in Df,
for epin 1/2 particle is formulated as a modification of the sta;dard
gcheme of quantum mechanics with a priori Hilbert structure of the
ntate space. Nevertheless; it has proved necegsary to appear to the
peneral relativistic Dirac equation for obtaining a Hamiltonian.
bExcept for this point, one might call Gorbatzevich's approach an induc-
tive one wnile ours is completely deductive in this sense. Compari-
non of results of these two approaches is of independent interest.
Moreover, consideration of the bosonic case is important for the men-
tioned applications toc quantum processes in the early Universe.

IL seems to be reasonable to follow the physical level of rigour
in the paper which is aimed at working out an approasch to the problem
of construction of the NRQM in |/ ; 8o it is suggested that the func-
tions under consideration have the properties which are necessary for
either assertion.

2. Transition to the nonrelativistic asymptotice

As the original GRYM we ghall consider the formal structure
consisting of
1) the Klein-Gordon-lock equation for the complex scalar field

in Vi3 with a metric tensor §us(¥) , e VY, and in an
external eloctromagnetic field Jf(x)*
o

AP = ) me | < (2.1)
%"p‘{'(“/‘f‘:()‘ RN = 001,2,3
-

V being the o ¢ o4 ive, U = ¥ o ;
V_ being the covartent derivative, v, = \7.4";‘://-( D

I AV

2) the indefinite bllinear ferm

(4,8) =i |doc) (%G04, 1, ) (2.2)

2 <
L) i -
tione ought to conmider the conformal-invariant (for m «0 ) equa-
lP:~ k) X 2.3)
R g 2
FRNAVAPINU . ¢+[-‘1/P:Q

where R is the scalar curvature. This would be enpecially appro-
priate because e .(#.}) was originally Introduced in e phymloanl con-
text in paper /5%/ for reanons relevant to the proment paper.

—

where ‘f  is the complex conjugate of ¥ and the integration
is taken over a space-like hypersurface 7 = éxe L{5/£7=/:£mui/?
if ¥, and f, are solutions of eq.(2.1), then (¢, ¥,) does
not depend on ¥ ; =

3) operators of observables, generally nonconserving; they, or
more strictly their matrix elements in the sense of the "scalar
product" (2.2),will be introduced from the principles of gene-
ral covariance, hermiticity and correspondence to the particular
cases where expressions for them are known as differential ope-
rators; this problem will be discussed in a separate paper.

In the Minkowski space-=time, transition to the nonrelativistic
agymptotics proceeds from extraction of the "fast" phase from the
relativistic wave funcdtion:

$ = const - exp(-iw ) (x),
The condition rbélﬁg 9fA/D£/<1 W, points out the class of FR in which
the motion of the quantum system described by the wave function
is nonrelativiastic.

In the General Relativity any porticular coordlnates are scalar
functions of the general coordinates. More accurately, four real sca-
lar functions with the nonzero Jacobian ‘("/ir), det //'3,, f“"// £ 0
locally determine a holonomic system of coordinates. Therefore, in
the general coordinates {N‘, o 6 I&;; , extraction of the "fast"
phase will be done in the general covariant form

— . v

\f = V-i'?' e'llis'”"sb(” - (v.4)

S(x) being a real function to be defined. If one conelders eq.(2.1)
np an equation with the small purumutur(‘,ﬁ*f) of the higher derivu-
tives, then substitution of eq.(2.4) leado to the quanicleasslc apymp-

totlc estimation of the wave function an A w()s However, this would
not be a phyeleally sapld neymptotics for = —w» oo because there appear
additional powers of ("' nfter the tranoition to the real, i.e.,
macroscopically measurable, coordlnate of time £ . For thie roanorn,
the tranmition Lo the asymptotlcwe for u'z or <ﬂ,‘ through eq.
2.4) does not lead to maymptotic expansions for the wave function

but providen asymptotic equations for it thus leading to a new theory.

Thin theory 1o valld under the condition of wmallness of phapo varia-

tionn of 4)(‘1) with renpect to (V‘C-/ﬁ)s (x), 1.0,
la“sl '})"ruﬂ(/-/ & [gc /‘d-( |\' IO).(\\‘/.

