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In the study of theories of extended objects as possible candidates for a unified funda-

mental theory of matter and forces. a central question is whether massless states are present.
In string theories, it is known that massless states occur both in the bosonic string and in the
various superstrings in their respective critical dimensions. For higher-dimensional extended
objects, this gquestion has been the subject of some controversy. For bosonic membranes,
it has been argued using semiclassical methods [1] that the intercept of the leading mass
angular momentum trajectory is inconsistent with the existence of massless states in any
integral spacetime dimension.

For supermembranes [2.3] {and more generally, for super p-hranes), massless states will

chra, provided that super-

be present as a consequence of Lthe spacetime supersyimmetry a
symmetry is neither explicitly broken (by anomalies) nor spontaneously broken. A complete
study of supersymmetry anomalies has not so far been undertaken. However, in the light-cone
gange, any anomalies would be expected to manifest themselves in the Lorentz algebra aud
possibly through a failure of the supermultiplet structure. In fact, this can be shown to oc-
cur for all super p branes except superstrings and the supermembrane in eleven-dimensional
spacetime [1,5]. For the supermembrane in d = 11 spacetinie, doubts concerning the pres-
ence of massless states were raised [6] as a resull of applying the semiclassical methods of

ref. [1]. but this discussion did not take into account a treatment of the zero modes present

in expansions about periodic classical solutions. Taking these into account, one can show
that the perturbative partition function str(¢ "") vanishes as a result of fermionic collective
coordinate integrations [T]. As a consequence. the supersymmetric degeneracy of the energy
levels is preserved to all orders in perturbation theory.

Whether supersymmetry is broken spontaneously through non-perturbative effects has
not vet been established. In a Green-Schwarz formulation of a supersymmetric particle or
extended-object theory, the variables transform under supersyminetry as the coordinates of
superspace. Sinee the fermionic variables W transform inhomogenconsly, and Lorentz invari-
ance requires that W vanish in the vacunm, at least some of the supersymmetry generalors
will not annihilate the vacuum. The important question, however, is whether all of the
supersymmetry generalors are broken.

Working in the light-cone gauge, the 32-component d = 11 Majorana supersymmetry
generators break up into two 16-component spinors e and 3 under the light-cone little group
SO(9). In this gauge, the supersymmetry transformations acquire compensating world-
volume reparameterization terms [8], which have the effect that only the 3-supersymmetry
transforms the spinor variables inhorogrneonsly, thus being obviously broken by the vacuum
¥ = 0. Since the classical a-supersymmetry transformations do not contain an inhomoge-
neous shift of the spinor variables, this suggests that the a-supersymmetry is unbroken by
the vacuum. Assuming that this is the case, the 16 Goldstone zero modes corresponding
to the broken F-supersymmetries generate upon quantization a Clifford algebra that has
an SO(16) antomorphism symmetry. The unicue faithful irreducible representation of this




algebra acts on a space of 128 boson and 128 fermion states. Under the SO(Y) light-cone
little group, these states transform as (44 + 84)Boson and (128) prrmion. Which are precisely
the representations occuring in d = 11 supergravity [9].

If dynamical supersymmetry breaking occurs non-perturbatively, the above discussion
would nieed to be ammended. A framework for addressing the non-perturbative structure of
the theory has been set up in ref. [10]. This work showed that the supercharges and Hamil
tonian may be separated into independently-conserved terms, Q = Qy+Q and H = H,+ I1.
Qo and 1y depend only upon the zero modes, while () and /f depend only upon the non
zero modes. The important point is that the @, H system itsell forms a supersvimmetry
algebra, which in the center of mass frame with vanishing transverse momentum coincides
with the a-supersymumetry algebra. Thus the issue of non-perturbative spontaneous super-
symmetry breaking may be studied by concentrating on the non-zero modes only. The other
main feature of ref. [10] is a supersymmetric regularization of the theory by replacing the
infinite number of degrees of freedom of a supermembrane with spherical topology by a
gquantum-mechanical system with a finite number of degrees of freedon. This i achieved by
representing Lhe residual reparameterization symmetry of the light-cone gange (the group
of area-preserving diffeomorphisms) as the limit of an SU(n) gauge symmetry as n tends
to infinity (11]. Thus the supermembrane problem may be replaced by that of an N = 16
supersymmetric SU(n) gauge-invariant quantum-mechanical model, where the bosonic and
{ermionic transverse mermbrane variahles are replaced by variables transforming in the ad-
joint representation of SU(n). This quantum-mechanical model may also be viewed as the
dimensional reduction of d = 10, N = 1 or d = 4, N = 4 super Yang-Mills with gauge group
SU(n).

‘The aim of ref. [10] was to use the above framework to construct explicitly the ground-
state wave function for the NV = 16 quantum-mechanical model. This explicit attempt.
was not successful. and heuristic acguments were given to the effect that normalizable zero-
energy states of this system might not exist. If this conclusion were correct then all the
supersymmetries would be spontaneously broken. Since the Hamiltonian & for the non-zero
mode system is in fact just 1/2 times the (mass)? operator for the full theory, this would
imply the absence of massless states in the supermembrane spectrum.

In a supersymmetric theory with many fermionic degrees of freedom, the structure of
the vacuum may be rather complicated, involving summation over all of the various sectors
of the fermionic Fock space. Thus it may not be possible in practice to construct explicitly a
supersymmetric vacuum wave function, even though one may have clear indications that such
a state exists. In fact, there exist powerful techniques for proving the existence of zero-energy
wave functions without having to construct them explicitly. It is sufficient to show that any
one of a number of indices for a given theory is non-vanishing to establish the existence of
a supersymmetric ground state [12]. These indices are topologically invariant, i.e. invariant
under smooth deformations of the parameters of the theory. The simplest of these Witten
indices is just tr(—1)F, which counts the difference between the numbers of hosonic and

fermionic zero-energy states (in a supersymmetric theory, the non-zero-energy states always
come in equal numbers of bosons and fermions). In the case of the supermembrane, this index

should be zero because the obviously-broken 3-supersymmetry generators will produce equal

numbers of bosonic and fermionic ground states, whether the a-supersymmetry is hroken or
not
. oiven theory. there may be a number of other Witten indices that reveal different

In

aspects of the vacuum structure, The existence of such other indices relies upon the existencs

of further symmetries Lthat commute with supersymmetry; typically, these lurther symmetries
are discrete, such as charge conjugation [12]. In the [ollowing, we shall consider two such
discrete symmetries that commute with the a-supersymmetry transformations. Smnce the

Iv broken in any case, we shall not be concerned with deriving

J-supersymmetries are clea
an index that is invariant under them.
% 1 W . 4 - o =1
in the im‘r::-(ul-l' gauge, \\'H\l \ T Qe = O, gno — et Tub) Lo, 0 | .4 N lh(’ d =H
) 5 " »1 =g .
superinembrane variables comprise 9 transverse bosonic coordinates X* a d a 1G-conponent

|

SO19) Majorana spinor S. The classical equations of motion for X! and S are 18

Xl =—{x! ¥ X1 =5, 0's)
S==1x". 5, (1)

where the bracket notation [11.10] is defined by

(A B} = 9, ALB (2)
and @, denotes differentiation with respect o the two membrane spatial parameters o® and
the dots in (1] denote differentiation with respect to the time parameter 7. The equations
of motion (1) are supplemented by the constraint

@ = {X/ X7} +1{5.5} =0, (3)

which ensures the invariance of the theory under the residual area-preserving diffeomorphisms

sxT =€ X7},
65 ={£.9). (4)

where £{0®) is an arhitrary function of the spatial parameters o®.