Jubstitution of (2¢4) into eq.(2.1) loadn to the equatlion
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Now if the function S{m)'ls the complete 1ntegral the equation

S TS = (#0)

which is evidently the Hamilton-Jacobi equafion for a free particle
in 1{5 , then the vector field $% =S will be the tan-
gentlal field to the geodeslcconbruence orthogonal te the hypersur-
faces VS' f:be;bjs/:;fr) m»;fr. This congruence or equivalently, the
vector field $* is an example of what we shall call the frame of
reference (FR), following e.g. , namely this is a normal Gaussian
FR. ¥rom the physical point of view it may be conceived as a flow

of free falling bodies each of which might be the classical part of
the "quantum object + measuring device" system.

Now we introduce the field of 4-velocities 7' = ¢ s> R
— T = £ and the tensor field
z, T = ¢ y
« - —w 5.
Wy = e 2T, - 07 (2.7)

which is the projection onto the infinitesimal 3- area orthogonal
to T Then, the operator of the covariant derivative may be repre-
sented oo

_ R 7.2 3 — LY “
% = Tl - D D =y BV e

o ) o

For the peodesical conpuence we evidently have

vl o — (:,-‘))
L Vu\ ,/5 - O
and conaequently
v R (2.10)
L%k y =0,

From eqa.(2.5), (2.6) by virtue of (2.7)=(2.10) one obtuine tho
following equation for !

z',ivr/;'/v \//(7& . (2.11)

where

H= H,,-*ﬂwz( TTRURT+ fuct g 7‘) (2.13)

Ho=-£27-D=-£ A (2.14)
_

sz-ls the generalised Laplacean (with the gauge covariant derivati-

Bq_—'Q*""ﬁ’l* ) on the hypersurface 5'(x)=Coc,* and the point
between differentlal operators denotes their operator product, e.g.

V,;'r_Dll (P = '\Z (D/.}C#) . Note also that
<
» = -4z - = 24 il B
(7?): 7T RV, T - L gzt ¢ "g‘,’ew/.sbz,

2
6’ and R,‘p being the shear of congruence and the Ricci tensor
correspondingly, 5€€

~

Combination in the operator T of the term UT /2 with the
derivative Qf“Fi along the congruence seems still rather arbitrary
but this is a very important point end it will be justified by reu-
gong of Sec. 4. Shortly, the quantity Qﬁiﬁ‘ characterises tho va-
riation of the space volume along the vector field 7 , sgee Cufye

, and it is to be teken into account for the right definition of
the wave function of the one-particle state.

Now we pass from the exact equation (2.11) to approximate equa-
tions that can be obtained by the iteration scheme used in /17 for
the transition to the Schrodinger-Pauli equation from the Dirac equa-
tion with the external electromagnetic field (without gravitation).
I'he approximatle ecquation of the zeroth order

i 2.19)
/fi\7¢) - //o Lf‘
in used for substitution of J  1n the right-hand side of eq.(2.11).
The resulting equation of the first approximation is used In the same

way for obtaining the second approximation, etc. For the N-th appro=
ximation one has

't'/q) //,\/‘7’, (2.16)
N

lL« 7 w, " Aw‘, (2.17)
neo

)Lo = “. y L\_{— L (,‘::)7 {-."’l' II‘J II ‘//’:“ ' (2418)

l‘.. "[’*’}l l\ " |]" ) [l 1/1..' }' wo o] h _-!,- (2.19)




The important property of HA, is that it includes no derivative
along ‘T (i.e. derivative in time). In fact, due to egs.(2.7),
(2.10), (2.12) one has

s X o (2.20)
T, Do -(ae D T, £ DT
where '?'::FE v;;#p— V/;.#u . Consequently, the commutator of T
with an operator which includes only "]_)o‘ , i.e. the derivatives
along the hypersurface S (space derivatives) gives again an operator
including only these derivatives. This assertion is invalid in the
case of the nongeodesic vector field ‘Z” because in each iteration
there may appear the derivatives in the direction of Z *in the
right-hand side of eq.(2.16). However this is not a serious obstacle
because time derivatives may again be excluded by means of eq.(2.16)
of the preceding order of approximation.

Let ¢,\/ be a sufficiently smooth solution of eq.(2.16). Then

evidently )
(kT g, = O(w "),
(2.21)

Thig relation does not mean strictly that qé« provides an asymp=-
totic estimation of a solulion of eq.(2.11). However, the physical
level of rigour allowo one to keep off this question and to consider
equation (2.16) and the nsyuptotic structure based on it as an inde-
pendent theory, namely, the quantum mechanics with relativistic cor=-
rectionas up to the order N.