The equations of motion (1) may be derived from the Lagrangian density

<

(X192 1i85 - ~({x!, X7} +457{ X!, 5}, (5

- -
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with the constraint (3} still to be imposed. Of course, one could also introduce a gauge field

for the transformations (4), making them 7-dependent, and thus derive (3) as well from the
Lagrangian by varying with respect to the gauge field in the nsual way. Note that since we
have been taking the membrane world-volume metric to satisfy gng = — det{g,s]. there are
no further density factors needed in (5). The Hamiltonian corresponding to the Lagrangian
density (5) is

H= [ o3P+ F(X, X)) —isT! X, 5], (6)

for which Hamilton’s equations give PT = X7,

The supersymmetry transformations that leave the action invariant are

sx! :iaI“]S+z'{Xl,&/ Sdr},
0
7 ]-(,\"r’— 1—{.¥I,,¥J}Flj)o+i{5.a/ Sdr}, (7)
2 2 4

where a and f are the SO(9) spinor supersymmetry parameters discussed above. The 3-
supersymimetry is clearly spontaneously broken, as we have noted. For the a-supersymmetry,
we have the supercharge

Q= /(ﬂa(P’r' % ;—{x". x#pi)s: (8)

Upon quantization, we have

(PT(0), X7 (c")) = — i6176%(0,0"),
[$%(0),5%(0")}+ =8°%6%(0,0"), (9)

where the charge conjugation matrix has been taken to be just 7. From (9), it follows that
the supercharge and the Hamiltonian satisfy the algebra

[Q*, Q%) = 2Hé&P 4 2'(F’)“‘9/dgoX’<I>, (10)

which reduces to the usual result when the constraint (3) is imposed. Note that the total
transverse momentum does not occur in this relation because we are considering only the
algebra of the a-supersymmetry generators.

Even though we are considering just the a-supersymmetry generators here, we still have
terms in (6) and (8) that depend upon the Goldstone zero modes corresponding to the broken
3-supersymmetries. To reveal these, we separate X/, P/ and § according to

(a) =S+ S(e), (11)

here the zero modes are a%-independent and | e X! = [d*oP! = [d?65 = 0. Thus one
inds [10] |’.,\ = (0o + (';) and H,+ H, witl
plpd 19)
Qu =l 1 i (1=
l «
i "‘.)‘/‘“—’_ (13)
[ fos sl TR Ipld) & m
Q= [ dto (BT + (X7, X7)PH) 3, (14)
i - /.1".‘[”11 ) 1-]‘{."/“\ “‘H‘- :‘“Il“’lv\'. Qt) [1.)}
where v = [ d%¢ is a normalizing factor. An important point [10] is that neither Hq nor
I contains Sh. so Sp is a constant of the motion and hence Qu and Q are independently
|
conserved.

I'he fact that Q and H do not involve the zero modes gives rise to a discrete symmetry
. .

€S

(7 of the Q and H generators that transforms only the zero mos

G:  (X§, P\ S0) = (= X5, =Py =So),
(X, P83y = (X', P, 5) (16)

" . g " S T pn—
There is also another discrete symmetry € that combines a sign change for X4, P* and 5
with 4n orientation-reversing, area-preserving diffeomorphism that changes the sign of the

bracket (2):

C- '\'n]J‘u’ So) =~ (~Xi —Ps, =50),
.'VI["}’_S’[ s (X1, — P! -8)
{A,B) — { i, B} (17)

A convenient way lo view the orientation-reversing diffes rphism is to change the sign

of ¢%. One may verify by inspection that the supercharges and Hamiltonians (12 15) are

invariant under G and C.



Using the discrete symimetries (¢ and C we may construct generalized Witten indices.

For example, by projecting into the space of states invariant under the the operator G.
one effectively factors out the effects of the zero modes associated with the spontaneously-
broken 3-supersymmetry. Thus, one could consider tr[(—=1)¥(1+G)/2]. Since the 128 bosonic
zero-energy states consiructed using even powers of fermionic creation operators built from
So are even under (5, while the 128 fermionic zero-energy states are odd under G, oné has
trl(=1)F(1+G)/2] = 128(r(—1)F, where t7is calenlated within the subspace of states for the
non-zero mode system with generators Q and H. This means that one can focus attention on
the zero-energy eigenstates of /1. A non-zero value for this index would thus imply directly
the existence of the zero-energy eigenstates sought for in [10].