Denote by the_space of all appropriate functiona with
a "glow" phase and by % the apace of such solutions of eq.(2.16)
that (j;w('_ @ « binear differential operators on (P can be divided
into two classes. The first class consists of the operators (includ-
ings the operator of multiplicotion by a scalar [funcltion) that contain
no derivative in the direction of € and thus act along the hyper-
aurface \Q,‘ . vo call then S-operators and denote them by the umual
Ltalic letters e.g. “N ’ h". The second claosp containn the operators
with derivativen in the direction of 7. Thene operators will be
called t =operatorn and we denote them by the curanlve lettern, o.g.

T, K-
3. The acalar produch and hormibliclity of the Hamlltonian

Conaider now, an han been planned at the beginning of deo. ¢,

the indefinite bilinear form (2.2) and obtaln an asymptotic ecalar

O

product induced by it in é/.c‘hoosing Sf/:x el, /S(x) '—’wu.rtf
as > and substituting expression (2.4) into (2.2), one gets the
following bilinear form:

.Z'C.bi, 4’sz :—‘_io(é‘(a:){iicbz+ L'w;i(cgij}z- T, (ﬂ)}/: (3.1)
= (qi ) L{-’l)b 2

where JG"(rx ) = (‘,’ifﬂ d{f’“ ((p) is the elementary invariant 3-
volume of S'. The form (3.1) is evidently positive definite under
the condition

r E 4
2 [ifetegdlblico. [/t oo
Under our suppogitions on the space @ the condition is valid.

I ¢1 7 cf)z € é,\/

4,0l = o, (10 Mttt Olec™).

We denote by 2" the Hermitian conjugation of the S-operator 2
with respect to the standard scalar product

(4, %)= (4\« ¢ (3.4)

)

, one can write inotead of eq.(3.1)

(3.3)

>
Leve,

- - (3.9)

Y2 )= (24, %)
196~ X 1, "¢ .

- F ’

In other wordp, the g¢-operator / In the covariantly transponod
and complex conJupated S-operator £ .
Further, we Introduce the [lunctions Y = l/ 71¢
V' belnpy an 5 -operator defined by the equation

(j_, l/ff//./) { (3.06)

e (0 &

V £ L/

It formal perticular solution 1n
/ 172,
i (ﬂ' Hy 11 ) (3.7)
’ b
A

It i detormined up to the left multiplidation by a unitary & =opo=
rator.




If (Pi'qie d_éfv, then it follows from eq.(3.3) that

1?4‘)4,4{1?5 = (f, %) + Clw ") (3.7)

Thus, asymptotically the basic bilinear form (2.2) induces through
(3.3) generalization (3.4) of the standard scalar product to the case
of curved space-like hypersurface for Y 's if the latter satisfy

the equation
A

‘Lt‘f+ = H, ¥, (3.8)
A [LZT VD (3.9)

following from eq.(2.15). We call it the Schrodinger equation with
relativistic corrections up to the N-th opger.

We will prove now that the operator L{M, which will be called
the Hamiltonian, is asymptotically Hermitian in the space H;N.of the
golutions of eq.(3.8), i.e.,

<(J_/‘/ = (/4/,(;/‘(,\/' /}j)%) N (j[wc"‘/j) (3.10)

1

where

for %Lk& £ ﬁﬁk/ . To prove this we subatitute uq.(3.9) into aq.
(3.10) and use the hurmiticity of'Vr and the relation

(47, 2]'= -[it7. 27]

which 18 valld for any scalar  S-operator ;?' but is not mo evident
ag it mlipght seem at a (irot sight. The matter is that 7] is -
operator, nol s=operator, and therefore, the Hermitlan conjugation

with reapect to the mealar product (3.4) ism not defined for 1t. As
a result, wo have

Su= [ a0 b (V2L HEV [TV ), =

[

. & "’i‘f,"-”J ' T
h fs' s %(Hw* ,'éLiu et T ”v“ a* 1,',..[01 : H )43 -
Using eq.(2.%6) we obtail

o = Jaod (b, 687 Ja, - Jat (1, 657 oy o

]

and hence, In view ol eq.(2.21),

L}

H
\__\
0\

oo -2+ O -
_ j;:@ (3675 O P,

-51

Further, as a consequence of eqg.(2.13)

Y R
Jao (o8- oo o,

S
Hence, in view of obvious hermitic%}y of FL , we come to (3.10),
i.e., asymptotical hermiticity of }/yv .
A In conclugion of the section, we demonmtrate the expression for

th , i.e., for the Hemiltonian with relativistic corrections of
the secnond order

Ho-— iz (H”if %2 672) ! (3.12)
S (B H -2 1 [ ] £ hsioas 6% Hy))

(,?, ma‘
The commutator{:ilj;lh] is calculated on the basis of eq.
(?.20) and reads

[T H.) = ( D, - uTD e, D"

. P RA v S 4 SV Al

One clearly sees from eq.(3.1z) that wo In fact have an asymptotics

in the ratios of kinetic energies of motions in the symtem under

consideration to the rest mams of the smcalar particle which is demori-

bod by the field f .

4. Conservation of the norm of the wave function
A
The hermiticity of ,ﬁv Junt established provides conmervation
of the norm of the wnve function ¢ %;”, In the direction of 7%



(of course, asymptotically up to C)(b>'” 1) ). To show this we intro-
duce a normal system of coordinates in 1{3 which is associated
with the given FR, i.e., we take for x° the canonlcal parameter
¢t on the time-like geodesic in the direction of ’L , each
geodesic being in turn numerated by three numbers £ 3 Ldk 1,2,3.
The f‘s form curvilinear coordinates on each hypersurface :; .
The metric form of $§ 3 has the following form in these coordina-

tes {'Z/'fz'f : .
Aot = crdt - Wy (¢,3)dsds, (4.1)

Conaider now

‘ ) g/_ i T
kAl =k f‘dmf/%_
Taking into account that Ao = 0/}(10/;15/2« (/a.)ﬁ. ¥/ ,

W = J@f/jw || one ovtains
té-’z”“rﬂl-: thcfu% 4/+ e ""Pcs‘t“f
Remember now that a /N‘

(4.2)
V*Td or‘*(‘/g ) :")t

Tnerutoru,

L t dt /f = Lk /’(ﬁ {:)::J/ o ..7;(]\‘/3{ f

5 Con il

= Jola # (I, - 1) = O

t z Const
Q.l.D,

The conmervation of the norm of the wave function and the prin-
ciple of un-l(‘npuudnnvu porve ag 6 basls for the standard Born in-
terpretation of /%(d/ YUs(x) as the probability for [inding t‘h‘a
particle in the element of volume l6 (x) of the hy persurface ,2

In this conneotion let up return to the quention of defining
t —operator T in equ. (2.11), (2.16), (3.0) as an analoguo of

time derivative in the uwsunl dJohrodingor equation, Of course, 1t doen
not matter from the mathematical polnt of view whoere will the term
Lk \7.4'5"‘/% be wot and what will be oalled the Hamiltonlan
/—}M or ﬁ.v ikVJLVZ . However, in the latter case the Hamiltonian
will be non=Hermitenn. According to the ptandard physloal interpre-

10

tation, this is an indication of instability of the one-particle
state. This instability, however, would be connected not with the pro-
bability of a real decay of the particle but with the variation of
the probability of finding the particle in a small space region be-
cause of the dependence of the metric on time.
It is worth noting that one might work from the very beginning
in the coordinates f};" and obtain very familiar formulae:
L0,
LZ:’DT = Hw,/ %w, & .,
o AM Y - 1/4 i nr
where 9(: =w Lf/ ’ l—’w'\/ = W }/A/ WJ

and

7

‘f )~—ja/f//;//; [tf/ ,4)

T = Copml
However, the approach presented here has the virtue of general cova-
riance which is important in itself, clarifies the role of IFR's and
1s necessary for supposed construction of the NRQM for nongeodesic
frames of reference. Indeed, the choice of the Hamilton-Jacobi equa-
tion for C;kr/ in the form of eq.(2.6) neems to be natural in our
problem, but not be necessary. We might consider the Hamiltonian dy-
namice of reference bodies interacting with some external fields and

compensate the change in the Hamilton-Jacobl equation by inclusion
of the corresponding terms into the cquation for fs@d. Particularly,
the electromagnetic field d@ fx) which participates already in
equation (2.9) might be this external field. This would mean that the
(classical) reference bodies are charged and interact with the field
ao well as the quantum particle does. In general, for each concrete
problem there will be the most adequante FR. With respect to which

the quantum system will be"montly nonrelativiestic" for the "longest
time interval".