In practice, we shall find it more convenient to discuss a different Witten index that
involves projecting onto states invariant under the operator C. We recall that if any Witten
index built using operators that comiute with the supercharge @ is non-zero, then the
a-supersymmetry will be unbroken. We thus consider

I=ul(-nfa+ )2 . (18)

Without breaking the spacetime supersymmetry, we may compactify the transverse di-
rections of spacctime on a 9-forus,

Xl xt 4 £l (19)

This is equivalent to inposing boundary conditions periodic in X/ on the quantum wave
functions of the system. Note that these boundary conditions are consistent with the discrete
symmetry C defined in (17). Among the periodic wave functions, the projection operator in
(18) selects those that are even under (17).

The problem of calenfating the index (18) is similar to that for super Yang-\itls theories
{12], in that the Hamiltonian (13.15) has zero-energy “valleys™ | ie. directions in (X7, 8)
space where the potential part of /] is llat for non-zero values of X/ and S. These valleys
now have finite extent as a consequence of our periodic boundary conditions (19). but thev
complicate the evaluation of expressions such as (18) since there could still be zero-energy
states for each of the flat directions. The flat directions are determined by the classical
equations of motion for zero energy and the structnre of the Hamiltonian (13.15). Setting
S =0 in the fermion equation of motion (1), we find

X! 8y =o. ' (20)

For configurations satisfying (20). the Hamiltonian i = Hy + I hecomes a sum of squares,
requiring for zero energy that

Pl=P =0, (
{X. X7y =0. (:

(3]

1)

2)

&

3

Since zero-energy configurations must be inert under supersymmetry trausformations, one
obtains by varying (20) under an a-transformation, and taking (22) into account,

{(r'5)> (r'8)%} =0, a=1---16. (23)

For symmetric bispinors x*# of SO(9), one has the Fierz decomposition

1 1 1K Lo .
Xaﬂ = E(éaﬁx” + (Fl)aﬁxﬁ([ﬂl)vé + 4_1(1 I.JI\L)nJ\v_[(rI)I\L)*:&)_ (24)

Substituting (23) into (24), we find that (23) is equivalent to

{52,587} =0. (25)

Zero-energy solutions satisfying {20-22) and (23) take the general form X7 = X/(f(0?))
and 5% = 5%(f(0?)), where f(0®) is an arbitrary function of o' and o2 Physically,
these classical solutions correspond to membranes that have collapsed to string-like one-
dimensional configurations of zero area.

Promoting the classical zero-energy solutions to (20-23) to quantum operators, we can
build from them the operators that map hetween the ground states of the quantum Ifamil-
tonian. Physical states must also satisfy the constraint (3), which requires that the operator
being applied to the ground state be an invariant under (4). This is analogous to the re-
quirement in super Yang-Mills theories that the operators should be gauge-invariant. The
operators that we can apply to a given ground state must also be restricted to those that pre-
serve the periodic boundary conditions (19). In particular, operators involving the hosonic
coordinates X! must be periodic with periods L!. Equation (21) then shows that the bosonic
part of an operator that maps between zero-energy states must be a constant. Moreover,
owing to the periodic boundary conditions and supersymmetry, the lowest-lying states of
non-zero energy are lifted above zero by discrete amounts determined by the values of the
L’. Thus, starting from one ground state, the other states degenerate in energy with it can
be obtained only by applying products of fermionic creation operators corresponding to the
flat valley directions.

In performing the snm over states that contribute to the Witten index (18), we must
now consider the projection operator (1 + (')/2. We should like to argue that the fermionic
states, which are built by applying odd numbers of fermi creation operators, are all odd
under C', while the bosonic states are all even. (We are assuming that our original ground
state is bosonic and invariant under C; if this state were odd, one could calculate the index
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witht the (1 — €')/2 projection operator instead.) Since all the fermionic creation operators
are odd under (', the only way to have an operator even under C with an odd number
of fermi creation operators would be Lo use a bracket {82,58}. But for the valley modes
corresponding Lo classical solutions of zero energy, we have equation (25). Thus there is no
wayv Lo construct a fermionic operator that is even under C that creates states at the same

energy as Lthat of the original ground state. All fermionic states degenerate in energy witl

the chosen bosonic ground state are therefore excluded in the index (18),

Bosonic states constructed by applying even mumbers of fermionic valley-mode creation

s : o e Jorpe the
operators are even under C, and are therefore counted in the index (18). In addition to the

197 additional bosonic states generated by applying even numbers of the creation operators
constructed from Sy. we presumably also have other bosonic states generated by applying
even numbers of the creation operators constructed from the S(f(e")) satisfving (25) that
we discussed earlier. Since the Cheven lowest-energy states are all bosonie, and are hence
unpaired under the a-supersymmetry, they rust in fact be at zero energy.

At this stage, we have established that the Witten index (18) is strictly positive. Thus

supersymmetry cannot be spontaneously breken and so it is guaranteed that the mas
states corresponding to d = 11 supergravity, discussed in [9]. are indeed present in the
supermeinbrane spectrum.  We have not attempted 1o determine the precise value ,Uf !iul
index (18), other than showing that it is greater than zero. Ostensibly, the number of

infinite. Thus the index

fermionic valley modes of the supermembrane that satisfy (27
{18) mayv in fact be infinite.

In the special case of a membrane with spherical topology, one may use the supersymmet-

ric ultraviolet regularization scheme of refs [11,10], in which the supermermbrane is viewed
as then — oo lir:r‘.il of an N = 16 SU(n) gauge-invariant quantum-mechanical model. 1f one
passes to such a regularized theory after having compactified spacetime as in equation (13)
the spectrum will then be discrete and the Witten index (18) will take a definite integer value.

This regularized problem is essentially equivalent to one of the approaches to calculating the

. a1 RCICIEIER, | R o W
Witten index for the maximal super Yang-Mills theory [13]. By “essentially equivalent™, we
mean that periodic boundary conditions have been imposed on all the bosonic modes of the

supermembrane prior to the passage to the regularized theory. In ref. [13], the Witten index

was calculated for the N = 16 quantum-mechanical model with SU(2) gauge group, but
without any periodic identification of the bosonic fields. I'his model is exactly the n = 2

version of the regularized non-zero mode sector of the supermembrane considered in [10]
While the results of [13] gave a non-zero Witten index, the specific value has been the subject
of some discussion [14]. The difficulty stems from the fact that quanturn-mechanical I]IU:}(“L
of the type discussed in [10] may have a continuous spectrum starting at zero energy. While
the Witten index can be defined within a given scheme for discretizing the spectrum, the
results may not agree between one scheme and another, although if the index is non-zero for
one scheme, it is presumably non-zero for all. In the case of the supermembrane. however,

the imposition of the periodic boundary conditions (19) seems quite natural, and one may

simiply adopt this as a procedure for defining the infinite-volume theory. The essential point
is that for all values of the LY, spacetime supersymmetry is unbroken and so the theory does
have massless states in its spectrum. Of cour

e it may be that in taking the limit of the
SU(n) models as n tends to infinity, the Witten index will become infinite.

Given the non-zero value of the index (18). supersymmetry is unbroken and so the
non-zero-mode system of ref. [10] must have either a zero-energy normalizable state or a
continuum of states going to zero energy (in which case the energy eigenstates would be
delta-function riormalizable). A non-zero value for the index has stronger implications than
finding an explicit zero-energy wave function in the regularized theory would have. since the
index is an invariant under adiabatic changes in the parameters of the theory. In particular,
one may be able to establish that supersymimetry remains unbroken in the spectrum even
alter ultraviolet renormalization, provided the C' symmetry (17) is not violated by anomalies.

There are some important open guestions that remain. One is certainly to establish that
the supermenibrane in d = 11 is free of anomalies. AL present it is only known that the
d = 11 theory survives a severe test for anomalies that rules out all the other super p-brane
theories (for p > 1) in lower spacetime dimensions [1.5]. Another important question is

the nature of the supermembrane spectrum, and in particular whether it is continuous or
discrete.
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