Leaving details of these questions for a special Inveatigation
we note nevertheless the principal ldea that for extraction of a non=
relativistic component of quantum dynamics of a particle, 1t is appa-
rently necessary Llhat the FR were defined dynamically as a Hamiltonian
system but not kinematically.

Appendix .

__ To prove eq.(3.11) we consider a8 differential S=-operator 2{
in é(f)uaing the coordinates {7, £/ introduced in Sec. 4 ;

A ~ ; '
Z :f.(’t“,f)'fg?xzh”"K(t,f)pzj‘.."{)l. e a




According to (3.5) end (3.4), we obtain as a result of integrations
by parts that

2 =% + -—> (DLJ..‘D (f?‘l ‘)

Evidently, it will be sufflclent to con91der the operator
Using (2.12) and (4.2) we have

(a.1)

T .

i . _FBZA (D&f > Dbl (A.2)

L7, Z] ot T2 /—Z L5z e=®)
and consequently

}:'TZ [ Z-?J (A.3)
According to (A.1)
(D 2? rgaz 1»- L

e z g O (W /

Differentiation of (A.1 ) by 7] shows that

, T‘”D&f"

L)T -r'),za LZ_Z -/ (A-d)

Substituting into eq.(A.2) the operator z‘ instead of ¢f{ and °
comparing the result with (A.3) we obtain in view of (A.4) that

[T,2]' -T2

Q...
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Tarupoa 3.A.
KBaHTOBaR MEXaHMKa B PWUMAHOBOM NPOCTpaHCTBE-BpPEMEHHU .

ObuyexoBapnaHTHOe ypasHeHue llpeauMHrepa ¢ penAaTUBUCTCKUMM
nonpasKaMu )

E2-88-678

Hccneayetca acumntoTuka no €2 /¢ - cKoOpoCTh cBeTa/ TEOPMM KOMNNEKCHOro
CKanApHoro nona 8 ofweM pWMAHOBOM MPOCTPaAHCTBE~BPEMEHW, B3aUMOAENCTBYIOWEro
C BHEWHWM 3NeKTpoMarHWTHuM nonem. B ceoBopgHonapawuen /HopManbHOM rayccosoi/
cucreme ?Tcuera nonyueH obwekoBapuaHTHwIl aHanor ypaeHeHus UWpepuHrepa ans
CKanAPHOW 4acTWub BO BHEWHWX IPAaBMTALMOHHBIX M BNEKTPOMArHUTHOM MONAX C pe-
NATUBUCTCKWUMM NOMNPaBKaMM NMPOM3BONBHOIO NOPAAKA. [loka3aHo, UTO YUET reomeTpu=
UECKOro M3MEHEHWA BO BpEMEeHM 3NeMEHTa NPOCTPAHCTBEHHOro ofveMa npuBoAUT
K FaMWNbTOHWAHY, KOTOPWH /acuMnToTHMUecku/ 3PMMTOB OTHOCUTENbHO CTAHAAPTHOrO
CKanApHOro NPoM3BEREHMA, UTO CNYWMT OCHOBaHMeM ANA BOPHOBCKOrO MCTONKOBaHUA
COOTBETCTBYIOUMX BONHOBBIX QYHKYMIH,

Paborta Bunonnena B NlabopaTopun TeopeTwueckoi Guavkm OUAM.

Npenpunt O6beHMHEHHOr0 HHCTHTYTA ANGPHBIX HccenoBaHui. [y6Ha 1988

Taglrov E.A. E2-88-678
Quantum Mechanics In Rlémannlan Space-Time,
General Covarlant Schr8dinger Equatlon

wlth Relatlvistlic Correctlons

The asymptotlcs for c”2 (c belng. the veloclty of 1lght) of the theory of
a complex scalar fleld In the Rlemannlan space-time and external electromag-
netic fleld Is considered. The qeneral-covarlant Schr8dinger equation with
relativistic correctlons for a scalar partlicle In external gravitatlonal and
electromagnetic flelds Is obtalned for the case of normal Gausslan systems
of reference. Account of the geometrlc varlatlon of the spatial volume ele-
ment along the aeodesics of the system of reference leads to a Hamlltonlan
which Is (asymptotically) self-abjolint with respect to the standard scalar
product. This fact Is considered as a qround for the Born Interpretation
of the wave functlons.

The Investigatlon has been perfarmed at the Laboratory of Theoretical
Physics, JINR.
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